
Performance Evaluation of High Availability
Database Systems Using Low-latency I/O Devices

SHINJI FUJIWARA 1,2,a)　RIRO SENDA 2　ISAMU KANEKO 2　HIROSHI ISHIKAWA 1

Received: February 4, 2021, Revised: June 14, 2021,

Accepted: September 13, 2021

 Abstract: Low-latency I/O devices are connected to the peripheral component interconnect express bus on a data-

base server. Most practical database systems are built as a high availability system to avoid a single point of failure.

Therefore, we evaluated a high availability database system configured with servers using low-latency I/O devices.

We have shown that the performance overhead of the high availability configuration using low-latency solid state

drives is 12% compared to a single server configuration, in a primitive update test case. The result of a mixed-

workload benchmark indicated that the database system configuration using low-latency I/O devices was up to 6.1

times faster than the performance using traditional external storage when the allocated database buffer was 5% of the

database size.

 Keywords: NVMe SSD, database system, NVMe over fabrics, high availability

1.　 Introduction

There are now low-latency I/O devices whose access time is

on the order of 10 µs. These low-latency I/O devices affect the

computer system architecture because current computer systems

have been designed based on I/O devices whose access time is

O(ms) [1].

I/O devices have evolved from a hard disk drive (HDD) to a

solid-state drive (SSD) that uses NAND MLC flash memory, and

the I/O access time has been reduced from O(ms) to O(100 µs).

These technological innovations have improved the performance

of the database system. Recently, a new type of low-latency SSD

has become available that uses 3D XPointTM memory technolo-

gy or ZNAND technology. By using these technologies, the la-

tency of I/O devices has been reduced to O(10 µs) [2]-[4].

These I/O devices use the nonvolatile memory express

(NVMe) interface, which is designed for flash memory (i.e.,

non-volatile memory) SSDs. NVMe devices are accessed via the

peripheral component interconnect express (PCIe) bus, so they

connect directly to a server via a PCIe slot or 2.5 inch U.2 drive

bay [5].

Database systems are used in mission critical systems, and

most database systems are designed as fault-tolerant configura-

tions. A typical configuration of a mission-critical database is a

high-availability configuration (HA). This configuration consists

of two database servers and an external shared storage system. If

one database server fails during operation, the workload of the

failed server is switched over to another database server. The ex-

ternal shared storage has its own fault-tolerant features, such as

RAID systems, so that the system has no single-point-of-

failure [6].

Most of the existing studies on NVMe SSD evaluate their pro-

posals by using a single database server, because NVMe SSD is

connected to a server via PCIe bus [7]-[9]. Some researchers

have proposed a data replication method for an NVM database

system, but these studies focused on optimizing the data transfer

volume by using the log shipping method [10], [11].

In this study, to ensure the redundancy of the database system,

we proposed a simple architecture with data replication. We

evaluated an HA database system that configured two servers

with NVMe SSDs connected to the servers. In our configuration,

each write I/O to the NVMe SSD was replicated simultaneously

between the servers for redundancy. Therefore, the write I/O la-

tency is the sum of local write I/O latency and remote write I/O

latency. Therefore, remote write I/O latency is a critical issue in

our configuration. To implement remote write I/O with low la-

tency, we used the “NVMe over Fabrics” protocol. The NVMe

over Fabrics protocol provides low-latency remote I/O by using

RDMA over converged Ethernet [12]. The overhead of the

NVMe over Fabrics protocol was reported to be 11.7 µs in [13].

In our hardware configuration using 100 GbE network adapters

and a 100 GbE switch, the protocol overhead was 10–20 µs. The

1 Tokyo Metropolitan University, Hino, Tokyo 191–0065, Japan
2 Hitachi, Ltd., Yokohama, Kanagawa 244–0817, Japan
a) fujiwara-shinji@ed.tmu.ac.jp

©  2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.30

remote write I/O latency is the total overhead of NVMe over

fabrics and the write I/O latency at the remote server. In our

hardware configuration, it was 20–30 µs. In this way, we config-

ured an HA database system to realize a low-latency remote I/O.

We evaluated the performance of high availability database

systems using two benchmarks: a primitive workload benchmark

and a TPC-C-based benchmark [14]. The primitive workload

benchmark was designed to measure the basic database perfor-

mance, and it consisted of single-row select or update opera-

tions. The TPC-C-based benchmark, which is equivalent to

HammerDB, measured the database performance of a typical

online transaction system [15]. We refer to this TPC-C-based

benchmark as the mixed workload benchmark in this study. The

details of the benchmarks we use are described in Section 4.

Before evaluating these workloads, we estimated relative per-

formance based on I/O latency compared to a system whose data

is cached in memory in Section 3. This indicates that it is effec-

tive to apply low-latency I/O devices with an access time of

O(10 µs) to the application whose CPU time between I/O opera-

tions is O(100 µs).

To confirm this estimate, we evaluate a single-database system

using mid-latency and low-latency SSDs with I/O latencies of

O(100 µs) and O(10 µs), respectively. We also evaluate the per-

formance overhead of a high-availability configuration using a

primitive workload. Finally, we evaluate three different

high-availability database configurations using low-latency

SSDs, mid-latency SSDs, and external storage.

After introducing related work in Section 2, we discuss the ef-

fective target of low-latency I/O devices based on the discussion

in Section 3. In Section 4, we describe the system configurations

and workloads, in Section 5 we show the performance evaluation

results, and in Section 6, we conclude the paper.

2.　 Related Work

The advent of the NVMe SSD has had a significant impact on

system architecture, especially for I/O-intensive software. Xu et

al. [7] evaluated MySQL, Cassandra, and MongoDB using

SATA-SSD and NVMe-SSD. Using a HammerDB as a bench-

mark, the performance of a single NVMe SSD configuration im-

proved by 3.5 times compared to a single SATA-SSD configura-

tion. Coburn et al. [8] proposed Editable Atomic Writes for

logging that was optimized for NVMe SSDs. By implementing a

transaction control logic in the SSD controller, a 3.7 times better

performance was achieved. Renen et al. [9] proposed a 3-tier da-

tabase buffer management system consisting of DRAM, NVM,

and SSD. To use NVM efficiently, they introduced a mini page

that knows the cache line of the processors. These proposals are

promising, but they are focused on improving the performance

of a single database server. Moreover, they were evaluated with-

out the HA configuration.

Some studies proposed a data replication method for an NVM

database system [10], [11]. However, these studies focused on

optimizing data transfer by using log shipping because the net-

work cost is the major performance bottleneck of data replica-

tion.

To reduce the network latency for data replication, the NVMe

over Fabrics protocol is a promising technology. Guz et al. [13]

applied this protocol to the storage disaggregation method. They

showed that there is no significant difference between local and

remote storages when using NVMe over Fabrics protocol for

storage disaggregation, but they did not apply it to data replica-

tion.

3.　 Effective Target Area of Low-latency I/O De-
vices

The NVMe interface was designed for SSDs with non-volatile

memory and is standardized worldwide by NVM Express, Inc.,

which consists of dozens of industrial members. NVMe is suit-

able for low-latency, high-bandwidth I/O devices because it con-

nects directly to a PCIe bus. NAND MLC flash type SSDs

(NAND SSD) have gradually supported the NVMe interface in

addition to the traditional SAS/SATA interface. The typical la-

tency of NVMe NAND SSDs is O(100 µs), which is ten times

faster than that of conventional HDDs.

In addition to NAND technology, there are new types of

low-latency SSDs, such as 3D XPointTM Memory technology

and ZNAND technology. With these technologies, the latency of

I/O devices becomes O(10 µs).

Figure 1 shows a relative performance estimate by I/O latency

compared to a system where all data is cached in memory. The

horizontal axis indicates the average CPU time between I/O ac-

cess to data, and the vertical axis indicates the relative perfor-

Fig. 1　Relative performance estimation by I/O latency.

Electronic Preprint for Journal of Information Processing　Vol.30

©  2022 Information Processing Society of Japan

mance compared to all data cached in memory. The relative per-

formance of memory access is estimated as follows:

(tcpu + tmem) / (tcpu + tio)

where tcpu is the CPU time between I/O access to data, tmem

is the latency of memory access, and tio is the latency of I/O ac-

cess to data. We calculated the latency of memory access tmem

as 0.1 µs. If the average CPU time between I/O accesses is

100 µs and the average I/O latency is 100 µs, the relative perfor-

mance to memory access is estimated as follows:

(100 µs + 0.1 µs) / (100 µs + 100 µs) = 50%.

This estimation result indicates that the I/O overhead is still

significant even if we use O(100 µs) latency SSDs, such as typi-

cal NAND NVMe SSDs. Alternatively, if we apply a 10 µs laten-

cy I/O device, the relative performance to memory access is esti-

mated as follows:

(100 µs + 0.1 µs) / (100 µs + 10 µs) = 91%.

This means that system performance can reach more than

90% when using low-latency I/O devices if the average CPU

time between I/Os is 100 µs. Consequently, using low-latency I/

O devices with an access time of O(10 µs) is effective for the ap-

plication when CPU time between I/O is O(100 µs).

Note that this estimate does not consider task switching to uti-

lize the CPU and I/O more efficiently. Therefore, the relative

performance would improve in cases of I/O latency greater than

100 µs. However, task switching for low-latency I/O devices is

not effective because the task switching overhead is 20–30 µs,

which is equal to or longer than I/O latency when access time is

O(10 µs).

Based on the above estimation, we use the Intel® OptaneTM

DC SSD as a low-latency I/O device with access times of

O(10 µs) or NAND NVMe SSD as a mid-latency I/O device

with access times of O(100 µs).

This estimate is the result of desk evaluation, and the evalua-

tion model is simplified to I/O latency and CPU time between

accesses. It does not consider the overhead of exclusive process-

ing for database processing. In the exclusive processing of DB, it

is common for the process that after trying to obtain a lock

through a certain number of polls, it sleeps for a certain period

of time if it cannot obtain the lock. The number of polls and the

sleep time were tuned to match the characteristics of convention-

al I/O devices. For example, in the case of the database system

used for evaluation, the sleep time was tuned as 1 ms based on I/

O devices with a latency of O(100 µs).

We tuned the parameters related to exclusive processing to

O(10 µs) to match the characteristics of low-latency I/O devices.

4.　 High Availability Database System

4.1　 Server Configurations

Figure 2 describes the servers that were used for the perfor-

mance evaluation. The 1U server was used to evaluate the primi-

tive workload benchmark, and a 2U server was used to evaluate

the mixed workload benchmark. The details of these workloads

are described in Section 3.3. To evaluate the effect of low-

latency I/O devices, we installed four low-latency and four

mid-latency I/O devices on each server. For the HA configura-

tion, we used a 100 GbE network to connect the database servers

as the total write throughput of the four NVMe SSDs is approxi-

mately 8 GB/s. To compare a conventional high availability da-

tabase system with external storage, we installed a host bus

adaptor (HBA) in 2U servers. We installed Red Hat Enterprise

Linux 7.4 and a commercial DBMS.

4.2　 System Configuration

Figure 3 shows the configuration of the system. A single

server configuration used to evaluate the baseline performance

of the database system using NVMe SSDs. In our evaluation, we

cached all indexes in the database buffer, while we allocated a

DB buffer of 1–100% for the tables. With a buffer size of 1%, al-

most all table accesses missed the DB buffer. In this configura-

tion, we evaluated both low-latency and mid-latency I/O devices

to confirm the effect of low-latency I/O devices.

Figure 3 (b) and (c) show the HA configurations consisting of

one active and one standby DB. Figure 3 (b) uses directly con-

Fig. 2　Server configurations.

©  2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.30

nected NVMe SSDs to store the data. All write data are synchro-

nously duplicated to the standby DB by using the NVMe over

Fabrics protocol via 100 GbE network. Figure 3 (c) shows a con-

ventional HA configuration with external storage. In our evalua-

tion, we used RAID 5 storage configured with six SAS SSDs.

Because data redundancy is ensured by the RAID storage sys-

tem, no data are duplicated in the database system.

4.3　 Benchmarks for Evaluation

(1)　 Primitive workload

Figure 4 shows the workload for evaluating primitive data-

base operations, that is, selecting and updating single-row trans-

actions. We created ten tables consisting of SID (integer), C1

(integer), and Data1 (char(4096)). SID is the primary key of the

table, and each table has a B-tree index of SID. The page size of

the index and the table is 4 KiB and 24 KiB, respectively. Each

table has 500 thousand rows, so the total number of rows for 10

tables is 5 million. The physical sizes of the index and table were

155 MiB and 24 GiB, respectively. In our experiments, we

cached all the index data in the database buffer, while we cached

1% (240 MiB) to 100% (24 GiB) of the table data in the data-

base buffer.

The workload generator consists of multiple tasks that execute

multiple transactions simultaneously. We evaluated select opera-

tions and the update operations separately. For select operations,

all workload tasks select a single row using a randomly generat-

ed primary key and then commit. For update operations, all

workload tasks execute single row updates of the C1 column by

using a randomly generated primary key and then perform a

commit. The I/O access patterns for each transaction are as fol-

lows:

 ・ Select Transaction: A data page is read if the DB buffer

misses. No log is written.

 ・ Update Transaction: In the case of a DB buffer miss, a dirty

page is written back, and then a data page is read. Update

logs are written during the commit.

(2)　 Mixed workloads

The mixed workload was designed based on the TPC-C

Fig. 4　Primitive workload benchmark.Fig. 3　System configurations.

Electronic Preprint for Journal of Information Processing　Vol.30

©  2022 Information Processing Society of Japan

benchmark. We changed the think time of the TPC-C benchmark

to zero. Similar to the Hammer DB, which was designed based

on the TPC-C benchmark, each task executes equivalent SQLs to

the TPC-C benchmark, but each client task issues the next SQL

without any interval time. Instead of using 1U servers with

8-core CPUs, we used 2U-servers with 18-core CPUs, so we

evaluated 30 client tasks. The number of warehouses we used

was 800, totaling 400 million rows. We created B-tree indexes

for each table on the primary key and some foreign keys. The

physical size of the index and table was 9.6 GB and 74 GB, re-

spectively. We cached all index data in the database buffer, while

we cached 5–100% (3.7–74 GB) of the table data in the database

buffer.

4.4　 Test Cases for Evaluation

Table 1 presents the test cases for database performance eval-

uation. Case A evaluates a single database system using mid-

latency and low-latency SSDs with I/O latencies of O(100 µs)

and O(10 µs) respectively, to confirm the estimation described in

Section 2. Case B evaluates the performance overhead of the

high-availability configuration by comparing configurations #1

and #3. For the evaluations of Case A and B, we used the primi-

tive workload.

Case C evaluates a more practical system and workload. We

evaluated three different types of high-availability database con-

figurations using low-latency SSDs, mid-latency SSDs, and ex-

ternal storage. We executed a mixed workload based on the

TPC-C benchmark.

5.　 Performance Evaluation Results

5.1　 Case A

Case A evaluates the effectiveness of low-latency I/O devices

for a single-database configuration. Figure 5 shows the results

of the SELECT and UPDATE transactions. The horizontal axis

shows the relative DB buffer size compared to the table size, and

the vertical axis shows the total throughput of the transaction.

In the case of a 100% buffer size, all data are cached in mem-

ory. Therefore, the throughput is almost the same for both

low-latency and mid-latency SSD configurations. With a buffer

size of 1%, 99% of the transactions miss the database buffer, and

I/O access to the data occurs. For SELECT transactions, a data

page is read from the I/O devices; and for UPDATE operations,

a dirty page is written back and then a data page is read from the

I/O devices, and update logs are written on commit.

The transaction throughput gradually decreases when the DB

buffer size is decreased. Figure 5(a) shows the performance of

SELECT transactions. The performance at 1% buffer size is

90% compared to 100% buffer size for low-latency SSD, but for

mid-latency SSDs, the performance at 1% buffer size decreases

to 54% compared to the 100% buffer size case. Figure 5(b)

shows the performance of UPDATE transactions. The perfor-

mance of the 1% buffer size is 78% compared to the 100% buf-

fer size for low-latency SSDs, but in the case of mid-latency

SSDs, the performance decreases to 34% compared to the 100%

buffer size case.

In the evaluation of case A, the SELECT performance of

Fig. 5　Evaluation result of case A.

Table 1　Test cases for evaluation.

©  2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.30

low-latency SSDs was 1.7 times larger than that of mid-latency

SSDs, and the UPDATE performance of low-latency SSDs was

2.3 times larger.

This result confirms the relative performance estimation by I/

O latency in Section 2. Because the CPU time between I/O oper-

ations was 100–150 µs and I/O latency was 20–30 µs in the con-

figuration of low-latency SSDs, the relative performance was es-

timated as 80–90% (Fig. 1). The performance of the mid-latency

SSDs also matched the estimate in Fig. 1.

5.2　 Case B

Case B evaluates the overhead of the HA configuration, that

is, the overhead of synchronous data replication. As explained in

Section 3.4, we evaluated a single configuration with low-

latency SSDs, HA configuration with low-latency SSDs, and HA

configuration with mid-latency SSDs. In the HA configuration,

two servers are connected using a 100 Gb ethernet. We duplicate

data and log by using NVMe over Fabrics (NVMe-oF) protocol,

which uses the RDMA protocol that reduces the overhead of re-

mote data access. Both data and log are duplicated synchronous-

ly, so there is no data loss if the active server fails. Because the

SELECT transaction does not perform any write access to I/O

devices, there is no performance difference between the single

configuration and the HA configuration. Therefore, we evaluated

these configurations by using a single row update transaction,

which is the same as the primitive workload.

Figure 6 shows the results for Case B. The vertical axis shows

the transaction throughput, and the horizontal axis shows the rel-

ative DB buffer size. The performance of HA configurations in

the case of 100% buffer size is 88% compared to a single config-

uration. Because there is access to data page access when the

buffer size is 100%, the overhead of log duplication via NVMe-

oF is 12%. The performance of HA configurations using low-

latency SSDs and mid-latency SSDs was almost the same be-

cause the same amount of log was duplicated via NVMe-oF.

With a buffer size of 1%, the performance of the HA configu-

ration using low-latency SSDs is 93% compared to the perfor-

mance of a single configuration. The relative performance ratio

is higher than when the buffer size is 100%, because the data

pages are read from the local SSDs and the overhead of data du-

plication becomes relatively small. The performance of the HA

configuration using mid-latency SSDs decreases to 39% because

it takes O(100 µs) to read a data page for updates. Consequently,

the performance of the HA configuration using low-latency

SSDs was 2.4 times higher than the HA configuration using

mid-latency SSDs in the case of 1% buffer size. The HA config-

uration using low-latency SSDs was 70% compared to the per-

formance of the HA configuration with 100% buffer hits.

5.3　 Case C

Case C evaluates the HA configuration using a mixed work-

load based on the TPC-C benchmark. In this evaluation, we

compared the HA configurations using low/mid-latency SSDs

with a practical HA configuration using an external SAN storage

for data storage.

Figure 7 shows the result of the evaluation of Case C. Be-

cause we used larger servers than Cases A and B, we executed

30 transactions concurrently. Compared to the performance of

the external storage configuration, the performance of the low-

latency SSD configuration was 1.1 times faster at a buffer size of

100%, and 6.1 times faster at a buffer size of 5%. The low-

latency SSDs configuration was 71% faster than the performance

of the external storage configuration with 100% buffer hit. Com-

pared to the mid-latency SSD configuration, it was 1.4 times

faster for both 100% and 5% buffer size tests.

Because the Case C workload is based on the TPC-C bench-

mark, a single transaction updates multiple tables, and conse-

quently the size of the update logs becomes larger than the up-

date transactions of the primitive benchmark. This affects the

performance of mid-latency SSDs, using NAND flash memory.

Figure 8 shows the traces of the mixed workload in the case

of 100% buffer size. The horizontal axis indicates the elapsed

Fig. 7　Evaluation result of case C.Fig. 6　Evaluation result of case B.

Electronic Preprint for Journal of Information Processing　Vol.30

©  2022 Information Processing Society of Japan

time, and the vertical axis shows the individual transaction pro-

cesses. As we execute 30 transactions simultaneously, each

graph includes 30 transaction processes. Figure 9 shows the no-

tations of the trace chart. In the graph, red indicate read I/O, and

light-blue indicate write I/O. An update operation consists of a

dirty buffer write and a buffer read for the update data. A commit

operation consists of the waiting for of other log writes to com-

plete and a log buffer write.

Because the database buffer size is 100% of the data size,

there are no data page read I/Os. Deep blue indicates the waiting

completion of the log writes. As this database system uses a

group commit mechanism, sometimes multiple processes wait

for a log write to complete at the same time.

In configurations of low-latency SSDs and external storage

cases, I/O was not a significant bottleneck. However, in the con-

figuration of mid-latency SSDs, the log writes indicated in light-

blue sometimes took several milliseconds, resulting in a long

wait for the log write to complete, causing a performance bottle-

neck.

Figure 10 shows the traces of the mixed workload in the case

of a 5% buffer size. In this 5% buffer size case, most data access

missed the database buffer, and read I/O was performed fre-

quently.

Even though the read I/O was frequently issued, the trace of

low-latency SSDs indicated that there was no significant bottle-

neck due to I/O, and most of the time was spent on database pro-

cessing in the CPUs. The trace of external storage shows that the

read access to the data pages, which is shown in red, was a pri-

mary bottleneck. Therefore, most mission critical database sys-

tems that use external storage allocate a sufficiently large data-

base buffer to reduce I/O access to storage. The trace of

mid-latency SSDs indicates that read access to data pages some-

times takes O(ms). Mid-latency SSDs need to periodically gather

and erase updated data pages. This causes long I/O latency and

affects the database performance.

5.4　 Cost Performance Analysis

According to the results of test cases B and C, the HA config-

uration using conventional NVMe SSDs or an external SAN

storage is recommended to have the same size as the database

buffer as data because the performance degrades rapidly if the

buffer hit ratio is low. In contrast, the HA configuration using

low-latency SSDs maintains 70% performance even in the case

of a 5% buffer compared to the 100% buffer.

Table 2 lists the two server configurations. For these configu-

rations, we assume that the database size is 1.5 TB. Table 2 (a)

shows an on-memory configuration with mid-latency SSDs and

a full-size database buffer. Table 2(b) shows a low-latency SSD

configuration with low-latency SSDs and a database buffer of

5% size.

Figure 11 shows a relative comparison of the server costs for

Fig. 8　Traces of mixed workload (100% buffer size).

Fig. 9　Notations of the trace chart.

©  2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.30

these two configurations. In the case of the on-memory configu-

ration, 77% of the total cost is spent as memory cost. In the

low-latency SSD configuration expensive low-latency SSDs are

used instead of mid-latency SSDs, but the total cost is reduced to

51% compared to the on-memory configuration. Based on the

results of test case B described in Section 5.2, the performance

of the 5% buffer hit case for the configuration using low-latency

SSDs was 70% compared to the 100% buffer hit case. Conse-

quently, the cost performance of the configuration using low-

latency SSDs was 1.4 times better than that of the on-memory

configuration.

6.　 Concluding Remarks

In this study, we studied the performance of high-availability

database systems using low-latency I/O devices. Because low-

latency I/O devices are connected to the PCI bus on a database

server, we configured two database servers connected with a 100

GbpE network, and we duplicated data using the NVMe over

Fabrics protocol, which is suitable for NVMe SSD devices. We

evaluated the single configuration and the HA configuration by

changing the database buffer size from 1% to 100% of the data-

base size.

The results of the single database configurations showed that

the configuration using low-latency I/O devices with 1% data-

base buffer size indicated 90% and 78% performance for select

and update benchmarks, respectively, compared to the perfor-

mance of 100% buffer size configuration. This result confirms

the relative performance assessment by I/O latency described in

Section 2.

In the evaluation of the HA configuration, we showed that the

performance of the HA configuration using low-latency SSDs

and the NVMe over Fabrics protocol was 88% compared to a

single configuration, in the case of a 100% update transaction

workload in Case B. The HA configuration using low-latency

SSDs was 70% compared to the performance of the HA configu-

ration with 100% buffer hit.

The result of the mixed workload benchmark in Case C indi-

cated that the database system configuration using low-latency I/

O devices was up to 6.1 times faster than the performance of the

Fig. 11　Relative cost comparison of servers.

 Note that the price of each component may change, and this comparison re-

sult may change in the future.

Table 2　Server configurations for cost comparison.

Fig. 10　Traces of mixed workload (5% buffer size).

Electronic Preprint for Journal of Information Processing　Vol.30

©  2022 Information Processing Society of Japan

configuration using conventional NVMe SSDs when the allocat-

ed database buffer was 5% of the database size. The configura-

tion using low-latency SSDs was 71% faster than the perfor-

mance of the external storage configuration with 100% buffer

hit.

HA configuration using conventional NVMe SSDs or an ex-

ternal SAN storage, experienced a rapid drop in performance at

a low buffer hit ratio. However, the HA configuration using

low-latency SSDs maintained 70% performance even in the 5%

buffer case compared to the 100% buffer case. We evaluated the

cost performance in Section 5.4 and found that the cost perfor-

mance of the configuration using low-latency SSD was 1.4 times

better than that of the on-memory configuration.

From the above results, we conclude that low-latency I/O de-

vices are promising devices for high-availability database sys-

tems.

References

[1] Barroso, L., Marty, M., Patterson, D. and Ranganathan, P.: At-
tack of the Killer Microseconds, Comm. ACM, Vol.60, No.4,
pp.48–54 (2017).

[2] Webb, M.: Overview of Persistent Memory, Proc. of Flash
Memory Summit 2018 (Pre-conference Seminars), Santa Clara,
USA. Available from (2018). 〈https://www.flashmemorysummit.
com/Proceedings2019/08-05-Monday/20190805_PreConfC_
Sainio.pdf〉, (accessed 2021-01-18).

[3] Intel [Internet]. Santa Clara, USA: News Release; [cited 2015
Jul 28]. Intel and Micron produce breakthrough memory tech-
nology; [about 2 screens]. Available from 〈https://newsroom.
in t e l . com/news- re l eases/ in t e l- and-mic ron-p roduce-
breakthrough-memory-technology/〉, (accessed 2021-01-18).

[4] Samsung [Internet]. Korea: Newsroom; c2010–2019 [cited
2018 Jan 30]. Samsung Electronics Launches 800-Gigabyte
Z-SSDTM for HPC Systems and AI Applications. Available
from 〈https://news.samsung.com/global/samsung-electronics-
launches-800-gigabyte-z-ssd-for-hpc-systems-and-ai-
applications〉, (accessed 2021-01-18).

[5] NVM Express [Internet]. Beaverton, USA; c2007–2017 [cited
2017 May 1]. NVM Express Revision 1.3. Available from
〈http://nvmexpress.org/wp-content/uploads/NVM_Express_
Revision_1.3.pdf〉, (accessed 2021-01-18).

[6] Drake, S., Hu, W., McInnis, D. M., Sköld, M., Srivastava, A.,
Thalmann, L., Tikkanen, M., Torbjørnsen, Ø. and Wolski, A.:
Architecture of Highly Available Databases, Proc. of First In-
ternational Service Availability Symposium, Munich, Germany.
Berlin: Springer (2015).

[7] Xu, Q., Siyamwala, H., Ghosh, M., Suri, T., Awasthi, M., Guz,
Z., Shayesteh, A. and Balakrishnan, V.: Performance analysis
of NVMe SSDs and their implication on real world databases,
Proc. of the 8th ACM International Systems and Storage Con-
ference, Haifa, Israel. New York: ACM (2015).

[8] Coburn, J., Bunker, T., Schwarz, M., Gupta, R. and Swanson,
S.: From ARIES to MARS: transaction support for next-
generation, solid-state drives, Proc. of the 24th ACM Sympo-
sium on Operating Systems Principles, Pennsylvania, USA.
New York: ACM (2013).

[9] Renen, A., Leis, V., Kemper, A., Neumann, T., Hashida, T., Oe,
K., Doi, Y., Harada, L. and Sato, M.: Managing Non-Volatile

Memory in Database Systems, Proc. of the 2018 ACM SIG-
MOD International Conference on Management of Data, Hus-
ton, USA. New York: ACM (2018).

[10] Arulraj, J. and Pavlo, A.: How to Build a Non-Volatile Memory
Database Management System, Proc. of the 2017 ACM SIG-
MOD International Conference on Management of Data (tuto-
rial), Chicago, USA. New York: ACM (2017).

[11] Zhang, Y., Yang, J., Memaripour, A. and Swanson, S.: Mojim:
A Reliable and Highly Available Non-Volatile Memory Sys-
tem, Proc. of the 20th International Conference on Architectur-
al Support for Programming Languages and Operating Sys-
tems, Istanbul, Turkey. New York: ACM (2015).

[12] NVM Express [Internet]. Beaverton, USA; c2007–2016 [cited
2016 Jun 5]. NVM Express over Fabrics Revision 1.0. Avail-
able from 〈http://nvmexpress.org/wp-content/uploads/NVMe_
over_Fabrics_1_0_Gold_20160605-1.pdf〉.

[13] Guz, Z., Li, H., Shayesteh, A. and Balakrishnan, V.: Perfor-
mance Characterization of NVMe-over-Fabrics Storage Disag-
gregation, ACM Trans. Storage, Vol.14, No.4, pp.Article 31
(2018).

[14] TPC [Internet]. San Francisco, USA; c2001–2019 [cited 2010
Feb]. TPC BENCHMARKTM C Standard Specification Revi-
sion 5.11. Available from 〈http://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5.11.0.pdf〉, (accessed 2021-01-
18).

[15] HammerDB [Internet]. c2019. HammerDB Benchmarks. Avail-
able from 〈https://www.hammerdb.com/index.html〉, (accessed
2021-01-18).

Shinji Fujiwara is a chief engineer of the IoT

& Cloud Services Business Division at Hitachi,

Ltd., and a working student of a doctorate

course at Tokyo Metropolitan University. He is

also a member of IPSJ, IEICE, DBSJ, IEEE,

and ACM.

Riro Senda is a senior engineer of the IoT &

Cloud Services Business Division at Hitachi,

Ltd. He has been engaged in developing of da-

tabase management systems.

Isamu Kaneko is a senior engineer of the IT

Platform Products Management Division at

Hitachi, Ltd. He is engaged in the development

of storage devices for server.

©  2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.30

Hiroshi Ishikawa is a distinguished leading

professor and an emeritus professor of Tokyo

Metropolitan University (TMU). He is also the

director of TMU Social Big Data Research

Center. His research interests include database,

data mining, and big data. He has published ac-

tively in international journals and conferences, such as ACM

TODS, IEEE TKDE, VLDB, IEEE ICDE, and ACM SIGSPA-

TIAL and MEDES. He has authored a dozen of books, which in-

clude books entitled How to Make Hypotheses (in Japanese,

Kyoritsu Shuppan, 2021) and Social Big Data Mining (CRC,

2015). He received Commendation for Science and Technology

by the Minister of Education, Culture, Sports, Science and Tech-

nology of Japan in 2021. He is fellows of IPSJ and IEICE and

members of ACM and IEEE.

Electronic Preprint for Journal of Information Processing　Vol.30

©  2022 Information Processing Society of Japan

