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Abstract: Reliable driving intention inference is an essential issue in the mixed automation traffic system. To improve
traffic safety and efficiency, this study develops an accurate and efficient driving intention inference framework named
FES-XGB, which is short for Feature Extraction and Selection based eXtreme Gradient Boosting (XGBoost) algorithm.
In contrast with conventional approaches, which only consider motion information of the subject and neighboring ve-
hicles, this study includes a new kind of decision variables into driving intention inference for the first time, i.e., the
local and global traffic environment information assumed to be obtained from vehicle to vehicle (V2V) and vehicle
to infrastructure (V2I) technology. The high-precision NGSim trajectory dataset is employed to learn the relationship
between traffic environment information and driving intentions and evaluate the proposed framework. According to
the experiment results, by taking the environment information as additional input, the accuracy of the conventional
XGBoost model can increase from 89.42% to 92.86%, indicating the environment information has a close relationship
with the driving intention. By employing the proposed FES-XGB framework, the accuracy can be further increased
to 94.09%, while the training and online inference cost can be reduced by 94.03% and 65.25% respectively. With the
traffic environment information as additional input, the proposed FES-XGB framework can be integrated into advanced
driver-assistance systems (ADAS) for a safer and more efficient traffic system.

Keywords: driving intention inference framework, traffic environment information, feature extraction and selection,
XGBoost algorithm

1. Introduction
Nowadays, autonomous vehicles are gradually being intro-

duced into the traffic system [1]. A mixed automation traffic sys-
tem consisting of autonomous and human-driving vehicles has
become challenging for both sides [2]. The appearance of au-
tonomous vehicles will disturb the cooperative driving among
humans and cause inconvenience [3]. At the same time, once au-
tonomous vehicles can’t properly understand human driving in-
tentions, they will get involved in dangerous occasions even acci-
dents [4].

To improve the safety and efficiency of the mixed automation
traffic system, a unified ADAS should be developed [5], [6], [7],
[8], [9]. It should be able to be implemented in both HDVs and
CAVs, providing driving assistance to human driving vehicles
(HDVs) and taking full control of connected autonomous vehicles
(CAVs) to realize autonomous driving [5], [6], [7]. From the hu-
man driver perspective, the ADAS should recognize and predict
the driving intention of human drivers in an accurate and timely
manner, thus providing lane departure warning or lane-keep as-
sistance without disturbing the normal driving [6], [9]. From the
autonomous control perspective, the trained ADAS model should
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well understand and imitate human behaviors, so as to generate
more social and natural autonomous driving maneuvers [3], [8].

The emerging connected vehicle technology can provide un-
precedented abundant information to vehicles. With the aid of
V2V and V2I technology, the environment information of the
traffic system can be surely obtained by vehicles [10], [11]. On
the other hand, although traditional HDVs have no access to ex-
plicit environment information, the traffic condition can be a la-
tent perception of human drivers and influence the driving inten-
tion. Therefore, it is reasonable to assume that there is a mapping
between traffic environment information and human driving in-
tentions. In other words, taking traffic environment information
as an additional input, the driving intention inference model can
better assist humans to make decisions, and can navigate CAVs
to behave more human-like at the same time.

This study designs a driving intention inference framework
named FES-XGB, which combines feature extraction, feature se-
lection and XGBoost algorithm. First, in addition to conventional
vehicle information, the traffic environment information, includ-
ing local environment and global environment information, are
employed as an additional input of driving intention inference
model. Second, a statistical-based feature extraction method is
employed to identify the key influential factors on driving inten-
tions to obtain more concise and efficient model inputs. Third,
a feature selection method based on Shapley values is employed,
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which can select the most useful features and abandon those with
minimal contributions, so as to strike a balance between model
accuracy and complexity. At last, by using the above features as
model input, the XGBoost model is trained to conduct the driving
intention inference.

The main aim of this study is to achieve accurate and efficient
driving intention inference with less training time needed. The
experiment results prove that the aim can be realized by either
adding traffic environment variables to the model input or em-
ploying a feature extraction and selection process, and a combi-
nation can produce the best result.

The remainder of the paper is organized as follows. Section 2
reviews the existing research on driving intention prediction; Sec-
tion 3 provides a detailed description of the methodologies to re-
alize the proposed intention inference framework, including fea-
ture extraction, feature selection and XGBoost; In Section 4, the
experiment settings, experiment results and analysis on results are
presented. The final section is the discussion and conclusion.

2. Literature Review
Recent studies have studied the driving intention inference

from various perspectives. Some researches directly focus on the
driver’s physical behaviors, e.g., electroencephalography (EEG),
head pose, and eye gaze [12], [13], [14], [15], [16]. Kim et al.
studied the neural correlates in different driving situations and
found them useful in detecting a driver’s intention before body
response [12]. Wang et al. analyzed the time-frequency of EEG
signals and clarified the difference in emergency and soft braking
intentions [13]. Doshi et al. found the mapping between phys-
ical gestures and driving intentions. It is figured out that com-
pared with eye gaze, head motion plays a more important role
in recognizing and predicting driving intentions [15], [16]. To
find early cues of driver’s intention, some researchers turn to
driving simulation or vehicle test method to investigate driver
behaviors [6], [17], [18], [19], [20], while some others obtain
the relationship between driving intention and vehicle maneuvers
from vehicle trajectory data [21], [22], [23], [24], [25], [26], [27].
The real vehicle test and simulation data usually include the in-
ternal information of the tested vehicle, such as steering wheel
angles, throttle and brake pedal pressure, while the trajectory
data can include external information of a large number of ve-
hicles, such as position, speed, acceleration, heading angle and
so on Refs. [20], [27]. Compared with real vehicle test and sim-
ulation data, the trajectory data can provide temporal and spa-
tial information of a large number of vehicles. They can of-
fer a full view of interactions between vehicles, as well as ve-
hicle and infrastructure when combined with the road topology
data [21], [22], [23], [24], [25], [26], [27]. Therefore, this study
focuses on the construction of intention inference models based
on trajectory data.

On the other hand, machine learning (ML) and deep learn-
ing (DL) based methods have been proved effective in various
branches of driving intention inference studies [13], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28]. A
binary logistic regression (BLR) model is proposed to establish
lane-changing decision models in Ref. [22]. Artificial neural net-

Table 1 Summary of recent intention inference studies based on ML and
trajectory data.

Decision Variables Evaluation
Ego

vehicle
motion

Neighbor
vehicle
motion

Environment
informa-

tion

Accuracy
mod-

els/inputs

Efficiency
mod-

els/inputs
[21] ✓ ✓ × ✓/ × ×/ ×
[22] ✓ ✓ × ✓/ × ×/ ×
[23] ✓ ✓ × ✓/ × ×/ ×
[24] ✓ ✓ × ✓/ × ×/ ×
[25] ✓ × × ✓/ × ×/ ×
[26] ✓ × × ✓/ × ×/ ×
[27] ✓ ✓ × ✓/ ✓ ×/ ×
This
study ✓ ✓ ✓ ✓/ ✓ ✓/ ✓

work (ANN) and support vector machine (SVM) are used to aug-
ment vehicle state information and detect driving intentions in
Ref. [17]. In Ref. [24], the driving behavior is learned by a two-
layer LSTM model. In Ref. [26], the motion information of the
studied vehicle is predicted using the online ARIMA algorithm,
then the predicted results are combined with current motion in-
formation and fed into a Bi-LSTM model to detect lane-changing
from lane-keeping. Although in many cases, deep learning (DL)
methods outperform ML methods [18], [24], [25], [26], the train-
ing cost of DL methods could be relatively high since there are
numerous parameters to be tuned. Therefore, ML based mod-
els are more applicable in real implementations of driving inten-
tion inference. In Ref. [28], several ML methods were compared,
the tree-based algorithms, especially eXtreme Gradient Boosting
(XGBoost) algorithm [29], were found to have the optimal per-
formances in driving intention inference.

Table 1 is the summary and comparison of some recent driv-
ing intention inference models using ML and trajectory data, with
two major limitations. First, traffic environment information can
be latently perceived by human drivers and influence human in-
tention, but most studies only take the vehicle motions as deci-
sion variables and ignore the environment information. Second,
although finding the most relative decision variables from trajec-
tory data is of vital importance for driving intention inference,
neither of the existing literature has comprehensively analyzed
the influence of input variables on the intention inference mod-
els, none of them have specifically discussed how to improve the
training efficiency of the models by extracting and selecting deci-
sion variables.

The main contributions of this study are as follows:
• To the best of our knowledge, traffic environment informa-

tion are introduced into decision variables of intention infer-
ence model for the first time. The newly introduced variables
can increase the accuracy of driving intention inference.

• We propose a hybrid framework combining feature extrac-
tion, feature selection and XGBoost method, which can infer
driving intention with a high accuracy and low training cost.

3. Methodology
The flowchart of the proposed FES-XGB framework is shown

in Fig. 1, which can be divided into six parts: (1) decision vari-
able extraction; (2) feature extraction (FE); (3) feature selection
(FS); (4) model training; (5) online model inference; (6) model
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Fig. 1 Flowchart of the framework.

Table 2 Description of four kinds of decision variables.

Category Variables Symbol Description
Subject vehicle

information
Velocity vi(t) Velocity of subject vehicle i at time t

Acceleration ai(t) Acceleration of subject vehicle i at time t

Neighboring vehicle
information

Relative Position ∆xi j(t), ∆yi j(t) Longitudinal, lateral distance between vehicle i and j at time t
Relative Velocity ∆vi j(t) Velocity difference between vehicle i and j at time t

Relative Acceleration ∆ai j(t) Acceleration difference between vehicle i and j at time t
Inverse Time To Collision iTTCi j(t) ∆vi j(t) / ∆yi j(t)

Time Headway T HWi j(t) ∆yi j(t) / vi(t)
Local environment

information
Local traffic velocity Localvel(t) The lane-wise average velocity in 50 meters area centered by vehicle i at time t
Local traffic volume Localvol(t) The lane-wise average volume in 50 meters area centered by vehicle i at time t

Global environment
information

Global traffic velocity Globalvel(t) The lane-wise average velocity in the entire study area at time t
Global traffic volume Globalvol(t) The lane-wise average volume in the entire study area at time t

Fig. 2 The collection range of four kinds of decision variables.

evaluation.
Methodologies including decision variable extraction, feature

extraction, feature selection and the theoretical background of
XGBoost will be presented in this section.

3.1 Decision Variable Extraction
The trajectory data contains information on position, velocity,

acceleration and lane number of each vehicle in every recorded
time step. As can be seen in Fig. 2, from the trajectory data,
by scaling the data collection range, four kinds of decision vari-
ables can be extracted, namely the subject vehicle information,
the neighboring vehicle information, the local environment in-
formation and the global environment information. It should be
noted that the neighboring vehicle information refers to the re-
lationships between the subject vehicle and its six most adjacent
neighbors. In case of the absence of neighboring vehicles, a pre-
defined default value will be used correspondingly [30].

Table 2 is the detailed description of these four kinds of deci-
sion variables. The subject vehicle information includes the ve-

locity and acceleration of the subject vehicle in every time step.
The neigboring vehicle information refers to the relative position,
relative velocity, relative acceleration, inverse time to collision
and time headway between the subject vehicle and its most adja-
cent neighbors within the 50 meters area centered by the subject
vehicle. The local environment information is the lane-wise traf-
fic velocity and volume within the 50 meters area. The global
environment information is the lane-wise traffic velocity and vol-
ume of the entire study area. Among the above four categories of
decision variables, the subject vehicle information and neigbor-
ing vehicle information are commonly employed in literatures,
while the local and global environment information has not been
explored. However, with the development of communication and
data storage technology, the V2V, V2I and in-vehicle sensors can
provide real-time global and local traffic environment informa-
tion to vehicles. Therefore, it is essential to find the relationship
between the driving intention and the traffic environment infor-
mation, so as to better infer driving intention.

3.2 Feature Extraction and Selection
With the increase of historical sequence length and numbers of

input variables, the input dimension of the driving intention infer-
ence models will become larger. Among the input features, some
may have strong correlations with each other and carry redundant
information. As a result, it will take longer time to train the model
and the model accuracy will be reduced.

To avoid the aforementioned problem, some operations to cap-
ture and select the core information from the input features should
be defined. In this study, feature extraction and selection opera-
tions have been introduced to produce an accurate and efficient
intention inference process.
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Fig. 3 Modeling process of XGBoost algorithm.

The feature extraction is realized through statistical analysis of
each sample. In other words, the mean, maximum, minimum,
median, standard deviation, sum and variance of each decision
variable sequence are calculated, and these extracted features are
set as input of the intention inference algorithm instead of the
original decision variables. Such a feature extraction operation
can reduce the dimensions of the model input, but will not reduce
the accuracy of the model output if the extracted features can well
represent the original decision variables.

The feature selection is realized through introducing a model
explanation method named SHAP, short for SHapley Additive ex-
Planations [33]. The SHAP method defines an explanation model
to evaluate the contribution of each input feature. The explanation
model is a linear function of binary variables [34]:

g(z′) = ρ0 +

M∑
i

(ρi, z′i ) (1)

Where z′i ∈ {0, 1}
M , z′i = 1 when the ith feature is presented,

otherwise, z′i = 0; M is the number of input features; ρi is the
feature contribution of the ith feature and ρi ∈ R.

The ρi is calculated by the game theory concept Shapley value,
given a model f and the entire feature set F, the explanation
model g will test a feature set S , which is a subset of F, and
observe the model result. A model fS∪{i} represents the ith feature
is presented, another model fS represents the ith feature is absent.
The difference between fS∪{i}(S ∪ {i}) and fS (S ) can be used to
evaluate the contribution of the ith feature. The Shapley value can
be represented as:

ρi =
∑

S∈F/{i}

|S |!(|F| − |S | − 1)!
|F|! [ fS∪{i}(S ∪ {i}) − fS (S )] (2)

SHAP can help explain which feature contributes more in ob-
taining the model output, features with high SHAP values are
highly relevant to the model output, while features with low
SHAP values only carry minimal useful information.

3.3 Extreme Gradient Boosting Algorithm
XGBoost, short for eXtreme Gradient Boosting algorithm, is a

scalable ensemble learning method with many algorithmic inno-
vations, such as approximate greedy search and parallel training
to reduce time cost. It also has the advantage of effective tree
pruning and the ability to handle missing values [29].

As shown in Fig. 3, XGBoost follows the gradient boosting
framework proposed by Friedman [35], completing the learning
task by building and combining multiple weak learners. It adds
new decision trees to fit the residual of previous decision trees, so
the accuracy can be gradually increased in the training process.

The target function is designed as follows.

L(θ) =
∑

i

l(ŷi, yi) +
∑

k

ψ( fk) (3)

ψ( fk) = γT +
1
2
λ∥ω∥2 (4)

The first term in Eq. (3) is the cross-entropy loss function eval-
uating model output value ŷi and ground-truth yi, which aims to
increase the accuracy. The second term in Eq. (3) is a regulation
term to reduce the complexity of the tree model. The composition
of ψ( fk) is shown in Eq. (4), where the first term is the punishment
of number of leaves T in the tree; the second term is to smooth the
learnt weight of the leaf point and reduce over-fitting problems.

4. Numerical Experiment
The experiments are implemented on a ubuntu system com-

puter with Intel Core i9 CPU, 3.60 GHz, 64 GB memory. All the
models are established based on python 3.8.

4.1 Evaluation Criterion and Model Settings
To evaluate the prediction results of different models, evalua-

tion criteria including precision, recall, F1 score and accuracy are
utilized, as shown in Eqs. (5)–(8).

precision =
T P

T P + FP
(5)

recall =
T P

T P + FN
(6)

F1 score =
2 ∗ recall ∗ precision

recall + precision
(7)

accuracy =
T P + T N

T P + FP + T N + FN
(8)

Where TP is True Positive, representing a positive sample pre-
dicted as positive by the model; TN is True Negative, representing
a negative sample predicted as negative by the model; FP is False
Positive, representing a negative sample predicted as positive by
the model; FN is False Negative, representing a positive sample
predicted as negative by the model. In addition to the model ac-
curacy, another evaluation criterion is the training time. Under
conditions of large-scale problems, models with the short train-
ing time will have advantages in the deployment. In this study, the
training time is recorded using the CPU time, which specifically
refers to the time after determining the hyper-parameters.

The settings of XGBoost and other baseline models are listed in
Table 3. XGBoost employs the xgboost package as backend and
baseline models use the scikit-learn package as backend. Since
SVM and tree based models are sensitive to hyper-parameters and
the hyper-parameter values must be re-determined in different in-
put cases, a parameter search range is defined, in which the grid
search and 3-fold cross validation are employed to find the suit-
able parameters.

4.2 Dataset Description
The dataset used in this study comes from the Next Generation

Simulation (NGSim) project of the U.S. federal highway adminis-
tration (https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.html).
Two datasets named I-80 and US-101 are employed and the loca-
tion of the study area can be seen in Fig. 4.

As shown in Fig. 4, the study areas of the I-80 and the US-
101 dataset are 503 and 640 meters long respectively and cover 6
lanes. The datasets provide high precision trajectory information
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Table 3 Model settings.

Model Parameter search range Training stop criterion

LR max iter: 1e7
solver: ‘lbfgs’

The loss function differs
less than threshold/
reach the max iter

MLP

max iter: 1e4
solver: ‘sgd’

activation: ‘relu’
hidden units: (200, 200)

The loss function differs
less than threshold/
reach the max iter

SVM
C: 1e-3, 1e-2, 1e-1, 1,

1e2, 1e2, 1e3
γ: 1e-3 1e-4

The loss function differs
less than threshold

DT

criterion: ‘entropy’, ‘gini’,
max depth: 10, 20, 1e2, 1e3,
2e3, min samples split: 2, 3

The tree depth reach
max depth

GBDT max depth: 3, 4, 5,
n estimators: 10, 50, 100 The tree depth reaches

max depth and the
number of regression

trees reach n estimators
XGBoost

max depth: 3, 4, 5,
n estimators: 10, 50, 100,

min child weight: 1, 5

Fig. 4 Study area of NGSim dataset.

of all the vehicles in the study area, including the vehicle coordi-
nates, velocity, acceleration, vehicle type and lane number every
0.1 seconds.

The extracted trajectory data need to be divided into left turn,
right turn and keep straight with corresponding labels. In this
study, the start and end points of lane change intention are deter-
mined by the heading angle of the vehicle, which is calculated
from the change of vehicle position by using 3 successive coor-
dinates. Figure 5 is the examples of labelled trajectories, where
the blue dots are the start of lane change intention and the purple
dots indicate the end point of lane change intention (start point
of keep straight intention as well). The data points between start
and end points are labelled as lane changing, others are labelled
as keep straight.

To get the full use of the dataset, the sliding window method
is employed to obtain samples from the dataset. As shown in
Fig. 6 (a), depending on the label of the last time step, the entire
sample will be labelled as turn left, turn right or keep straight.
To determine the length of the sliding window, different window
lengths are tested by using different models. To ensure fairness,
all the test cases have employed the same input. As shown in
Fig. 6 (b), most models have the best performance with a time
window length of 15 time steps. Therefore, in the following ex-
periments, the time window length of 15 time steps is employed.

Due to the nature of the trajectory dataset, the number of
extracted samples in each class is inconsistent: most are keep
straight, and the number of turn right is also different with turn

Fig. 5 Examples of labelled samples.

Fig. 6 Diagrammatic of samples.

Table 4 Detail of dataset.

No. of KS No. of TR No. of TL Train test ratio
1,200 1,200 1,200 4 : 1

left. Such a sample imbalance problem will pose difficulty for
driving intention inference [31]. To solve this problem, SMOTE,
short for Synthetic Minority Oversampling TEchnique, is intro-
duced to increase the pieces of minority samples and make a bal-
ance dataset. As an effective oversampling method, SMOTE can
produce synthetic samples through interpolation. For a better un-
derstanding one can refer to literature [32]. The detail of the pre-
processed dataset can be summarized in Table 4.

KS refers to keep straight, TL is turn to left and TR is turn
to right. Overall, 2,880 pieces of samples are used to train the
model and the rest 720 pieces are used for on-line inference and
validation.

4.3 Experiment Results of FES-XGB Framework
To find the relationship between environment information and

driving intention, at the same time, to prove the effectiveness of
the proposed FES-XGB framework, experiments are conducted
under five different input cases and three different models. Each
of the five different input cases utilizes one or more kinds of input
variables belonging to subject vehicle information, neighboring
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vehicle information, local environment information, and global
environment information. The detailed description of these four
kinds of input variables can be found in Table 2. More specifi-
cally, case 1 only takes subject vehicle information as model in-
put; case 2 takes subject and neighboring vehicle information as
input; case 3 adds local environment information to case 2; case 4
adds global environment information to case 2; in case 5, all the
decision variables including subject vehicle information, neigh-
boring vehicle information, local and global traffic environment
information are employed. The three different models include
XGBoost, Feature Extraction based XGBoost (FE-XGB), as well
as the proposed FES-XGB. As compared to FES-XGB model,
the FE-XGB model, which has not employed the feature selec-
tion module, can be used to prove the effectiveness of feature
selection operation.

The input dimensions of different models under different cases
are presented in Table 5. From Table 5, it can be observed that
the feature extraction and feature selection operations can greatly
reduce the input dimensions of the intention inference models. In
particular, when in case 5, the number of input features can be re-
duced from 750 to 15. With less input features, the efficiency and
generalization abilities of the inference model are expected to be
improved. At the same time, the inference accuracy is hoped not

Table 5 The input dimensions of different models.

Model
Input

Case 1 Case 2 Case 3 Case 4 Case 5

XGBoost 30 570 660 660 750
FE-XGB 14 266 272 272 278

FES-XGB 13 13 13 15 15

Fig. 7 Impact of important features on model output.

to be reduced.
To simultaneously realize the high accuracy and efficiency, the

input features should be carefully selected. In this study, the fea-
ture selection method named SHAP is introduced. The SHAP
values of each feature are calculated: features with higher SHAP
values are considered to have larger impacts on the model output,
and those with lower SHAP values usually have minimal contri-
butions. Therefore, selecting important features and pruning the
unnecessary ones will produce a more efficient model and will
not reduce the accuracy.

Taking the input case 5 as an example, Fig. 7 and Fig. 8 show
the SHAP values of features and the corresponding feature selec-
tion process.

Figure 7 (a) displays the ranks of feature importance accord-
ing to SHAP values, note that only the top 20 important features
are shown here. It shows the overall contribution of each feature,
as well as the feature’s impact on the model output. It is well il-
lustrated that traffic environment information have relatively large
impacts on the model output, together with the lateral distance be-
tween the subject vehicle and neighboring vehicles. Figure 7 (b)–
(d) present which features are important when the model gives an
output of keep straight, turn left, and turn right respectively. The
colors of the feature indicate how changes in the feature value
influence the model output.

Figure 8 illustrates how the inference accuracy and training
time change when the number of input features gradually in-
creases according to the SHAP values. It can be observed that
with the increment of input features, the inference accuracy in-
creases while the training efficiency decreases. The model can
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Fig. 8 Feature selection process.

Table 6 Comparison of different models with different input.

Case 1
Method XGBoost FE-XGB FES-XGB
Criteria Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

KS 65.78% 66.28% 66.03% 73.28% 71.43% 72.34% 73.25% 74.79% 74.01%
TL 43.03% 47.16% 45.00% 68.80% 63.89% 66.26% 71.18% 64.68% 67.78%
TR 46.73% 42.02% 44.25% 69.85% 76.89% 73.20% 72.66% 78.15% 75.30%

Case 2
Method XGBoost FE-XGB FES-XGB
Criteria Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

KS 93.70% 91.19% 92.43% 94.44% 92.86% 93.64% 93.70% 93.70% 93.70%
TL 85.71% 86.46% 86.09% 86.96% 87.30% 87.13% 85.99% 87.70% 86.84%
TR 88.48% 90.34% 89.40% 90.04% 91.18% 90.61% 87.98% 86.13% 87.05%

Case 3
Method XGBoost FE-XGB FES-XGB
Criteria Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

KS 93.39% 91.95% 92.66% 97.06% 97.06% 97.06% 95.83% 96.64% 96.23%
TL 86.40% 86.03% 86.21% 90.48% 90.48% 90.48% 87.84% 88.89% 88.36%
TR 90.95% 92.86% 91.89% 92.86% 92.86% 92.86% 90.56% 88.66% 89.60%

Case 4
Method XGBoost FE-XGB FES-XGB
Criteria Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

KS 93.23% 95.02% 94.12% 97.48% 97.48% 97.48% 97.81% 93.70% 95.71%
TL 87.17% 86.03% 86.59% 91.20% 90.48% 90.84% 88.33% 90.08% 89.19%
TR 91.10% 90.34% 90.72% 92.50% 93.28% 92.89% 90.12 % 92.02% 91.06%

Case 5
Method XGBoost FE-XGB FES-XGB
Criteria Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

KS 95.90% 98.47% 97.16% 97.90% 97.90% 97.90% 100.00% 97.06% 98.51%
TL 90.18% 88.21% 89.18% 92.00% 91.27% 91.63% 91.02% 92.46% 91.73%
TR 91.95% 91.18% 91.56% 92.92% 93.70% 93.31% 91.29% 92.44% 91.86%

Fig. 9 Comparison on model accuracy and training time.

reach a satisfying prediction accuracy with only several impor-
tant features as input. According to the changing trend in Fig. 8,
the FES-XGB model is established by using the first 15 features
as input.

Table 6 and Fig. 9 present the driving intention inference re-
sults of XGBoost, FE-XGB and FES-XGB with different kinds of
input cases. From Table 6, it can be observed that for XGBoost,

FE-XGB and FES-XGB models, the Precision, Recall, F1-score
of KS, TL, TR gradually increase when the model input changes
from case 1 to case 5, illustrating that not only with the subject
vehicle information, the driving intention is also connected with
the neighboring vehicle information as well as the traffic environ-
ment information. By comparing the criteria in case 5 to that in
case 2, it can be found that the environment information plays an
important role in the intention inference. Therefore, it is neces-
sary to take traffic environment into consideration when establish-
ing driving intention inference models. Besides, it can be found
that in each input cases, the proposed FES-XGB model outper-
forms the baseline XGBoost model, and is comparable with the
FE-XGB model in each evaluation criterion.

Figure 9 displays the overall accuracy of each model in each
input case, as well as the training time. The following phenom-
ena can be observed from the results shown in Fig. 9: (1) The
XGBoost, FE-XGB and FES-XGB models all have a better in-
ference accuracy when provided with neighboring vehicle infor-
mation and traffic environment information. However, the base-
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Fig. 10 The distribution of on-line inference time.

line XGBoost model has an obvious rise in training time when
added these information, while the FE-XGB and FES-XGB mod-
els can keep a relatively stable training time, especially the pro-
posed FES-XGB model, which can maintain a very low training
time in all input cases. Under the condition of case 5, the pro-
posed FES-XGB model can save around 95% of training time as
compared to the baseline XGBoost model. (2) Although the FES-
XGB model is low in computation cost, the model accuracy is not
inferior to the FE-XGB model. In different input cases, the per-
formances of the FES-XGB model outperform the corresponding
baseline XGBoost model.

Compared to the efficiency of the off-line training, the on-
line inference efficiency is more important for intention inference
models. By recording the inference time of each sample in the test
dataset respectively, Fig. 10 shows the distribution of intention
inference time of the XGBoost, FE-XGB and FES-XGB models
respectively. From Fig. 10, it can be observed that when given the
subject vehicle information, neighboring vehicle information and
environment information, the proposed FES-XGB model needs
1 to 1.25 milliseconds to output the driving decision. While un-
der the same input condition, the baseline XGBoost and FE-XGB
models need 1.75 to 2.25 milliseconds and 1.5 to 1.75 millisec-
onds respectively. At the same time, it can be found the proposed
FES-XGB model is more stable and reliable regarding on-line in-
ference speed, i.e., compared with the baseline XGBoost model
and the FE-XGB model, the on-line inference time of the FES-
XGB model is strictly within 1.5 milliseconds.

In addition to the accurate and real-time inference, the FES-
XGB model should predict the driving intention as earlier as pos-
sible. By defining the anticipation time as the driving time in-
terval from the current position to the lane change or lane keep
decision point, the original testing samples are divided into six
subintervals, indicating anticipation time of more than 3 s, 2.5 s,
2 s, 1.5 s, 1 s, and 0.5 s respectively. The samples of each subin-
terval are employed to test the intention prediction ability of the
proposed FES-XGB model. Besides, the XGBoost model without
environment input, the XGBoost model with environment input
and the FE-XGB model with environment input, are also tested to
be compared with the FES-XGB model. The prediction perfor-
mances of the four models under different anticipation time are
shown in Fig. 11.

Figure 11 reveals the intention prediction accuracy increases
when the vehicle is approaching the lane change or lane keep de-
cision point. By comparing the XGBoost models without and
with the environment information input, it can be observed that
with the environment information, the model can give a better in-

Fig. 11 Prediction accuracy under different anticipation time.

tention prediction performance in different anticipation periods.
The reason is that the traffic environment information can help
the vehicle get aware of the traffic states from the view of the
subject vehicle, to better predict its driving intention. By compar-
ing the XGBoost, FE-XGB and FES-XGB models with the envi-
ronment information as input, it can be proved that the proposed
FES-XGB model has the best performance in terms of prediction
accuracy and anticipation time. In the time point three seconds
before the lane change point, the FES-XGB model is capable to
predict the driving intention with the accuracy of more than 90%.

4.4 Analysis on Environment Information
In this section, concerning the influences of the traffic environ-

ment information, we further analyze the performance of the pro-
posed FES-XGB framework. There are mainly three perspectives
investigated, including the delay of the environment information,
the perception range of the environment information and the cat-
egory of the environment information.
4.4.1 Delay of Environmental Information

In the previous discussions, we have assumed the traffic envi-
ronment information coming from V2V or V2I communication
can be obtained in real-time. However, in real traffic environ-
ment, the information transmission might be influenced by many
factors, such as the block from architectures or heavy trucks, or
the delay of wireless communication itself. It is usually hard
and expensive to obtain high fidelity traffic information in real
time. Therefore, analyzing how the communication delays in-
fluence the driving intention inference accuracy of the proposed
FES-XGB framework is necessary and practical.

Three kinds of environment information delay are tested in the
experiments, including: (1) delay of global environment infor-
mation, where the local environment information are assumed to
be obtained in real time; (2) delay of local environment informa-
tion, where the global environment information are assumed to
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Fig. 12 Influence of environment information delay on intention inference.

Fig. 13 Influence of local perception range on intention inference.

be obtained in real time; (3) Delay of all environment informa-
tion, where neither global nor local environment information can
be obtained in real time.

Figure 12 shows how the intention inference accuracy of the
FES-XGB framework changes with three different environment
information delays. The delay is designed to increase from 0.1
to 3 seconds with a step of 0.1 seconds. From Fig. 12, it can be
observed that with the increase of the environment information
delay, the intention inference accuracies of the FES-XGB frame-
work under three delay conditions all show a decrease trend. Be-
sides, compared with the condition where both global and local
environment information are delayed, the inference accuracy will
suffer from less reduction if the framework can obtain one kind of
environment information in real-time (global or local). Overall,
the FES-XGB framework can maintain an intention inference ac-
curacy higher than 90% when the traffic environment information
delay is within three seconds.
4.4.2 Perception Range of Environment Information

Another important influential factor on the inference accuracy
is the perception range of environmental information. As the
global environment information is the lane-wise traffic volume
and velocity in the entire research area, its range has already been
determined. In this regard, we only research the influence from
the range of the local environmental information, i.e., the length
of the concerned area centered by the subject vehicle.

Two kinds of conditions are involved in the experiments. In
one condition, the global environment information is available to
the subject vehicle, above which the local environment informa-
tion in a different range is provided. In another condition, no
global environment information can be obtained and the subject
vehicle can only access the traffic environment information in a
local area.

Figure 13 displays the FES-XGB performances with different
local perception range. By comparing the intention inference ac-

Fig. 14 Influence of traffic environment information category on intention
inference.

curacy with and without global environment information, it can
be observed that the FES-XGB framework has higher accuracies
over all the local perception ranges when the additional global
environment information is available. Besides, with global en-
vironment information provided, the FES-XGB framework can
give the best performance with a shorter local traffic perception
need: 100 meters centered by the subject vehicle is sufficient. On
the other hand, when the global environment information is not
available, the intention inference accuracy shows an increasing
trend with the increase of the local perception range. In other
words, without the global environment information, the FES-
XGB framework needs longer local perception range to give ac-
curate intention inference results.
4.4.3 Category of Environmental Information

As the lane-wise traffic volume and velocity are both employed
as environment information input in the previous discussions, we
further invest the influence of single traffic volume or velocity on
the performance of intention inference frameworks respectively.

The FE-XGB and FES-XGB frameworks are tested over three
conditions, i.e., provided with only traffic volume information,
provided with only traffic velocity information and provided with
both volume and velocity information. The experiment results are
shown in Fig. 14.

From Fig. 14, it can be observed that for both FE-XGB and
FES-XGB frameworks, traffic environment information contain-
ing both volume and velocity information will lead to better inten-
tion inference results. When providing only one category of traf-
fic environment information, the velocity is slightly more prefer-
able according to the experiment results. This result is consistent
with the data characteristics of the employed trajectory data ex-
tracted from video records: the traffic volume will be large when
in both free flow and congestion flow, while the traffic velocity
can better represent the traffic states in these conditions.

4.5 Analysis on Framework Generalization and Sensitivity
The experiments results in previous discussions have proved

the effectiveness of the FES-XGB framework and the importance
of traffic environment information. In this subsection, we further
discuss the generalization ability of the framework and conduct
sensitivity analysis on the framework subcomponent.

To test the generalization ability of the framework, experiments
are designed by combining the proposed framework with multi-
ple ML models, including logistic regression (LR), support vector
machine (SVM), multiple layer perception (MLP), decision tree
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Fig. 15 Comparison over multiple ML models.

Fig. 16 Comparison between FE-PCA-XGB and FES-XGB.

(DT) and gradient boosting decision tree (GBDT). All the com-
parison experiments are conducted with five input cases (case 1
to case 5). The experiments results are shown in Fig. 15.

As can be observed in Fig. 15, compared with the plain ML
models, the ones combined with the FE and FES operations have
better intention inference performances, proving the good gener-
alization ability of the FE and FES based framework. At the same
time, the traffic environment information is found essential in the
inputs of multiple models, as the intention inference accuracy gets
improved when the environment information is provided in most
of the test cases.

To illustrate the superiority and indispensability of the pro-
posed FES-XGB framework, sensitivity analysis on the frame-
work subcomponent is conducted. The SHAP feature selection
module is an important subcomponent of the FES-XGB frame-
work and it is mainly used to reduce the feature dimensions.
Since principal component analysis (PCA) can also realize di-
mension reduction, we establish the FE-PCA-XGB framework by
replacing SHAP module with PCA. The FE-PCA-XGB frame-
work is compared with the proposed FES-XGB framework. The
comparison result is shown in Fig. 16.

As can be seen in Fig. 16, when employing the same number
of features (the top 15) as input, the FES-XGB framework out-
performs FE-PCA-XGB in terms of intention inference accuracy,
training efficiency, and on-line inference speed. With more fea-
tures employed, the accuracy of FE-PCA-XGB will increase, but
the training and inference time cost increase as well. Compared
with the FE-PCA-XGB, the FES-XGB framework using SHAP
subcomponent has higher accuracy and inference speed, as well
as lower training cost. Therefore, the FES-XGB framework is

more applicable in performing driving intention inference in real
traffic environment.

5. Conclusion
In this study, the FES-XGB framework combining feature ex-

traction, feature selection and XGBoost algorithm is proposed to
infer driving intention in the V2V and V2I background. Consider-
ing the emerging communication and connected vehicle technol-
ogy, the relationship between the traffic environment information
and driving intention is discussed.

The NGSIM dataset is employed to validate the proposed
framework and learn the relationship between the environment
information and driving intention. When adding the traffic en-
vironment information into input, the intention inference accu-
racy of the conventional XGBoost model can be improved from
89.42% to 92.86%, but the training time also has an increment
of 29.56% at the same time. To strike a delicate balance be-
tween accuracy and efficiency, the feature extraction and selec-
tion operations are introduced and the FES-XGB framework is
established. It is found that the proposed framework can achieve
a high inference accuracy and low computation cost simultane-
ously. With the environment information as input, the intention
inference accuracy of the FES-XGB framework can further reach
94.09%, at the same time, the training and on-line inference costs
are 94.03% and 65.25% smaller than the conventional XGBoost
model as well.

Moreover, influences coming from the transmission delay, per-
ception range, and category of the traffic environment information
have been analyzed. The following findings can be obtained: (1)
When the delay of the traffic environment information is smaller
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than three seconds, the FES-XGB framework can maintain an in-
tention inference accuracy higher than 90%. (2) When the global
environment information is provided, a relatively short local traf-
fic perception range is sufficient for the FES-XGB framework to
give accurate intention inference results. (3) When both traffic
volume and velocity information are provided to the FE-XGB and
FES-XGB frameworks, the intention inference accuracy will be
higher than those provided with a single kind of information.

The effectiveness of the environment information and the FES-
XGB framework structure has been tested employing multiple
ML models. As they can universally increase the accuracy, the
environment information and the structure of the framework can
be applied to a wide range of areas, such as the design of ADAS
and autonomous driving.

The limitation of this study is that the field data employed
comes from highway segments, which only includes lane chang-
ing and lane-keeping maneuvers. By using an enhanced driving
dictionary containing more driving interacting scenarios includ-
ing U-turn, intersection, lane-drop and others, a pervasive model
could be trained which can be applied in more general scenarios.
The data obtained from new technology like autonomous vehi-
cles, in-vehicle communication devices and cameras can be used
to validate the proposed intention detection method as well. Fu-
ture studies will also focus on digging deeper into the influential
factors of driving behaviors and providing a generalized means to
recognize and predict driving intention.
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