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Abstract: As smartphones are much used over a wide area, the pedestrian navigation systems are greatly utilized in
our daily lives. In general, navigation systems use GPS (Global Positioning System) for the user’s positioning but its
accuracy tends to decrease in indoor environments. A pedestrian dead reckoning method, or PDR method in short, is
one of the positioning methods in indoor environments, which estimates the user’s positions by using sensors such as
acceleration and angular velocity sensors. These PDR methods do not always use external infrastructures and hence
they can be implemented with a lower cost. When we consider using a smartphone as a PDR sensor device, atten-
tion must be paid to the fact that there are various carrying modes such as holding it directly and carrying it inside
a pocket. How to deal with these various carrying modes is of great concern in PDR when using a smartphone. In
this paper, we propose a PDR method based on a combination of a smartphone and a smartwatch. By synchronizing
the smartphone and smartwatch sensors effectively, the proposed method can successfully reduce drift errors and thus
estimate accurately the user’s positions, compared to just using a smartphone. Furthermore, even when the user carries
his/her smartphone in various carrying modes, the proposed method still realizes accurate PDR. The experimental re-
sults demonstrate that the positioning errors are reduced by approximately 82.1% on average compared to the existing
method.
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1. Introduction

1.1 Indoor Positioning by Pedestrian Dead Reckoning
In recent years, the pedestrian navigation systems are widely

utilized in our daily lives as smartphones are much used over a
wide area. In general, navigation systems use GPS (Global Posi-
tioning System) for the user’s positioning but its accuracy tends
to decrease in indoor environments, since radio waves from ar-
tificial satellites may be blocked there. In indoor environments,
alternatives to GPS are required for positioning and the effective
one is a pedestrian dead reckoning method, or PDR method in
short. PDR methods estimate the user’s positions based on walk-
ing distance and direction, which are estimated by acceleration
and angular velocity sensors [1]. These PDR methods do not al-
ways use external infrastructures and hence they can be imple-
mented at a lower cost compared with using Wi-Fi access points
and Bluetooth beacons.

When using a smartphone as a PDR sensor device, attention
must be paid to the fact that it has various carrying modes, such
as carrying a smartphone in front of one’s body, swinging a smart-
phone in the hand, keeping a smartphone in a trouser pocket and
keeping a smartphone in a bag. The PDR method optimized
for one particular mode may cause significant positioning errors
when used in other modes.

In summary, the PDR method based on the smartphone sensors
must satisfy that (Condition A) it uses no external infrastructures,
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(Condition B) it estimates the user’s positions with any smart-
phone’s carrying modes, and (Condition C) the positioning errors
are minimized.

1.2 Previous Researches
Many PDR methods using smartphones have been proposed

to date. In particular, those focusing on the smartphone’s carry-
ing modes have been proposed in Refs. [2], [3]. Lee et al. pro-
posed the smartphone’s carrying mode recognition method uti-
lizing the threshold [2]. In this method, the smartphone’s carry-
ing mode is estimated by calculating the average of acceleration
and angular velocity values per step. Tian et al. proposed the
PDR method using smartphones based on a particular carrying
mode [3], where the state machine is configured according to the
smartphone modes and the state transition is performed based on
the angular velocity values. These methods can improve estima-
tion accuracy assuming a particular carrying mode but it is nec-
essary to properly set the threshold for carrying mode estimation.

Recently, there have also been proposed smartphone’s carrying
mode recognition methods using machine learning [4], [5], [6]. In
these machine learning based methods, the smartphone’s carrying
mode is estimated using the acceleration change period, its aver-
age values, and its variance values. These methods can success-
fully estimate the carrying mode but it is difficult to estimate the
smartphone’s carrying modes other than the pre-assumed ones.
In addition, they require extra costs for learning. All the above
methods estimate the user’s positions without using external in-
frastructures. However, these methods are based on estimating
a specific smartphone’s carrying mode and hence these methods
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satisfy (Condition A), but do not satisfy (Condition B) above.
Hoshi et al. proposed the PDR method without assuming a spe-

cific smartphone’s carrying mode [7]. This method needs no ex-
ternal infrastructures. However, this method estimates the user’s
direction only using angular velocity and hence positioning errors
due to drifts can occur very easily. This method satisfies (Con-
dition A) and (Condition B), but does not satisfy (Condition C)
above.

While a smartphone has many carrying modes, a smart-
watch [8], [9] is usually worn on one’s wrist and hence it is less
susceptible to mode changes. A smartwatch can lead to provid-
ing robust PDR. Loh et al. proposed the PDR method with a
smartwatch and a smartglass [10]. In this method, direction esti-
mation is realized by using acceleration and geomagnetic sen-
sors equipped with a smartwatch, and stride length estimation
is realized by using a smartglass. This method satisfies (Condi-
tion B), but direction estimation is realized only by a smartwatch
and hence the positioning errors due to drifts can occur too fre-
quently.

Correra et al. proposed the PDR method with a smartphone and
a smartwatch [11]. This method uses the received signal strength
value from Wi-Fi as well as smartphone sensors, which results in
a highly accurate estimation. This method satisfies (Condition A)
and (Condition C) but it does not satisfy (Condition B) since it
requires Wi-Fi.

Now we consider using smartphone sensors and smartwatch
sensors. As mentioned above, a smartwatch is usually worn on
the wrist and hence it is less susceptible to mode changes. Using
both smartphone sensors and smartwatch sensors can also be less
susceptible to mode changes, which can result in high accuracy
position estimation. As a result, (Condition A) to (Condition C)
can all be satisfied. As far as we know, no PDR methods are pro-
posed using smartphones and smartwatches simultaneously satis-
fying (Condition A) to (Condition C).

1.3 Our Proposal
In this paper, we propose a PDR method using a smartphone

and a smartwatch simultaneously *1. The proposed method can
estimate the user’s positions not depending on the smartphone’s
carrying modes, without using external infrastructures. In addi-
tion, the method reduces direction estimation errors due to drifts
using smartphone and smartwatch sensors and hence realizes ac-
curate PDR.

In the proposed method, step detection, axis correction, and
direction estimation are firstly performed on a smartphone and a
smartwatch, by using their acceleration and gyroscope sensors.
These processes are performed on each device. After that, the
data obtained by the smartphone is synchronized in the smart-
phone device with those obtained by the smartwatch. By com-
paring the synchronized data, we can estimate the user’s direction
very accurately. Finally, the user’s position is estimated based

*1 The preliminary version of this paper appeared in Ref. [12]. The main
differences between Ref. [12] and this paper are that we describe the pro-
posed method in detail in Section 3 and add more variety of experiments
to clearly demonstrate the effectiveness of our proposed method in Sec-
tion 4.

on the estimated step counts and user’s direction. The proposed
method satisfies all the conditions of (Condition A) to (Condi-
tion C).

1.4 Contributions of This Paper
The contributions of this paper are summarized as follows:

( 1 ) We realize indoor positioning not depending on the smart-
phone’s carrying modes by effectively utilizing the proper-
ties of walking motions (See Section 3.4).

( 2 ) Without using external infrastructures, low cost positioning
is realized.

( 3 ) Using a smartphone and a smartwatch simultaneously, po-
sitioning errors due to drifts are much reduced and hence
highly accurate PDR can be realized.

( 4 ) We have conducted experiments with various of the smart-
phone’s carrying modes. As a result, the proposed method
reduced the position estimation errors by approximately
82.1% on average, compared with the existing method [7].

2. Indoor Positioning Problem

In this section, we define an indoor positioning problem us-
ing smartphone and smartwatch sensors. In the indoor position-
ing defined in this section, the user’s position is estimated by a
tri-axis acceleration sensor and a tri-axis angular velocity sensor
installed in smartphones and smartwatches.

As in Fig. 1 (a), a tri-axis acceleration sensor installed in smart-
phones [13], [14] obtains horizontal lateral-direction accelera-
tion values (X-axis acceleration values), horizontal longitudi-
nal acceleration values (Y-axis acceleration values), and verti-
cal acceleration values (Z-axis acceleration values). Let �ap(t) =
(ax

p(t), ayp(t), az
p(t)) represent a tri-axis acceleration vector at time

t, where ax
p(t), ayp(t), and az

p(t) represent the X-axis accelera-
tion value, Y-axis acceleration value, and Z-axis acceleration
value at time t, respectively. As in Fig. 1 (a), a tri-axis angu-
lar velocity sensor installed in smartphones obtains the angu-
lar velocities around horizontal lateral direction (X-axis angu-
lar velocities), and the angular velocities around horizontal lon-
gitudinal direction (Y-axis angular velocities), the angular ve-
locities around vertical direction (Z-axis angular velocity). Let
�ωp(t) = (ωx

p(t), ωyp(t), ωz
p(t)) represent a tri-axis angular velocity

vector at time t, where ωx
p(t), ωyp(t), and ωz

p(t) represent the X-
axis angular velocity, Y-axis angular velocity, and Z-axis angular
velocity at time t, respectively.

Fig. 1 Axes of smartphone and smartwatch and axes on geospatial space.
(a) Three axes on smartphone. (b) Three axes on smartwatch.
(c) Three axes (north direction (N), east direction (E) and gravity
direction (V)) on geospatial space.
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In the same way, we can define a tri-axis acceleration vector
at time t, �aw(t) = (ax

w(t), ayw(t), az
w(t)), and a tri-axis angular ve-

locity vector at time t, �ωw(t) = (ωx
w(t), ωyw(t), ωz

w(t)), for smart-
watches [9], [15] as in Fig. 1 (b).

It is assumed that the user’s initial position �p = (x0, y0), the
user’s initial direction θ0, and the user’s stride length l are given.
We further assume that (1) the user wears a smartwatch on the
wrist and (2) he/she slightly swings it at the side of the body.
The tri-axis acceleration values and tri-axis angular velocity val-
ues are obtained every tp

i seconds from the smartphone sensors *2.
The tri-axis acceleration values and tri-axis angular velocity val-
ues are obtained every twi seconds from the smartwatch sensors.
Note that the smartphone sensors and smartwatch sensors are not
synchronized and hence sensor data at exactly the same time can-
not be obtained from them.

Based on the above discussion, the indoor positioning problem
is defined as follows:

Definition 1 Given the user’s initial position �p = (x0, y0), the
user’s initial direction θ0, and the user’s stride length l, the in-
door positioning problem here is to estimate the user’s position
every ti seconds, by using the tri-axis acceleration vectors and the
tri-axis angular velocity vectors obtained every tp

i seconds from
the smartphone sensors as well as the tri-axis acceleration vectors
and the tri-axis angular velocity vectors obtained every twi seconds
from the smartwatch sensors *3. Note that the smartphone sensors
and smartwatch sensors are not synchronized.

3. The Proposed PDR Method Using a Smart-
phone and a Smartwatch

As in the discussion in Section 1, we use smartphone and
smartwatch sensors simultaneously to tackle the indoor position-
ing problem.

Positioning errors can be accumulated in the PDR method
when only using a smartphone. In order to reduce the cumula-
tive errors, external infrastructures such as Wi-Fi and Bluetooth
are often used [16], [17] but these external infrastructures defi-
nitely increase installation costs. In our approach, this problem is
solved by using a smartphone and a smartwatch simultaneously
and correcting the positioning errors.

In this section, we firstly point out the problems when using
a smartphone and a smartwatch simultaneously in Section 3.1.
After that, we propose our PDR method in Section 3.2. The de-
tailed steps in the proposed method are described in Section 3.3
to Section 3.8.

3.1 Problems of PDR with a Smartphone and a Smartwatch
Indoor positioning using a smartphone and a smartwatch si-

multaneously estimates the user’s steps and direction using their
acceleration and gyroscope sensors. In order to use the smart-
phone and smartwatch sensors simultaneously, it is necessary to
collect sensor data into either one of the devices. However, ac-
cording to our preliminary experiments, sending data from one
device to the other device requires several hundreds of micro sec-

*2 In Section 4, we define tp
i = 25 ms and twi = 50 ms according to

Refs. [9], [14].
*3 In Section 4, we set ti = 50 ms.

onds and furthermore the delay time varies a great deal. It is quite
difficult to accurately associate the data obtained by one device
with the other one. To solve this problem, the proposed method
synchronizes the data obtained by a smartphone with those ob-
tained by a smartwatch based on the user’s step behaviors (see
Section 3.6 in detail).

When using smartphone and smartwatch sensors simultane-
ously, how to combine them becomes another problem. For ex-
ample, consider estimating a user’s direction by using smartphone
and smartwatch sensors. The easiest approach is that we first es-
timate the user’s direction by using each of the devices and then
average them. However, this approach cannot expect to reduce
positioning errors if both smartphone and smartwatch sensors
occur drift errors to the same direction. The proposed method
first calculates the covariance of the user’s direction estimated
by smartphone and smartwatch sensors. By filtering angular ve-
locity values using the covariance, we can realize the accurate
user’s direction estimation (see Section 3.7 in detail). As a result,
the proposed method can distinguish between the user’s going
straight and turning right/left and hence the cumulative errors can
be reduced.

In order to estimate the user’s positions no matter what the
smartphone’s carrying mode is, we have to recognize in which
direction the smartphone turns. As described earlier, the existing
methods distinguish between carrying modes by comparing the
predefined ones and observed ones [2], [6]. These methods can-
not estimate the user’s positions when the smartphone’s carrying
modes are those other than prepared ones. The proposed method
recognizes how much the smartphone is tilted by averaging ac-
celeration values per step and comparing it to the gravity vector
and hence we can recognize the user’s direction independent of
the smartphone’s carrying mode (see Section 3.4 in detail).

From the above, the proposed method can satisfy (Condition
A) to (Condition C) in Section 1.

3.2 Flow of Proposed Method
Based on the above discussions, Fig. 2 shows the flow of the

proposed method. First, tri-axis acceleration and tri-axis angu-
lar velocity values are obtained from the smartphone and smart-
watch sensors and the user’s steps and how much a smartphone
and a smartwatch are tilted are estimated based on them. After

Fig. 2 Flow of the proposed method.
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that, the proposed method synchronizes a smartphone data with a
smartwatch data and estimate the user’s direction and positions.

The flow of the proposed method is summarized as follows:
(Step 1) User’s step detection

In Step 1, the user’s steps are detected by acceleration peri-
odicity in a smartphone. Also, the user’s steps are detected
independently by angular velocity periodicity in a smart-
watch.

(Step 2) Axis correction
In Step 2, the three axes of the smartphone and smartwatch
are converted into the three axes in the geospatial space.

(Step 3) User’s direction estimation
By integrating angular velocity values from the user’s initial
direction, the proposed method estimates the user’s direction
as a difference from the initial direction.

(Step 4) Synchronization
It is difficult to accurately associate the data obtained from
the smartphone with those from the smartwatch due to the
varying sending/receiving delays between them. To solve the
problem, the proposed method synchronizes the smartphone
data with the smartwatch data by using the user’s steps.

(Step 5) Covariance and integrated user’s direction
estimation

The proposed method calculates the covariance between the
angular velocity values of the smartphone and those of the
smartwatch, and changes the user’s direction only if the pos-
itive covariance is large enough. As a result, the errors due to
drifts are much reduced when the user is moving in a straight
path, and a highly accurate estimation is realized.

(Step 6) Positioning
The proposed method estimates the user’s current position
by the user’s step counts and estimated direction.

Note that Step 1 to Step 3 are processed in the smartphone and
smartwatch independently. After that the data processed in the
smartwatch is sent to the smartphone and Step 4 to Step 6 are
processed in the smartphone.

In the following, we propose each step of Step 1 to Step 6
above.

3.3 Step Detection (Step 1)
3.3.1 In the Case of the Smartphone

Figure 3 shows the acceleration values when walking with
a smartphone. Figure 3 shows the data during 10 seconds
while walking in a straight path holding Google’s smartphone
Pixel 3 [14] in front of the body. In Fig. 3, the horizontal axis
shows the measurement time and the vertical axis shows acceler-
ation values. The acceleration value here is the total acceleration

Fig. 3 Total acceleration values by smartphone.

value, which is given by Eq. (1) below:

asum
p (t) =

√
āx

p(t)2 + āyp(t)2
+ āz

p(t)2 (1)

where āx
p(t), āyp(t), and āz

p(t) are the X-axis, Y-axis, and Z-axis
smoothed acceleration values at time t by the smartphone, re-
spectively. Note that every acceleration value is smoothed [4] to
reduce the noises as given below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

āx
p(t) =

1
3

∑
k∈{t− ,t,t+}

ax
p(k)

āyp(t) =
1
3

∑
k∈{t− ,t,t+}

ayp(k)

āz
p(t) =

1
3

∑
k∈{t− ,t,t+}

az
p(k)

(2)

where t− and t+ represent the times when the smartphone sensor
obtains the acceleration values one time before and one time after
the time t, respectively.

Figure 3 clearly demonstrates that the acceleration values of
the smartphone while walking change periodically. According to
our preliminary experiments, the acceleration values change pe-
riodically in other smartphone’s carrying modes as well.

From the above, in Step 1, the X-axis, Y-axis, and Z-axis ac-
celeration values of the smartphone are smoothed by Eq. (2) and
we obtain the user’s step counts on the smartphone by detecting
every peak of total acceleration values.
3.3.2 In the Case of the Smartwatch

Figure 4 shows the acceleration values when walking with a
smartwatch and Fig. 5 shows the angular velocity values when
walking with a smartwatch. Figures 4 and 5 show data for 10
seconds while walking on a straight path using Mobvoi’s smart-
watch TicWatch Pro [9]. In Fig. 4, the horizontal axis shows the
measurement time and the vertical axis shows the acceleration
values. As described above, the acceleration values here repre-
sent the total acceleration values as in Eqs. (1) and (2). In Fig. 5,
the horizontal axis shows the measurement time and the vertical
axis shows the angular velocity values, which are obtained in the
same way as the total acceleration values.

Fig. 4 Total acceleration values by smartwatch.

Fig. 5 Total angular velocity values by smartwatch.
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Figure 4 demonstrates that the acceleration values of the smart-
watch change periodically, but there is a part where the difference
between the maximum and minimum values of the acceleration
values are much too small as in the red dots in Fig. 4. For this
reason, we may not detect either local minima or local maxima
when using these acceleration values. However, Fig. 5 demon-
strates that the angular velocity values of the smartwatch change
periodically and hence we can detect every peak more clearly in
the angular velocity when using a smartwatch.

From the above, as in the smartphone, we obtain the user’s step
counts on the smartwatch by detecting every peak of angular ve-
locity values.

3.4 Axis Correction (Step 2)
As discussed earlier, the axes of a smartphone and a smart-

watch are different from those of geospatial spaces as in Fig. 1.
We have to convert the devices’ axes to geospatial spaces for ev-
ery data obtained.
3.4.1 In the Case of the Smartphone

Firstly, Fig. 6 depicts the typical user’s motion where the blue
arrow shows the gravity and the red arrow shows the acceleration.
If we walk at a constant speed, the acceleration occurs up/down
and front/back as depicted and the acceleration values over a cer-
tain period of time without the gravity will cancel out.

Due to the walking characteristics, the vertical and forward-to-
backward-directed acceleration values are cyclic for each user’s
step. This indicates that, if the acceleration values of the user’s
one step are averaged, the acceleration values horizontal to the
ground will be zero. Since the gravity always acts on the user, it
remains in the vertical down direction to the ground in the aver-
aged acceleration values.

From the above direction, in the case of walking at a constant
speed, the average value over all the acceleration values per step
in the horizontal direction will become zero. In this case, if we
calculate the average value over total acceleration values per step,
it definitely shows the gravity. Once we can obtain the gravity
vector, we can also obtain the angles between the gravity vec-
tor and each axis in the smartphone no matter in what mode the
smartphone is located.

Let �ax
p,ave(n), �ayp,ave(n), and �az

p,ave(n) be the average acceleration
vectors over X-axis, Y-axis, and Z-axis acceleration values, re-
spectively, in the n-th of the user’s step by the smartphone sensor
as given below:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ax
p,ave(n) =

1
|Tp(n)|

∑
k∈Tp(n)

�ax
p(k)

�ayp,ave(n) =
1

|Tp(n)|
∑

k∈Tp(n)

�ayp(k)

�az
p,ave(n) =

1
|Tp(n)|

∑
k∈Tp(n)

�az
p(k)

(3)

Fig. 6 Walking motion. The blue arrow shows the gravity and the red arrow
shows the acceleration.

where �ap(t) = (ax
p(t), ayp(t), az

p(t)) shows the tri-axis acceleration
vector at time t obtained by the smartphone sensor and Tp(n)
shows a set of measurement times included in the n-th of the
user’s step by the smartphone sensor.

At that time, �gp(n) which is the estimated gravity vector at the
n-th of the user’s step by the smartphone can be written by:

�gp(n) = �ax
p,ave(n) + �ayp,ave(n) + �az

p,ave(n) (4)

Let �Ωp(n) = (Ωx
p(n),Ωyp(n),Ωz

p(n)) be the angle vector, in which
each of the components shows the angle between the gravity vec-
tor and X-axis, Y-axis, or Z-axis of the smartphone at the n-th of
the user’s step. Then we have:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�ax
p,ave(n) · �gp(n) = |�ax

p,ave(n)| · |�gp(n)| · cosΩx
p(n)

�ayp,ave(n) · �gp(n) = |�ayp,ave(n)| · |�gp(n)| · cosΩyp(n)

�az
p,ave(n) · �gp(n) = |�az

p,ave(n)| · |�gp(n)| · cosΩz
p(n)

(5)

Since �ax
p,ave(n), �ayp,ave(n), and �az

p,ave(n) are orthogonal to each
other, we can lead to Eq. (6) below by substituting Eq. (4) for
Eq. (5):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ωx
p(n) = arccos

|�ax
p,ave(n)|
|�gp(n)|

Ω
y
p(n) = arccos

|�ayp,ave(n)|
|�gp(n)|

Ωz
p(n) = arccos

|�az
p,ave(n)|
|�gp(n)|

(6)

The above discussion clearly demonstrates that, no matter what
the smartphone’s carrying mode is, we can convert three smart-
phone’s axes to the three axes of the geospatial spaces. Hence the
proposed method can satisfy (Condition B) in Section 1.
3.4.2 In the Case of the Smartwatch

Since the smartwatch’s carrying modes are very limited, it is
possible to assume that the smartwatch is worn on the wrist. How-
ever, every user has different ways of swinging his/her arm and
he/she does not always swings his/her arm on the plane vertical
to the ground. It is still necessary to obtain how much the smart-
watch is tilted.

Let �ax
w,ave(n), �ayw,ave(n), and �az

w,ave(n) be the average acceleration
vectors over X-axis, Y-axis, and Z-axis acceleration values, re-
spectively, in the n-th of the user’s step by the smartwatch sensor
as given below:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ax
w,ave(n) =

1
|Tw(n)|

∑
k∈Tw(n)

�ax
w(k)

�ayw,ave(n) =
1

|Tw(n)|
∑

k∈Tw(n)

�ayw(k)

�az
w,ave(n) =

1
|Tw(n)|

∑
k∈Tw(n)

�az
w(k)

(7)

At that time, �gw(n) which is the estimated gravity vector at the
n-th of the user’s step by the smartphone can be written by:

�gw(n) = �ax
w,ave(n) + �ayw,ave(n) + �az

w,ave(n) (8)

Let �Ωw(n) = (Ωx
w(n),Ωyw(n),Ωz

w(n)) be the angle vector, in
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which each of the components shows the angle between the grav-
ity vector and X-axis, Y-axis, or Z-axis of the smartwatch at the
n-th of the user’s step. We can lead to Eq. (9) below as in the case
of smartphone:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ωx
w(n) = arccos

|�ax
w,ave(n)|
|�gw(n)|

Ω
y
w(n) = arccos

|�ayw,ave(n)|
|�gw(n)|

Ωz
w(n) = arccos

|�az
w,ave(n)|
|�gw(n)|

(9)

The above discussion clearly demonstrates that, no matter what
the smartwatch’s carrying mode is, we can convert three smart-
watch’s axes to the three axes of the geospatial spaces. Hence the
proposed method can still satisfy (Condition B) in Section 1.

Note that, as the smartwatch’s carrying modes are very lim-
ited, we can expect that the errors in Eq. (9) must be very small
and combining the smartphone and the smartwatch leads to very
robust indoor positioning.

3.5 User’s Direction Estimation (Step 3)
The proposed method estimates the user’s direction by using

angular velocity values in the smartphone and the smartwatch.
3.5.1 In the Case of the Smartphone

In the user’s direction estimation, horizontal angular velocity
values are used. Let ωhol

p (t) be the horizontal angular velocity of
the smartphone at time t. LetΩx

p(i),Ωyp(i), andΩz
p(i) be the angles

between the gravity vector and X-axis, Y-axis, and Z-axis of the
smartphone, respectively, at i-th of the user’s step. Then ωhol

p (t) is
obtained by Eq. (11) below:

ωhol
p (t) = ωx

p(t) × cosΩx
p(i)

+ ω
y
p(t) × cosΩyp(i) + ωz

p(t) × cosΩz
p(i) (10)

Now let Δθp(i) be the user’s direction change at i-th of the user’s
step from (i−1)-th of the user’s step by the smartphone. Δθp(i) can
be obtained by integrating the horizontal angular velocity values
over the times corresponding to i-th of the user’s step. Let tstart

p (i)
and tend

p (i) be the start time and end time at i-th of the user’s step,
respectively, and Δtp be the data retrieval interval by the smart-
phone. Then Δθp(i) can be written by:

Δθp(i) =

tend
p (i)∑

k=tstart
p (i)

(ωhol
p (k) × Δtp) (11)

3.5.2 In the Case of the Smartwatch
The user’s direction change by the smartwatch is obtained sim-

ilarly. Let ωhol
w (t) be the horizontal angular velocity of the smart-

watch at time t. Ωx
w(i), Ωyw(i), and Ωz

w(i) be the angles between the
gravity vector and X-axis, Y-axis, and Z-axis of the smartwatch,
respectively, at i-th of the user’s step. Then ωhol

w (t) is obtained by
Eq. (13) below:

ωhol
w (t) = ωx

w(t) × cosΩx
w(i)

+ ω
y
w(t) × cosΩyw(i) + ωz

w(t) × cosΩz
w(i) (12)

Now let Δθw(i) be the user’s direction change at i-th of the user’s

step from (i − 1)-th of the user’s step by the smartwatch. Let
tstart
p (i) and tend

p (i) be the start time and end time at i-th of the
user’s step, respectively, and Δtp be the data retrieval interval by
the smartwatch. Then Δθp(i) can be written by:

Δθw(i) =
tend
w (i)∑

k=tstart
w (i)

(ωhol
w (k) × Δtw) (13)

3.6 Synchronization (Step 4)
To use sensor values obtained by both the smartphone and

smartwatch, we have to send the sensor data of one device to the
other, which requires the transmission delay between them. We
have conducted the preliminary experiments on the transmission
delays. In this experiment, we use Google’s smartphone Pixel 3
and Mobvoi’s smartwatch TicWatch Pro as follows:
( 1 ) We connect the smartphone to the smartwatch via Bluetooth

and send a 16-byte character string A from the smartphone
to the smartwatch (the send start time is tA).

( 2 ) After the smartwatch receives the character string A, we send
back a 16-byte character string B from the smartwatch to the
smartphone.

( 3 ) Then the smartphone receives the character string B (the re-
ceiving time is tB).

( 4 ) The delay time between the smartphone and the smartwatch
is defined by (tB − tA)/2 at time tA.

( 5 ) Figure 7 is the plots of the delay time obtained by repeating
( 1 ) to ( 4 ) above every 500 ms. The horizontal axis rep-
resents the time t and the vertical axis represents the delay
time.

As in Fig. 7, the transition delay time becomes 100 ms to 400 ms.
It is not the constant value. It is difficult to uniquely associate
the smartphone sensor data with the smartwatch sensor data. On
the other hand, the walking cycle is approximately 700 ms to
1,000 ms as in Fig. 3 and the delay time in Fig. 7 is smaller than
the walking cycle. Hence the proposed method synchronizes the
smartphone sensor data with the smartwatch sensor data based
on every user’s step obtained by Step 1. Thus, the goal of the
synchronization step is to find out the correspondence between
the smartphone sensor data and the smartwatch sensor data in a
step-by-step manner.

The synchronization step (Step 4) is composed of (1) the step-
synchronization process and (2) the step-correction process. We
propose these two processes below:
3.6.1 (1) Step-synchronization Process

Firstly, we describe the step-synchronization process. As
above, it is difficult to uniquely associate the smartphone sen-

Fig. 7 Delay time between a smartphone and a smartwatch.
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Fig. 8 Example of the step-correction process.

sor data with the smartwatch sensor data due to their transition
delays. The proposed method synchronizes the user’s direction
estimated by the smartphone with that by the smartwatch having
the same user’s step count.

Let n and m be the current step counts measured by the smart-
phone and the smartwatch sensor data in Step 1, respectively.
We send the user’s direction estimated by the smartwatch to the
smartphone together with the step count m by Bluetooth, every
time the smartwatch estimates the user’s direction. Then the
smartphone synchronizes the user’s direction estimated by the
smartphone with that by the smartwatch having the same user’s
step count.
3.6.2 (2) Step-correction Process

Next, we describe the step-correction process. The proposed
method synchronizes the smartphone sensor data with the smart-
watch sensor data based on every user’s step as mentioned above.
However, the smartphone and/or smartwatch may miss the user’s
step detection, and hence we correct the steps obtained by the
smartphone and/or smartwatch in the step-correction process.

The delay time between the smartphone and the smartwatch is
smaller than the walking cycle and thus the step count difference
between the smartphone and the smartwatch cannot always be
larger than one. If it is larger than one, we can consider that the
smartphone or smartwatch misses the user’s step count. There-
fore, the proposed method corrects the smartphone or the smart-
watch step count if the difference between the smartphone and
the smartwatch step count is larger than one.

Consider the case of |n − m| ≥ 2 and n > m, where n and

m are the current step counts measured by the smartphone and
the smartwatch sensor data in Step 1, respectively. In this case,
we have no (m + 1)-th step smartwatch data. Then, the proposed
method just copies m-th step smartwatch sensor data to (m+1)-th
step smartwatch sensor data. The smartphone’s (m + 1)-th step
sensor data is associated with the smartwatch’s (m + 1)-th step
sensor data and we can continue the subsequent processes.

Figure 8 shows an example of the step-correction process. Fig-
ure 8 (a) shows the step-synchronization process from the 1st step
to the 2nd step. Figure 8 (b) shows the case of missing the step
detection. In Fig. 8 (b), “-” shows that the device cannot obtain
the sensor data. In this figure, the smartphone obtains the 3rd
step sensor data and the 4th step sensor data, but the smartwatch
has sensor data only from the 1st step to the 2nd step. In this case,
|n − m| ≥ 2 holds. The smartwatch has no sensor data at the 3rd
step and we copy the 2nd step sensor data to the 3rd step sensor
data and increase its step count as in Fig. 8 (c). We perform the
subsequent processes for the 3rd step sensor data.

Now assume that the smartwatch obtains the 4th step sen-
sor data before the smartphone obtains the 5th step sensor data
(Fig. 8 (d)). Then we perform the subsequent processes (Sec-
tions 3.7 and 3.8) for the 4th step sensor data. Note that, if the
smartwatch does not obtain the 4th step sensor data before the
smartphone obtains the 5th step sensor data, |n−m| ≥ 2 holds and
the above step-correction process is performed again. In this ex-
ample, we assume n−m ≥ 2 but the same step-correction process
will be performed if m − n ≥ 2 occurs.

Note that, the step count detected cannot usually be larger than
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the actual step count as in preliminary experiments (See Table 1
and discussion in Section 4.2). For this reason, we do not drop
any sensor data but adopt the step-correction process above.

3.7 Correlation and Integrated Direction Estimation
(Step 5)

In Step 3, the cumulative errors in the user’s direction estima-
tion can occur by the drift errors [18], [19]. The proposed method
corrects these errors by correlating the direction estimation by the
smartphone and smartwatch.
3.7.1 Calculating Correlation

When a user turns to the right or left, the angular velocity sen-
sor on both of the smartphone and smartwatch must obtain similar
data. Angular velocity of the smartphone and smartwatch always
changes due to noises such as thermal noises and the user’s small
behaviors. However, it is rare that the same noises are added to
both angular velocity sensors.

The proposed method takes the covariance [20] of both the
direction change values of the smartphone and smartwatch in
Step 3. The covariance shows a large value when the two data
have similar changes and it also shows a larger value when the
original two data have a large value (see Fig. 12). By using the co-
variance, it is possible to recognize that the two direction change
values are similar to each other and that the changes are large
enough. We can detect whether the user actually turns or not by
using the covariance.

Based on this discussion, the proposed method calculates the
covariance of the direction change values of the smartphone and
smartwatch obtained by Step 3. Then, we recognize that the user
actually turns when the covariance is positive and large. This ap-
proach prevents unnecessary fluctuations in the user’s direction
change when the user is only moving in a straight path, and keeps
the drift errors small enough.

Let si be the covariance of the direction change values of the
smartphone and smartwatch at i-th of the user’s step. si can be
defined by

si =
1
3

i+1∑
k=i−1

((Δθp(k) − Δθavep ) × (Δθw(k) − Δθavew )) (14)

where Δθp(i) and Δθw(i) show the direction change values of the
smartphone and smartwatch at i-th of the user’s step, respectively,
obtained by Step 3 and Δθavep and Δθavew show the averaged direc-
tion change values of the smartphone and smartwatch, respec-
tively, from (i − 1)-th of the user’s step to (i + 1)-th of the user’s
step.

In Eq. (14), we average the direction change values from (i−1)-
th of the user’s step to (i+1)-th of the user’s step. This is because
it is difficult to calculate the covariance for long steps in real-time
positioning. Generally, one walking cycle is composed of two
steps since the right foot and the left foot go forward step by step.
This means that the walking cycle is completely finished in three
steps. Then we adopt Eq. (14) to obtain the covariance.
3.7.2 Integrated Direction Estimation by Correlation

Let Δθ(i) be the average of the direction change values at i-th
of the user’s step obtained from the smartphone and smartwatch.
Δθ(i) is written by

Δθ(i) =
1
2

(Δθp(i) + Δθw(i)) (15)

Based on the covariance si, we correct the direction change value
at i-th of the user’s step as follows:

Δθcor(i)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Δθ(i) × apass (either si > sth, si±1 > sth,

or si±2 > sth is satisfied)

Δθ(i) × acut (otherwise)

(16)

where apass and acut show the coefficients for correction and sth

shows the threshold. apass is set to large enough and acut is set to
small enough. In our experiment, we set apass = 1 and acut = 0.

We take a few steps when we turn to the right or to the left.
Then, in Eq. (16), we see the covariance values of the current
user’s step (i-th step) as well as (i±1)-th steps and (i±2)-th steps.
If one of the covariance values during these steps is larger than
the threshold sth, then we recognize that the user turns and we set
Δθcor(i) to Δθ(i) × apass. Otherwise, we recognize that the user
still goes straight and we set Δθcor(i) to Δθ(i) × acut.

By summing up Δθcor(i) from the 0-th of the user’s step to n-th
of the user’s step, we obtain the relative direction difference up to
n-th of the user’s step:

θn =

n∑
i=0

Δθcor(i) (17)

As above, the correlation is calculated between smartphone
and smartwatch sensor data. In this calculation, the proposed
method uses direction changes per each step of both the smart-
phone and the smartwatch. These direction changes are calcu-
lated with angular velocity values at i-th step. Therefore, we do
not have to need synchronization of sampling timing, but we syn-
chronize step timing because the proposed method uses the sensor
data that depend on steps, as described above.
3.7.3 Threshold Setting

In Eq. (16), how to set the threshold sth is important. Figure 10
shows the covariance values when walking on a straight path of
approximately 30 m as in the red line of Fig. 9 using Google’s
smartphone Pixel 3 and Mobvoi’s smartwatch TicWatchPro. Fig-
ure 11 shows the covariance values when walking on a straight
path of approximately 15 m, turning by 90 degrees to the left,
and going straight for approximately 15 m as in the blue line of
Fig. 9. In Fig. 10 and Fig. 11, the smartphone’s carrying modes
are a) holding it in the right hand in front of the body (Right-
Hand), b) swinging it in the right hand at the side of the body

Fig. 9 Routes used in the experiment.
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Fig. 13 Routes used in the experiment.

Fig. 10 Covariance when walking straight.

Fig. 11 Covariance when turning.

Fig. 12 Relationship between direction change and covariance.

(RightSwing), c) putting it in the front right trouser pocket (Front-
Pocket), and d) putting it in the back right trouser pocket (Back-
Pocket). The smartwatch is worn on the left wrist. In Fig. 10 and
Fig. 11, the horizontal axis shows the covariance and the vertical
axis shows the user’s steps.

As Fig. 10 shows, the covariance on going straight becomes ap-
proximately 15 or less. On the other hand, as Fig. 11 shows, the
covariance on turning is over 15 in any carrying modes. Hence
we set sth to 15.

3.8 Position Estimation (Step 6)
Finally, the user’s position �pn = (xn, yn) at n-th of the user’s

step is estimated by
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xn = l × cos θn + xn−1

yn = l × sin θn + yn−1

(18)

Note that it is assumed that the stride length l is given.

4. Evaluation

4.1 Condition
We have implemented the proposed method as an Android ap-

plication in Java and several evaluation experiments have been
conducted using Google’s smartphone Pixel 3 [14] and Mobvoi’s
smartwatch TicWatchPro [9]. In the experiments, the following
three types of paths, Path A, Path B, and Path C, are used.
Path A: A straight path of approximately 70 m as in the red line

of Fig. 13 (a).
Path B: A straight path of approximately 40 m, turning by 90

degrees to the left, and going straight for approximately 60 m
as in the blue line of Fig. 13 (a).

Path C: A straight path of approximately 5 m, turning by 90
degrees to the left, going straight for approximately 9 m,
turning by 90 degrees to the right, going straight for ap-
proximately 35 m, turning by 90 degrees to the left, and
going straight for approximately 10 m as in the red line of
Fig. 13 (b).

In all the experiments, we have carried the smartphone in vari-
ous modes and worn the smartwatch on the left wrist. We set the
stride length to be 70 cm based on the preliminary experiment *4.
The types and purposes of the experiments are shown below.
(1) Step count evaluation

Firstly, we estimate the step counts by using the proposed
method on Path A and Path B. Then we compare the esti-
mated step count with the actual step counts. We can confirm
how accurately the proposed method estimates the user’s
step count.

(2) Direction estimation evaluation
Next, we estimate the route trajectory by the proposed
method on Path A, Path B, and Path C. Then we compare
the estimated route trajectory with the actual route. We can

*4 In our preliminary experiment, the user walked 20-step forward along
the straight path and the average stride length was calculated using the
walking distance. Then we obtained the stride length to be 70 cm.
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Fig. 14 Trajectory when walking on Path A.

Table 1 The results of step count estimation.

Devices
Path A (100 steps) Path B (150 steps)
Estimated

steps
Error

Estimated
steps

Error

Smartphone’s
carrying modes

RightHand 101 1.0% 151 0.7%
RightSwing 100 0.0% 149 −0.7%
FrontPocket 98 −2.0% 148 −1.3%
BackPocket 96 −4.0% 148 −1.3%
Bag 100 0.0% 150 0.0%

Smartwatch 100 0.0% 149 −0.7%

confirm how accurately the proposed method recognizes the
user’s turn and how much the proposed method reduces the
drift errors.

(3) Comparisons
As described in Section 1, no PDR method other than the
proposed method uses a smartphone and a smartwatch si-
multaneously. On the other hand, the existing method [7] en-
ables the user’s indoor position estimation in various of the
smartphone’s carrying modes. In addition, as in the proposed
method, the existing method [7] estimates the user’s direc-
tion using only smartphone sensors, without using the geo-
magnetic fields. Hence, we compare the proposed method
with Ref. [7]. In Ref. [7], we also obtain the route trajecto-
ries similarly on Path A, Path B, and Path C.

4.2 Step Count Evaluation
Table 1 shows the results of step count estimation by the smart-

phone and the smartwatch in Step 1 of the proposed method. In
this experiment, the smartphone’s carrying modes are a) holding
it in the right hand in front of the body (RightHand), b) swinging
it in the right hand at the side of the body (RightSwing), c) putting
it in the front right trouser pocket (FrontPocket), d) putting it in
the back right trouser pocket (BackPocket), and e) putting it in the

shoulder bag (Bag) *5. The smartwatch is worn on the left wrist.
As in Table 1, in any smartphone’s carrying modes, the er-

rors between the estimated step counts and the actual step counts
are around 1%, which definitely shows that the proposed step
count estimation can be done with high accuracy. In the case
of the smartwatch, the errors are also very small. These errors
are mainly caused by the start and end of the walk, where the
proposed method cannot well detect the acceleration and angular
velocity peaks.

4.3 Direction Estimation Evaluation
Figure 14, Fig. 15 and Fig. 16 show the route trajectories of

Path A, Path B, and Path C, respectively, obtained by the pro-
posed method and the actual routes. In this experiment, we have
also obtained the route trajectories only using the smartphone and
only using the smartwatch. In these cases, we use the proposed
method without combining the smartphone and the smartwatch,
just using one of them. The results are also shown in Fig. 14,
Fig. 15, and Fig. 16 (Phone only and Watch only).

In Fig. 14, Fig. 15, and Fig. 16, the smartphone’s carrying
modes are a) holding it in the right hand in front of the body
(RightHand), b) swinging it in the right hand at the side of the
body (RightSwing), c) putting it in the front right trouser pocket
(FrontRightPocket), d) putting it in the front left trouser pocket
(FrontLeftPocket), e) putting it in the back right trouser pocket
(BackRightPocket), f) putting it in the back left trouser pocket
(BackLeftPocket), and g) putting it in the shoulder bag (Bag).
The smartwatch is worn on the left wrist. The X-axis in Fig. 14,
Fig. 15, and Fig. 16 shows the straight path direction and the Y-
axis shows the direction perpendicular to the straight path direc-
tion.

*5 LeftHand and LeftSwing modes (holding the smartphone in the left
hand) are discussed in Section 4.5.1.
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Fig. 15 Trajectory when walking on Path B.

Fig. 16 Trajectory when walking on Path C.

In the case of Path A, as Fig. 14 shows, the proposed method
recognizes a straight path, and estimates the user’s positions with
almost no errors in any smartphone’s carrying modes. In the case
of Path B and Path C, the proposed method also estimates the
user’s positions with almost no errors in several of the smart-
phone’s carrying modes. The errors are much reduced by com-
bining the smartphone and smartwatch, compared with just using
only the smartphone, or only the smartwatch.

Note that the proposed method only uses the smartphone and
smartwatch sensor data. As in Refs. [21], [22], if we further apply
another external method to our proposed method, the errors can
be reduced and a more accurate user’s position estimation will be
realized.

4.4 Comparison
Table 2 shows the comparison results between Ref. [7] and the

proposed method. In this experiment, the smartphone’s carrying
modes are the same as in the previous experiment. The smart-
watch is worn on the left wrist.

In Table 2, the average estimation error err is obtained by
Eq. (19) below:

err =
1
n

n∑
i=0

√
(xest

i − xact
i )2 + (yest

i − yact
i )2 (19)

where n shows the total number of steps, xi
est and yi

est show the
X-coordinate and Y-coordinate of the estimated user’s position at
i-th step, respectively, and xact

i and yact
i show the X-coordinate and
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Table 2 Comparison of estimated position error err.

err (cm)

(a) RightHand (b) RightSwing
(c) FrontRight

Pocket
(d) FrontLeft

Pocket
(e) BackRight

Pocket
(f) BackLeft

Pocket
(g) Bag

Reduction
rate (%)

Path A
Proposed 0.0 2.6 0.0 0.0 0.0 0.0 0.0

99.94
Ref. [7] 89.8 271.9 455.4 1,452.0 1,579.0 559.4 333.5

Path B
Proposed 125.5 64.0 712.8 80.2 433.3 450.1 478.3

75.14
Ref. [7] 625.1 171.2 1,839.1 612.4 1,980.3 1,899.2 2,300.7

Path C
Proposed 118.1 195.2 347.1 274.7 338.1 335.5 378.2

71.16
Ref. [7] 172.3 2,380.4 431.6 479.5 1,289.5 550.9 1,576.0

Y-coordinate of the actual user’s position at i-th step, respectively.
Table 2 demonstrates that the proposed method successfully re-
duces the average estimation errors by 99.94% on Path A, 75.14%
on Path B, and 71.16% on Path C. In any of the smartphone’s
carrying modes, the estimation errors can be much reduced. As a
result, the proposed method can satisfy (Condition A) to (Condi-
tion C) in Section 1.

4.5 Discussion
4.5.1 LeftHand and LeftSwing modes

In this paper, we assume that (1) the user wears a smartwatch
on the wrist and (2) he/she slightly swings it at the side of the
body. By adopting this assumption, we can clearly obtain the pe-
riodical sensor data from the smartwatch and hence PDR can be
successfully realized. When the smartwatch is not well swung,
for example, it is held in front of one’s body and almost fixed
there, the step count cannot be well obtained. This is because
the step count of the smartwatch is calculated based on the an-
gular velocity sensor data as described in Section 3.3.2. How to
solve this problem is one of the major future projects. Combining
the angular velocity data and acceleration data may be one of the
solutions.

Note that, when a smartphone is held in front of the body as in
the RightHand mode, still its step count can be obtained. This is
because the step count of the smartphone is calculated based on
the acceleration sensor data.

Now we discuss how our proposed method works when the
smartphone and smartwatch are held and worn in the same hand.
LeftHand mode

The proposed method cannot well estimate the user’s position
when holding the smartphone and the smartwatch in the same
hand. The RightHand mode refers to holding the smartphone in
the right hand in front of the body. The LeftHand mode refers to
holding the smartphone in the left hand in front of the body. The
smartwatch is always worn on the left wrist. When the user holds
the smartphone and the smartwatch in the same hand, both the
smartphone and the smartwatch are held in front of the body and
almost fixed there. In this situation, the user does not swing the
smartwatch at the side of the body.

Figure 17 shows the estimation result of RightHand and Left-
Hand modes. The experimental conditions are the same as the
ones in Section 4.1. As Fig. 17 clearly indicates, the proposed
method fails to estimate the user’s positions when he/she holds
the smartphone and the smartwatch in the same hand.
LeftSwing mode

The proposed method can estimate the user position even when
holding the smartphone and the smartwatch in the same hand.

Fig. 17 Estimation result of LeftHand and RightHand modes (the smart-
watch is worn on the left wrist).

Fig. 18 Estimation result of RightSwing and LeftSwing modes (the smart-
watch is worn on the left wrist).

The RightSwing mode refers to holding the smartphone in the
right hand and swinging it at the side of the body. The LeftSwing
mode refers to holding the smartphone in the left hand and swing-
ing it at the side of the body. The smartwatch is always worn on
the left wrist.

Figure 18 shows the estimation result of RightSwing and Left-
Swing modes. Figure 18 clearly shows that the proposed method
successfully estimates the user’s positions in both RightSwing
and LeftSwing modes. This is because the smartwatch can be
swung in both RightSwing and LeftSwing modes and the sensor
data from the smartwatch can be properly obtained. For compari-
son purposes, we calculate the average estimation error err given
by Eq. (19). Table 3 summarizes the results. The conventional
method [7] only uses the smartphone and we hold it in the left
hand. Table 3 indicates that the estimation errors of RightSwing
and LeftSwing modes are not much different from those of other
modes, referring to Table 2. They are much smaller than that of
the Swing mode of Ref. [7]. The proposed method successfully
applies to the RightSwing and LeftSwing modes.
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Fig. 19 Estimation result of turning left in RightSwing mode. (a) Turning by 90 degrees. (b) Turning by
60 degrees. (c) Turning by 30 degrees. (d) Turning by 20 degrees.

Fig. 20 Estimation result of turning right in RightSwing mode. (a) Turning by 90 degrees. (b) Turning
by 60 degrees. (c) Turning by 30 degrees. (d) Turning by 20 degrees.

Table 3 Average estimation errors in RightSwing and LeftSwing modes.

Method and mode Errors [cm]
Proposed in RightSwing mode 195.2
Proposed in LeftSwing mode 321.6

Ref. [7] (Swing mode) 2,380.4

4.5.2 Turning to an Angle Other than 90 Degrees
As described in Section 3.7, the proposed method first recog-

nizes whether the user turns or not by using the covariance of the
direction change values of the smartphone and smartwatch, using
Eq. (16). At that time, we use the threshold values for the covari-
ance. Once the proposed method recognizes that the user turns,
it calculates how many degrees the user turns based on Eq. (17).
This means that the proposed method can be applied to the case
where the user turns at an angle other than 90 degrees.

However, in the case where the user turns at a very small an-
gle, the proposed method cannot recognize that the user turns, be-
cause the covariance of the direction change values of the smart-
phone and smartwatch becomes too small.

We experimentally evaluate whether the proposed method can
be applied to the case where the user turns at an angle other than
90 degrees. In the experiment, the user has the smartphone in the
RightSwing mode and the smartwatch is worn on the left wrist.
Here, the RightSwing mode is chosen because it must be one of
the most usually used modes.

Figure 19 and Fig. 20 show the results of the position esti-
mation with turning. In Fig. 19, the user turns to the left by 90
degrees, 60 degrees, 30 degrees, and 20 degrees. In Fig. 20, the
user turns to the right by 90 degrees, 60 degrees, 30 degrees, and
20 degrees. In Fig. 19 and Fig. 20, the blue lines show the esti-
mation results by the proposed method while the red lines show
the actual route on which the user walks. Figures 19 (a) to (c)
and Figs. 20 (a) to (c) well demonstrate that the proposed method

can estimate the user’s positions. However, the proposed method
cannot recognize the user’s turning in case of turning to the left
or right by 20 degrees as in Fig. 19 (d) and Fig. 20 (d). The results
are almost the same in the other carrying modes. According to
these results, the proposed method can estimate the user’s turning
at the degree of approximately 30 degrees or more.

Note that, the proposed method may not estimate the user’s po-
sitions in a gentle curve because it must be too difficult to distin-
guish the gentle curve from drift errors. How to solve this prob-
lem is also one of the important future works. Map matching [22]
can be used to solve this problem. For example, we define the
aisles in the gentle curve in advance and correct the user’s posi-
tions based on them.
4.5.3 User’s Stride Length

Our proposed method does not realize the user’s stride length
estimation dynamically, i.e., the stride length is not adoptively
changed during PDR. However, many methods for dynamical
stride length estimation have been proposed so far. For exam-
ple, the stride length is dynamically estimated by using vertical
acceleration [23] and by using the frequency of walking [3].

We expect that dynamical stride length estimation is realized
in our proposed method by incorporating these methods into our
proposed method. This is also one of important future works.

5. Conclusions

In this paper, we have proposed a PDR method based on a
combination of a smartphone and a smartwatch. The proposed
method successfully estimates the user’s indoor positions in var-
ious of the smartphone’s carrying modes. The positioning errors
are reduced by approximately 82.1% on average compared to the
existing method.

In the future, we will combine our method with other PDR

c© 2022 Information Processing Society of Japan
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methods such as map matching to further accurately estimate the
user’s positions. Combining indoor positioning and outdoor po-
sitioning is another future work.
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