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Abstract: By exchanging information on objects on the road detected by in-vehicle sensors through inter-vehicle
communication, vehicles can detect objects that cannot be detected directly by their own sensors. This enables the
connected vehicles (CVs) to provide more appropriate safe driving support and automatic driving even in the envi-
ronment where connected and non-connected vehicles are mixed. Such a system is called a Collective Perception
System, and has been actively researched in recent years. However, if individual CVs simply transmit information on
the objects they have detected frequently, the wireless communication channel will be congested, and the data orig-
inally intended to be sent will not reach the destination, making it difficult for each vehicle to detect other objects
quickly. Therefore, appropriate congestion control technology for sensor information transmission is necessary. This
paper introduces recent techniques for congestion control in the transmission of vehicle and sensor information in
inter-vehicle communication. In addition, we introduce a congestion control technique we have designed based on the
relative positions of vehicles.
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1. Introduction

With Vehicle-to-vehicle (V2V) communication, vehicles ex-
changes beacon messages (called Basic Safety Message (BSM)
or Cooperative Awareness Message (CAM)), including the infor-
mation of the sender, such as their position, speed, and direc-
tion of travel via direct wireless communication links between
vehicles. Thus they can recognize the existence of other vehi-
cles. However, this mechanism can work effectively only when
a sufficient number of vehicles on the road have the V2V com-
munication function. Sharing not only the information of CVs
themselves but information on surrounding conditions will solve
the problem.

Today, the development of Advanced Driver Assistance Sys-
tem (ADAS) technology is underway to enable vehicles to as-
sess the surrounding traffic conditions using their onboard sen-
sors accurately, warn the driver, and control the vehicle on be-
half of the driver to avoid collisions with approaching objects.
Vehicles equipped with ADAS functions acquire positional infor-
mation on surrounding objects, i.e., other vehicles, pedestrians,
etc., from sensors such as LiDAR (Light Detection and Ranging),
millimeter-wave radar, and stereo cameras, provide driving assis-
tance to the driver. Much work on 3D object detection methods
for autonomous driving applications is summarized in Ref. [1],
which presents the potential of cooperative perception to improve
the vehicle’s perception beyond the sensor’s range and obstacles.

The standardization of Collective Perception, in which a com-
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municating vehicle shares with other communicating vehicles in-
formation on vehicles detected by its onboard sensors, in addition
to information on its position, speed, and direction of travel, is un-
derway by ETSI [2] and SAE [3]. Figure 1 presents the overview
of collective perception and definitions of terminologies used in
this paper. Collective perception makes it possible for connected
vehicles (CV) to identify surrounding vehicles even if CVs and
non-connected vehicles (NCVs) coexist on the road. Suppose
an NCVis in a blind spot of a remote CV as shown in Fig. 1.
In that case, the CV can detect the NCV by receiving a Collec-
tive Perception Message (CPM), including the information about
detected objects (vehicles, pedestrians, and other objects on the
road) based on sensor data from other remote CVs. In Fig. 1
ego vehicle can detect NCV Z by receiving a CPM from CV Y.
However, the size of messages carrying sensor data can be larger
than that of general beacon messages that include only the sender
CV’s information (BSM/CAM). Thus, when the density of vehi-
cles in an area is high and the message transmission rate is high,
the radio communication channel for V2V communication will
be congested, and necessary information may not be delivered to
surrounding vehicles. In addition, multiple CVs may detect the
same object and broadcast CPMs containing information about

Fig. 1 Collective perception.
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the same object. Thus messages including redundant such infor-
mation lead to channel congestion.

To tackle the congestion problem of V2V links, many re-
searchers have been working on congestion control algorithms
that contol the traffic caused by BSMs/CAMs and CPMs. This
paper reviews decentralized V2V congestion control algorithms
focusing on classic beacon messages (BSM/CAM) and collec-
tive perception messages (CPMs) in DSRC and ITS-G5 networks
that works on IEEE802.11p [4]/ETSI ITS-G5 CSMA/CA-based
MAC and also introduces our recent work on congestion control
based on the relative position of vehicles. Though 3GPP defined a
framework for access-layer congestion control, e.g., packet drop-
ping, MCS adaptation, in Ref. [5], this is out of the scope of this
paper.

The remainder of this paper is organized as follows. In Sec-
tion 2, we firstly introduce the state of the art of standardization of
V2X congestion control algorithms, ETSI DCC and SAE DCC.
Section 3 introduces congestion control algorithms for collective
perception, including our relative position-based congestion con-
trol algrorithm (RRP). Section 4 describes the detail of the RRP.
Finally, Section 5 concludes this paper.

2. Standardized Congestion Control Methods

2.1 ETSI DCC
2.1.1 Architecture

ETSI decentralized congestion control (DCC) architecture
consists of multiple components; i) DCC ACC located in the
access layer, ii) DCC NET located in the networking & trans-
port layer, iii) FCC FAC located in the facilities layer, and
iv) DCC CROSS located in the management layer that cov-
ers access, networking & transport layer, and facilities layer.
DCC ACC specified in Ref. [6] is the core component that di-
rectly controls parameters that affect the channel congestion. The
DCC ACC uses the local channel busy ratio (CBR) as the input
to evaluate the congestion level of the channel. CBR is calculated
as follows:

CBR =
Tbusy

TCBR
(1)

TCBR is 100 msec. Tbusy is the period of time when the strength of
the received signal overs a period TCBR exceeds −95 dBm.

Based on the congestion level evaluated using CBR, DCC
ACC controls one or several techniques in the following.
Transmit power control (TPC) alters the transmission power

to adjust the channel load. Low output power reduces the
channel load, but CVs further away are hard to receive the
transmitted messages.

Transmit rate control (TRC) regulates Toff , the time between
two consecutive packets from a CV. By using a lower trans-
mission rate, Toff becomes longer, and the channel load is
mitigated.

Transmit datarate control (TDC) configures the modulation
and coding scheme (MCS) to control the datarate. With a
high datarate, the air time of a packet Ton becomes short,
and channel congestion is mitigated. However, CVs far away
from a packet sender CV are hard to receive the packet.

Fig. 2 ETSI DCC reactive algorithm.

In the earlier version of DCC ACC [7], two control techniques,
i) DCC sensitivity control and ii) Transmit access control, are in-
cluded. However, they are removed in the new version. Though
specification of DCC ACC [6] does not specify the detail of each
technique, possible parameters to control Ton and Toff that are
configured through TRC and TDC are introduced in the docu-
ment.

Reference [6] specifies either of the following two algorithms
shall be implemented; i) Reactive algorithm, and ii) Adaptive al-
gorithm. The latter is introduced in the new version.
2.1.2 Reactive Algorithm

The reactive algorithm consists of several states corresponding
to the current CBR. Every TCBR, CBR is evaluated, and one state
is reached according to the CBR. One state can be reached by a
neighboring state. Depending on the current state, the congestion
level is controlled by using one or several techniques presented
before. Figure 2 presents an example of the states and possible
parameters introduced in Ref. [6].
2.1.3 Adaptive Algorithm

Adaptive algorithm is based on LIMERIC, a linear adaptive
control algorithm proposed by Bansal et al. in Ref. [8]. In this al-
gorithm, each CV updates a smoothed CBR value, us, when UTC
time modulo 200 msec. is zero using the following equation.

us = 0.5 · us + 0.5 · (u(k) + u(k − 1))/2, (2)

where u(k) and u(k − 1) stand for the two recent local measure-
ment values of CBR. Then, based on the difference between the
target CBR (= utarget) and us, δoffset is calculated, and the maxi-
mum fraction of time that the CV is allowed to transmit on the
channel, δ, is calculated.

δoffset =

⎧⎪⎪⎨⎪⎪⎩
min(β · (utarget − us),G+max) (utarget > us)
max(β · (utarget − us),G−max) (utarget ≤ us)

(3)

δ = min(max((1 − α) · δ + δoffset, δmin), δmax) (4)

Table 1 shows the basic parameter setting of the adaptive al-
gorithm. To satisfy the δ channel occupancy limit, DCC ACC
implements a gate-keeping function at the MAC layer. The gate
is closed when the access layer cannot accept a packet due to δ
value.

Reference [9] surveys existing methods and algorithms for
congestion mitigation foucusing on ETSI DCC and its variants.

2.2 SAE DCC
SAE J2945/1 specifies the congestion control mechanism for

DSRC [10]. The SAE DCC controls the transmission of BSMs
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Table 1 Parameter values of adaptive algorithm

Parameter Value
α 0.016
β 0.0012
utarget 0.68
δmax 0.03
δmin 0.0006
G+max 0.0005
G−max −0.00025
TCBR 100 msec.

by means of the message rate, transmission timing of additional
messages sent so that other CVs can correctly track the posi-
tion of the ego CV in case of significant vehicle dynamics (e.g.,
lane change, acceleration, deceleration), and transmission power.
Multiple metrics, Vehicle Density in Range, Channel Busy Per-
centage (CBP), and Packet Error Ratio (PER), are used as inputs
of the DCC algorithm.

Vehicle Density in Range is used to control the message rate.
Each vehicle periodically measures the number of CVs, N(k), in
the range of 100 m based on the number of unique CV IDs at the
end of each 1,000 ms-interval k. Then the smoothed number of
vehicles Ns(k) is calculated as follows:

Ns(k) = λN · N(k) + (1 − λN) · (Ns(k − 1)), (5)

where λN = 0.05 is the weight factor. Then the system calculates
the message generation interval T as follows:

T =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Tmin (Ns(k) ≤ B)

Tmin · Ns(k)/B (B < Ns(k) < BTmax/Tmin)

Tmax (BTmax/Tmin ≤ Ns(k))

, (6)

where B = 25 is the density co-efficient, and Tmax and Tmin are
600 msec. and 100 msec., respectively.

CBP is used for transmission power control. Each CV mea-
sures the current CBP, U(k)% every 100 msec. Then calculates
the smoothed CBP, Us(k) as follows:

Us(k) = λUU(k) + (1 − λU)Us(k − 1), (7)

where λU = 0.5 is the weight factor. Then the CV calculates its
transmission power P(k + 1) as follows:

P′(k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pmax (Us(k) < Umin)

Pmax − (Us(k) − Umin) Pmax−Pmin
Umax−Umin

(Umin < Us(k) < Umax)

Pmin (Umax ≤ Us(k))

,

(8)

P(k + 1) = P(k) + λP(P′(k) − P(k)), (9)

where Pmax = 20 dBm, Pmin = 10 dBm, Umax = 80%, Umin =

50%, and λP = 0.5.
PER is used to determine the timing of additional messages

transmitted so that the surrounding CVs can accurately track the
dynamics of the ego CV. Each CV measures PER Ei(k) for each
of the other CVs in the range of 100 m every 1 s. Ei(k) is calcu-
lated as the ratio of the number of missed BSMs from CV i and
the expected number of BSMs from i during the last 5 s., which

is calculated from DE MsgCount in the last and first BSMs re-
ceived from i in the period. Then, each CV calculates Channel
Quality Indicator (Π(k)) as follows:

Π(k) = min

⎛⎜⎜⎜⎜⎜⎝Πmax,
∑
i∈N

Ei(k)

|N|

⎞⎟⎟⎟⎟⎟⎠ , (10)

where N is the set of CVs in range of 100 m and Πmax = 0.3. By
using Π(k), the ego CV estimates the 2D position tracking error e

at CVs in N every 100 msec. Then it calculates the probability of
message transmission on dynamics p as follows.

p =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 − exp
(
−α|e − T |2

)
(T ≤ e ≤ S )

1 (e ≥ S )

0 (otherwise)

, (11)

where T = 0.2 m, α = 75, and S = 0.5 m.
In Ref. [11], the authors evaluate the performance of SAC DCC

in IEEE802.11p DSRC and LTE-V2X PC5 mode 4.

3. Congestion Control for Collective Percep-
tion

3.1 ETSI Collective Perception Message Generation Rule
ETSI is currently in the process of standardizing the Collective

Perception Service (CPS). Based on mainly on the earlier work
by Günther et al. [12], [13], [14], ETSI released technical report
103 562 [2], [15], which includes a proposal of collective per-
ception message (CPM) format and the message generation rule.
Since an object on the road can be detected by multiple CVs,
redundant CPMs that include information about the same object
may be generated without any countermeasures. Also, clearly
frequent message generation about stable objects will waste the
channel capacity. Thus, designing an effective CPM generation
rule is important.

In the ETSI generation rule, each vehicle attempts transmis-
sion of a CPM periodically. For every TGenCPM, the minimum
time duration between two consecutive message generation at-
tempts, each vehicle selects which object information is included
in a CPM. The range of the value of TGenCPM is between 0.1 sec.
and 1 sec. and may be set by DCC or other entities of the commu-
nication. The information about an object detected by onboard
sensors of the ego vehicle is included in a CPM when at least one
of the following conditions are satisfied.
Novelty The object has not been selected for transmission be-

fore.
Distance The object has moved more than 4 m from the posi-

tion of the object included in a CPM.
Speed The object’s speed has changed by more than 0.5 m/s

from the last speed value of the object included in a CPM.
Age The object has not been included in a CPM for more than

1 s.
The threshold values of the distance, speed and age are derived

from the cooperative awareness (CA) service [16].
References [2] and [15] reports simulation study results of the

generation rule in two scenarios, i) the Luxembourg SUMO Traf-
fic (LuST) scenario [17] and ii) Spider scenario, which consists of
20 concentric circular two-lane roads evenly spaced at 50 m with
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each lane being occupied with opposing traffic, using Artery V2X
simulation framework [18], which supports ETSI ITS-G5 proto-
cols, CAMs [16], and Decentralized Notification (DENMs) [19]
and uses SUMO [20].

3.2 Improvement of ETSI CPM Generation Rules
Some improvemnet methods for ETSI CPM generation rule

have been proposed. Thandavarayan et al. have conducted a sim-
ulation evaluation of the impact of different CPM transmission
strategies on channel load and situation awareness [21]. Their re-
sults showed that CPMs tend to be sent at a high transmission rate
(10 Hz) even when the transmitter is configured to be adaptive in
its message generation frequency due to dynamically changing
conditions. The same authors propose an extension to the ETSI
CPM generation rule [22]. In the extension, a vehicle includes
additional objects in a CPM. Even if an object is not selected by
the ETSI CPM generation rule, if it satisfies one of the following
conditions, it is selected to be included in a CPM. Let v and a is
the current speed and acceleration.
• The sum of the difference of the position of the object

with regard to the last position included in a CPM and
vTGenCPM + 0.5aTGenCPM is larger than 4 m.

• The sum of the difference of the speed of the object with re-
gard to the last speed included in a CPM and aTGenCPM is
larger than 0.5 m/s.

• The sum of the elapsed time from the last time the object
was selected for transmission and TGenCPM is larger than 1 s.

This extension is designed to avoid many CPMs containing small
number of objects are transmitted.

Delooz et al. have proposed a similar extension to reduce the
number of small CPMs [23]. In their extension, if an object is not
selected to be included in a CPM according to the ETSI gener-
ation rule, it is selected if including the object in the CPM does
not affect the frequency of sending CPMs. That is, if the size
of the CPM size does not exceed the maximum packet length,
even if additional object information is included, the informa-
tion is included. One interesting feature of their work is that
they evaluate the performance of the proposed extension using
LIMERIC-based (adaptive approach) DCC introduced new ETSI
DCC standard [6], while most of the other studies use the old re-
active approach DCCdescribed in the old DCC standard [7].

Thandavarayan et al. propose another improvement for ETSI
CPM generation rule [24], in which an object is not selected if
the difference of the object’s position, speed, or elapsed time with
regard to the last CPM sent from other vehicles or the ego vehicle
is less than a threshold. That is, if the information about the same
object has been reported by other vehicles recently and the status
difference is small, the object is not included in a new CPM. This
will reduce messages containing redundant information about ob-
jects detected by multiple vehicles.

3.3 Other Approaches
3.3.1 Probability-based Method

Higuchi et al. have proposed a probability-based strategy to re-
duce redundant messages caused by multiple CVs that detects the
same object [25]. In their method, when a CV generates a CPM,

it anticipates the value of the information of a detected object for
potential receivers based on the estimated history of the reception
of CPMs. Their method uses the packet reception probability
estimated from the number of CVs in proximity. Then the CV
estimates the gain of knowledge that other CVs obtain from the
new CPM containing the information of the object. If the gain is
larger than the predefined threshold, it includes the information in
a new CPM. The evaluation of their method is evaluated by using
a simplified communication model, in which packet loss proba-
bility is given as a function of the density of CVs. Though their
communication model is simplified and the correctness of the net-
work performance seems insufficient, their approach opens a new
direction of reduction of redundant CPMs.
3.3.2 Reinforcement Learning-based Approach

Aoki et al. have proposed a reinforcement learning-based strat-
egy [26]. They have made a simulation environment that consists
of SUMO traffic simulator [20], CARLA vehicle simulator [27],
YOLO-based object classifier [28], V2X communication simu-
lator, and a deep reinforcement learning-based cooperative per-
ception simulator. By using this environment, they trained the
Convolutional Neural Network in the system. The reinforcement
learning consists of three main concepts, State, Action, Reward.
The action space in their system is {Transmit,Discard} the infor-
mation of a detected object. Their reward model is designed so
that CVs can reduce redundant CPMs. One binary reward in-
cluded in the model becomes 1 when an object sent by the sender
CV has not been detected by the receiver CV. Three penalties
included in the system correspond to i) the number of recently
received CPMs about the same object, ii) the elapsed time from
the last time the receiver CV has detected the object by itself, and
iii) the network congestion level.
3.3.3 Position-based Approach

Some methods leverage information of the positions of CVs
and objects to control the traffic of CPMs [29], [30], [31]. Gani et
al. propose a strategy to select objects included in CPM messages
depending on the distance between the ego CV and the object.
Their proposed method gives higher priority to objects that are
farther away from the ego CV but closer to the edge of the local
sensor’s range [29]. This strategy is based on the idea that if a CV
moving at the head of a group of vehicles transmits information
about an object close to the edge of the sensor range, the follower
CVs in the group will be able to know about the presence of the
object farther away.

The vehicle density is used to control the transmission of CPMs
in Ref. [30]. The authors develop an analytic model of collective
perceptions that considers road geometry, CV penetration rate,
and vehicular density. Based on the analysis with the model, they
propose a method to control the probability of including an object
in a CPM. For a case with very low CVs density, the method is
highly likely to select objects included in a CPM to share more
data. As the density increases, the method reduces the probabil-
ity of selecting an object, but as the density increases further, it
increases the probability to compensate for the heavy blockage
effects.

In Ref. [31], we have proposed a method for controlling the
frequency of beacon message transmissions based on the relative
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positions of a CV in its surrounding CVs and the road structure.
In the next section, we introduce this method and present some
simulation results. Hereafter, we refer to this method as Relative

Position-based Priority (RRP) method.
3.3.4 RSU-based CP

So far, we have discussed methods that focus on the transmis-
sion of messages from vehicles. However, roadside units (RSU)
can be used for collective perception. Since road objects can be
observed by RSUs even no CVs are in the vicinity of the ob-
ject, CPMs from RSU can improve the awareness of the object.
Tsukada et al. propose Grid Proxy CAM [32]. Under Grid Proxy
CAM, roadside sensors detect vehicles, and the information is
gathered via a high-speed infrastructure network and broadcast
from roadside transmitters. Reference [33] reports the effective-
ness of using RSUs for collective perception through analytical
and simulation studies. Garlichs et al. present that aggregating
cooperative awareness information sent from vehicles at an RSU
places at an intersection significantly improves the drivers’ reac-
tion time [34].

4. Relative Position-based Congetion Control
Algorithm

In this section, we introduce the RRP method proposed in
Ref. [31]. This method reduces traffic of CPMs by using a simple
rule based on the relative position of a CV itself among its sur-
rounding vehicles. In Ref. [31], the term, a beacon, was used to
describe a CPM that contains information of a sender CV itself
and detected objects. Thus, in the following, we use the same
word. This method assigns a higher transmission frequency of
beacons containing the information of both the sender CV itself
and detected objects to CVs that have a wider field of view than
other CVs and assigns lower transmission frequencies to other
CVs. Each CV knows its relative position to the surrounding CVs
and the road structure, such as a road merging point, calculates
its priority for sending beacons based on its relative position, and
increases or decreases the frequency of beacon transmissions ac-
cording to the priority. In Ref. [31], we confirmed that vehicles
can detect surrounding vehicles, including hidden ones due to oc-
clusion, with a small amount of communication even in congested
environments through simulations using a simplified vehicle mo-
bility model, in which vehicles do not change the inter-vehicular
distance and do not overtake. In the following, we introduce the
overview of the method focusing on the method to determine the
beacon transmission frequency based on the relative position of
a CV in surrounding CVs and present detailed simulation results
obtained with a realistic vehicle traffic simulator (SUMO) [20].

4.1 RRP Method
Figure 3 shows the detectable range of each vehicle’s onboard

sensors. In this figure, vehicles that send beacons at a high fre-
quency are shown in blue. Most of the regions that a blue car can
cover with its sensor cannot be seen by red cars because of occlu-
sion. The view of each red car mostly covers the region covered
by other red cars. By giving a high frequency of sending beacons
containing detected objects (= CPMs) to the blue cars, the sur-
rounding cars can obtain information on the blind spots of their

Fig. 3 RRP method - Control strategy.

Fig. 4 Categorization of relative positions in a cluster.

sensors with high frequency even if red cars send their beacons
at a low frequency. To realize this idea, we designed the RRP
method.

In the RRP method, CVs behave as follows. Each CV esti-
mates its relative position to its surrounding CVs. Based on the
relative position, each CV obtains a priority of sending beacons
at a high frequency, R ∈ (0, 1]. Then, it determines its beacon
transmission interval based on R as Eq. (12)

I = min
( Imin

R · S , Imax

)
(12)

Here, Imin, Imax are minimum and maximum transmission inter-
vals, respectively. A CV with a high priority has a beacon trans-
mission interval close to Imin, resulting in a high beacon trans-
mission frequency. On the other hand, a CV with a low priority
has a beacon transmission interval close to Imax and a low beacon
transmission frequency.

R is given according to the relative position of a CV to its sur-
rounding CVs moving in the same direction. From now on, we
refer to such a group of vehicles as a cluster. We assume both
CVs and NCVs are in a cluster and they are moving on a multi-
lane road. According to the relative position of a CV in a clus-
ter, the CV is categorized into one of the following categories:
H) Head/Tail, M) Head/Tail supporter or Middle supporter,
L) others. Figure 4 shows the overview of the categorization.

The rule of categorization is as follows. One of RH , RM ,
and RL is given to each CV according to its category. Here,
1 > RH > RM > RL > 0. Let OL be the number of lanes cor-
responding to the lateral sensor range of CVs, and let r be the
longitudinal sensor range. We also assume that beacon messages
sent from each CV include at least the sender CV’s location, lane
ID, moving direction, and category (H, M, and L).
H) Head/Tail A CV that has no CVs in the same direction

within r[m] of its front/rear. R = RL.
M) Head/Tail supporter or Middle Supporter CVs at the

head/tail of CVs in a lane that is OL apart from the lane
where an H CV exists and CVs moving on a lane where
an H or L CV exists and are r apart from the H or L CV.
R = RM .

L) Others Other CVs. R = RL.
Figure 5 shows the transmission interval of the beacon for each
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Fig. 5 Example of calculating beacon transmission interval.

Table 2 Setting values in Fig. 5.

r [m] OL Rmax Rmid Rmin S Imin [s] Imax [s]
100 3 1.00 0.75 0.50 0.50 0.1 1.0

CV when each value is set as in Table 2. As shown in the figure,
the transmission interval is longer for CVs that have much over-
lap of sensor range with other CVs. Also, CVs that have less
sensor range overlap have short transmission intervals.

4.2 Simulation Model
We conducted the simulation of the RRP method using a ve-

hicle behavior model created using the traffic flow simulator
SUMO [20] and Scenargie wireless network simulator [35]. In
Ref. [31], the vehicular mobility model was simplified; the rela-
tive positions between vehicles did not change during a scenario,
and only single type vehicles were on the road. In this paper,
we used a realistic vehicle mobility model; vehicles change their
moving speed, overtaking happens, and two different types of ve-
hicles (car and bus) are on the road.

Each CV updates the beacon transmission interval every 0.1
seconds. Before calculating the transmission interval, a CV eval-
uates its relative position according to the information it has re-
cently received from other CVs. Then, it identifies its relative
position in a cluster and updates its beacon transmission inter-
val. The information received from other CVs is valid during Δt.
Thus, even if some beacons are lost, a CV can update its rela-
tive position in a cluster using valid information it has recently
received.

Each beacon message includes the beacon sender CV’s loca-
tion, ID, the relative position in a cluster (H, M, and L), beacon
transmission time, and the ID and position of vehicles it has de-
tected. We assume that CVs sense other vehicles every 0.1 sec-
onds. IDs of other vehicles detected within the last 0.1 seconds
before sending a beacon message are included in the message.

CVs are assumed to be equipped with a sensor capable of de-
tecting the position of a vehicle within a 360-degree radius of
100 m. The sensor is capable of detecting a vehicle in a position
where the sensor has a clear line of sight within the detectable
range. Only if two or more of the vertices and the midpoints of
each side of a rectangle representing a vehicle shape are in a line
of sight, the vehicle is detected (Fig. 6). Table 3, Table 4, Ta-
ble 5, and Table 6 show detailed simulation parameters.

4.3 Simulation Results
We conducted simulations of RPP method and periodic beacon

transmission (5 Hz and 10 Hz). We used Awareness Ratio as a
performance metric. The awareness ratio is defined as the ratio

Fig. 6 Vehicle detection model in simulation.

Table 3 Vehicle model configuration.

Car Bus
Max. Speed 100 km/h 80 km/h
Max. Acceleration 2.9 m/s 1.2 m/s
Max. Deceleration 7.5 m/s 4.0 m/s
Body Size 4.7 m × 1.7 m 12 m × 2.5 m
Antenna Height 1.5 m 3.8 m
Initnai Lane Prob. 0.2/0.2/0.2/0.2/0.2 0.4/0.3/0.2/0.07/0.03
Min. Distance 2.5 m
between vehicles

Table 4 Parameters of LC2013 lane change model.

lcStrategic 1.0
lcCooperative 1.0
lcSpeedGain Car: 1.0, Bus: 0.6 to 1.0
lcKeepRight 1.0
lcOvertakeRight 0
lcOpposite 1.0
lcLookaheadLeft 2.0
lcSpeedGainRight 0.1
lcSpeedGainLookahead 0
lcAssertive 1
lcSigma 0.0

Table 5 Simulation parameters.

PHY /MAC IEEE 802.11p at 5.9 GHz
Data rate 6 Mbps
Propagation model free space
TX power 20 dBm
Preamble detection −85 dBm
power threshold
Carrier sense level −65 dBm
Packet size 1,500 bytes
Detectable range 100 m
Detection interval 0.1 sec.
Simulation Setup time 100 sec.
Execution time 200 sec.
Execution count 50
Δt 0.1, 0.15, 0.2, and 0.5 sec.
Road 5 lanes/2,000 m

(Only the second half section is monitored.)

Table 6 Configuration of RPP method.

OL r RH RM RL S Imin Imax

3 100 m 1.00 0.75 0.50 0.50 0.10 sec. 1 sec.

of the number of vehicles recognized by communication and the
ego CV’s sensors to the number of vehicles existing within 300 m
of the evaluation area per unit time. We measured the awareness
ratio of each CV every 0.1 seconds. Figure 7 shows the CDF of
the awareness ratio with different densities of vehicles. It can be
seen that in all scenarios, the awareness rate becomes large as the
data validity period Δt increases. This is because the longer the
validity period, the fewer chances the information of surrounding
vehicles is discarded.

In a low-density scenario with only cars, more than 50% of
all CVs achieve a high awareness ratio of 80% in all methods.
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Fig. 7 CDF of awareness ratio.

Fig. 8 Packet loss ratio.

The number of beacon transmissions and the packet loss rate are
low for all the methods. RPP method has a higher awareness ra-
tio with all Δt than periodic beacon cases. About 65.3% of the
CVs recognize more than 80% of the surrounding vehicles even
at Δt = 0.1 seconds.

In the high-density scenario with only cars, the awareness ratio
of periodic beaconing cases severely becomes worse. With peri-
odic beaconing of 5 Hz and 10 Hz, only about 20% and 70% CVs
achieve the awareness ratio of 0.8 even at long Δt, respectively.
On the other hand, RPP method achieves a higher awareness ratio.
When Δt is 0.5 sec, about 100% CVs achieve an awareness ratio
of 0.8 and much higher awareness ratios with shorterΔt compared
with periodic beaconing.

The CDF of awareness ratio in the high-density scenario with
cars and busses mixed scenario is similar to the car only high-
density scenarios, though the awareness ratio in the mixed sce-
nario is slightly worse than car-only scenario due to the increase
of occlusions caused by a large body of busses. However, the im-
pact of the existence of buses is smaller with RPP method than
periodic beacon cases.

Figure 8 shows the packet loss rate. It is cleary observed that
RPP method significantly decreases packet loss without decreas-
ing the awareness ratio.

5. Conclusions

We introduced recent work on congestion control for coopera-
tive awareness and cooperative perception systems and our work
on congestion control in cooperative perception, RPP method.
Under RPP method, CVs control the frequency of transmission of
beacon messages containing detected objects based on their rela-
tive positions among neighboring vehicles. The core idea of the
method can be combined with other strategies, such as the current

ETSI CPM generation rule and its variants. Though cooperative
awareness has already been standardized, the details of the con-
gestion control are not specified in the standard and need further
studies. The standardization of cooperative perception is under-
way in both ETSI and SAE. Further investigations focusing on
both the efficiency in the wireless channel and the performance
of applications depending on the exchanged detected object in-
formation are needed. Proposals on the control of transmission
of detected objects in the application level tend to lack simulation
with detailed V2X communication models, while studies using a
detailed V2X communication simulation model tend to lack the
analysis of redundant information from multiple CVs. Simula-
tion studies that focus on both communication, DSRC and cellu-
lar V2X, and higher-level message redundancy will be needed.
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