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 Abstract: Low-latency I/O devices are connected to the peripheral component interconnect express bus on a data-

base server. Most practical database systems are built as a high availability system to avoid a single point of failure. 

Therefore, we evaluated a high availability database system configured with servers using low-latency I/O devices. 

We have shown that the performance overhead of the high availability configuration using low-latency solid state 

drives is 12% compared to a single server configuration, in a primitive update test case. The result of a mixed- 

workload benchmark indicated that the database system configuration using low-latency I/O devices was up to 6.1 

times faster than the performance using traditional external storage when the allocated database buffer was 5% of the 

database size.
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1.　 Introduction

There are now low-latency I/O devices whose access time is 

on the order of 10 µs. These low-latency I/O devices affect the 

computer system architecture because current computer systems 

have been designed based on I/O devices whose access time is 

O(ms) [1].

I/O devices have evolved from a hard disk drive (HDD) to a 

solid-state drive (SSD) that uses NAND MLC flash memory, and 

the I/O access time has been reduced from O(ms) to O(100 µs). 

These technological innovations have improved the performance 

of the database system. Recently, a new type of low-latency SSD 

has become available that uses 3D XPointTM memory technolo-

gy or ZNAND technology. By using these technologies, the la-

tency of I/O devices has been reduced to O(10 µs) [2]-[4].

These I/O devices use the nonvolatile memory express 

(NVMe) interface, which is designed for flash memory (i.e., 

non-volatile memory) SSDs. NVMe devices are accessed via the 

peripheral component interconnect express (PCIe) bus, so they 

connect directly to a server via a PCIe slot or 2.5 inch U.2 drive 

bay [5].

Database systems are used in mission critical systems, and 

most database systems are designed as fault-tolerant configura-

tions. A typical configuration of a mission-critical database is a 

high-availability configuration (HA). This configuration consists 

of two database servers and an external shared storage system. If 

one database server fails during operation, the workload of the 

failed server is switched over to another database server. The ex-

ternal shared storage has its own fault-tolerant features, such as 

RAID systems, so that the system has no single-point-of- 

failure [6].

Most of the existing studies on NVMe SSD evaluate their pro-

posals by using a single database server, because NVMe SSD is 

connected to a server via PCIe bus [7]-[9]. Some researchers 

have proposed a data replication method for an NVM database 

system, but these studies focused on optimizing the data transfer 

volume by using the log shipping method [10], [11].

In this study, to ensure the redundancy of the database system, 

we proposed a simple architecture with data replication. We 

evaluated an HA database system that configured two servers 

with NVMe SSDs connected to the servers. In our configuration, 

each write I/O to the NVMe SSD was replicated simultaneously 

between the servers for redundancy. Therefore, the write I/O la-

tency is the sum of local write I/O latency and remote write I/O 

latency. Therefore, remote write I/O latency is a critical issue in 

our configuration. To implement remote write I/O with low la-

tency, we used the “NVMe over Fabrics” protocol. The NVMe 

over Fabrics protocol provides low-latency remote I/O by using 

RDMA over converged Ethernet [12]. The overhead of the 

NVMe over Fabrics protocol was reported to be 11.7 µs in [13]. 

In our hardware configuration using 100 GbE network adapters 

and a 100 GbE switch, the protocol overhead was 10–20 µs. The 
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remote write I/O latency is the total overhead of NVMe over 

fabrics and the write I/O latency at the remote server. In our 

hardware configuration, it was 20–30 µs. In this way, we config-

ured an HA database system to realize a low-latency remote I/O.

We evaluated the performance of high availability database 

systems using two benchmarks: a primitive workload benchmark 

and a TPC-C-based benchmark [14]. The primitive workload 

benchmark was designed to measure the basic database perfor-

mance, and it consisted of single-row select or update opera-

tions. The TPC-C-based benchmark, which is equivalent to 

HammerDB, measured the database performance of a typical 

online transaction system [15]. We refer to this TPC-C-based 

benchmark as the mixed workload benchmark in this study. The 

details of the benchmarks we use are described in Section 4.

Before evaluating these workloads, we estimated relative per-

formance based on I/O latency compared to a system whose data 

is cached in memory in Section 3. This indicates that it is effec-

tive to apply low-latency I/O devices with an access time of 

O(10 µs) to the application whose CPU time between I/O opera-

tions is O(100 µs).

To confirm this estimate, we evaluate a single-database system 

using mid-latency and low-latency SSDs with I/O latencies of 

O(100 µs) and O(10 µs), respectively. We also evaluate the per-

formance overhead of a high-availability configuration using a 

primitive workload. Finally, we evaluate three different 

high-availability database configurations using low-latency 

SSDs, mid-latency SSDs, and external storage.

After introducing related work in Section 2, we discuss the ef-

fective target of low-latency I/O devices based on the discussion 

in Section 3. In Section 4, we describe the system configurations 

and workloads, in Section 5 we show the performance evaluation 

results, and in Section 6, we conclude the paper.

2.　 Related Work

The advent of the NVMe SSD has had a significant impact on 

system architecture, especially for I/O-intensive software. Xu et 

al. [7] evaluated MySQL, Cassandra, and MongoDB using  

SATA-SSD and NVMe-SSD. Using a HammerDB as a bench-

mark, the performance of a single NVMe SSD configuration im-

proved by 3.5 times compared to a single SATA-SSD configura-

tion. Coburn et al. [8] proposed Editable Atomic Writes for 

logging that was optimized for NVMe SSDs. By implementing a 

transaction control logic in the SSD controller, a 3.7 times better 

performance was achieved. Renen et al. [9] proposed a 3-tier da-

tabase buffer management system consisting of DRAM, NVM, 

and SSD. To use NVM efficiently, they introduced a mini page 

that knows the cache line of the processors. These proposals are 

promising, but they are focused on improving the performance 

of a single database server. Moreover, they were evaluated with-

out the HA configuration.

Some studies proposed a data replication method for an NVM 

database system [10], [11]. However, these studies focused on 

optimizing data transfer by using log shipping because the net-

work cost is the major performance bottleneck of data replica-

tion.

To reduce the network latency for data replication, the NVMe 

over Fabrics protocol is a promising technology. Guz et al. [13] 

applied this protocol to the storage disaggregation method. They 

showed that there is no significant difference between local and 

remote storages when using NVMe over Fabrics protocol for 

storage disaggregation, but they did not apply it to data replica-

tion.

3.　 Effective Target Area of Low-latency I/O De-
vices

The NVMe interface was designed for SSDs with non-volatile 

memory and is standardized worldwide by NVM Express, Inc., 

which consists of dozens of industrial members. NVMe is suit-

able for low-latency, high-bandwidth I/O devices because it con-

nects directly to a PCIe bus. NAND MLC flash type SSDs 

(NAND SSD) have gradually supported the NVMe interface in 

addition to the traditional SAS/SATA interface. The typical la-

tency of NVMe NAND SSDs is O(100 µs), which is ten times 

faster than that of conventional HDDs.

In addition to NAND technology, there are new types of 

low-latency SSDs, such as 3D XPointTM Memory technology 

and ZNAND technology. With these technologies, the latency of 

I/O devices becomes O(10 µs).

Figure 1 shows a relative performance estimate by I/O latency 

compared to a system where all data is cached in memory. The 

horizontal axis indicates the average CPU time between I/O ac-

cess to data, and the vertical axis indicates the relative perfor-

Fig. 1　Relative performance estimation by I/O latency.
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mance compared to all data cached in memory. The relative per-

formance of memory access is estimated as follows:

(tcpu + tmem) / (tcpu + tio)

where tcpu is the CPU time between I/O access to data, tmem 

is the latency of memory access, and tio is the latency of I/O ac-

cess to data. We calculated the latency of memory access tmem 

as 0.1 µs. If the average CPU time between I/O accesses is 

100 µs and the average I/O latency is 100 µs, the relative perfor-

mance to memory access is estimated as follows:

(100 µs + 0.1 µs) / (100 µs + 100 µs) = 50%.

This estimation result indicates that the I/O overhead is still 

significant even if we use O(100 µs) latency SSDs, such as typi-

cal NAND NVMe SSDs. Alternatively, if we apply a 10 µs laten-

cy I/O device, the relative performance to memory access is esti-

mated as follows:

(100 µs + 0.1 µs) / (100 µs + 10 µs) = 91%.

This means that system performance can reach more than 

90% when using low-latency I/O devices if the average CPU 

time between I/Os is 100 µs. Consequently, using low-latency I/

O devices with an access time of O(10 µs) is effective for the ap-

plication when CPU time between I/O is O(100 µs).

Note that this estimate does not consider task switching to uti-

lize the CPU and I/O more efficiently. Therefore, the relative 

performance would improve in cases of I/O latency greater than 

100 µs. However, task switching for low-latency I/O devices is 

not effective because the task switching overhead is 20–30 µs, 

which is equal to or longer than I/O latency when access time is 

O(10 µs).

Based on the above estimation, we use the Intel® OptaneTM 

DC SSD as a low-latency I/O device with access times of 

O(10 µs) or NAND NVMe SSD as a mid-latency I/O device 

with access times of O(100 µs).

This estimate is the result of desk evaluation, and the evalua-

tion model is simplified to I/O latency and CPU time between 

accesses. It does not consider the overhead of exclusive process-

ing for database processing. In the exclusive processing of DB, it 

is common for the process that after trying to obtain a lock 

through a certain number of polls, it sleeps for a certain period 

of time if it cannot obtain the lock. The number of polls and the 

sleep time were tuned to match the characteristics of convention-

al I/O devices. For example, in the case of the database system 

used for evaluation, the sleep time was tuned as 1 ms based on I/

O devices with a latency of O(100 µs).

We tuned the parameters related to exclusive processing to 

O(10 µs) to match the characteristics of low-latency I/O devices.

4.　 High Availability Database System

4.1　 Server Configurations

Figure 2 describes the servers that were used for the perfor-

mance evaluation. The 1U server was used to evaluate the primi-

tive workload benchmark, and a 2U server was used to evaluate 

the mixed workload benchmark. The details of these workloads 

are described in Section 3.3. To evaluate the effect of low- 

latency I/O devices, we installed four low-latency and four 

mid-latency I/O devices on each server. For the HA configura-

tion, we used a 100 GbE network to connect the database servers 

as the total write throughput of the four NVMe SSDs is approxi-

mately 8 GB/s. To compare a conventional high availability da-

tabase system with external storage, we installed a host bus 

adaptor (HBA) in 2U servers. We installed Red Hat Enterprise 

Linux 7.4 and a commercial DBMS.

4.2　 System Configuration

Figure 3 shows the configuration of the system. A single 

server configuration used to evaluate the baseline performance 

of the database system using NVMe SSDs. In our evaluation, we 

cached all indexes in the database buffer, while we allocated a 

DB buffer of 1–100% for the tables. With a buffer size of 1%, al-

most all table accesses missed the DB buffer. In this configura-

tion, we evaluated both low-latency and mid-latency I/O devices 

to confirm the effect of low-latency I/O devices.

Figure 3 (b) and (c) show the HA configurations consisting of 

one active and one standby DB. Figure 3 (b) uses directly con-

Fig. 2　Server configurations.
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nected NVMe SSDs to store the data. All write data are synchro-

nously duplicated to the standby DB by using the NVMe over 

Fabrics protocol via 100 GbE network. Figure 3 (c) shows a con-

ventional HA configuration with external storage. In our evalua-

tion, we used RAID 5 storage configured with six SAS SSDs. 

Because data redundancy is ensured by the RAID storage sys-

tem, no data are duplicated in the database system.

4.3　 Benchmarks for Evaluation

(1)　 Primitive workload

Figure 4 shows the workload for evaluating primitive data-

base operations, that is, selecting and updating single-row trans-

actions. We created ten tables consisting of SID (integer), C1 

(integer), and Data1 (char(4096)). SID is the primary key of the 

table, and each table has a B-tree index of SID. The page size of 

the index and the table is 4 KiB and 24 KiB, respectively. Each 

table has 500 thousand rows, so the total number of rows for 10 

tables is 5 million. The physical sizes of the index and table were 

155 MiB and 24 GiB, respectively. In our experiments, we 

cached all the index data in the database buffer, while we cached 

1% (240 MiB) to 100% (24 GiB) of the table data in the data-

base buffer.

The workload generator consists of multiple tasks that execute 

multiple transactions simultaneously. We evaluated select opera-

tions and the update operations separately. For select operations, 

all workload tasks select a single row using a randomly generat-

ed primary key and then commit. For update operations, all 

workload tasks execute single row updates of the C1 column by 

using a randomly generated primary key and then perform a 

commit. The I/O access patterns for each transaction are as fol-

lows:

 ・  Select Transaction: A data page is read if the DB buffer 

misses. No log is written.

 ・  Update Transaction: In the case of a DB buffer miss, a dirty 

page is written back, and then a data page is read. Update 

logs are written during the commit.

(2)　 Mixed workloads

The mixed workload was designed based on the TPC-C 

Fig. 4　Primitive workload benchmark.Fig. 3　System configurations.
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benchmark. We changed the think time of the TPC-C benchmark 

to zero. Similar to the Hammer DB, which was designed based 

on the TPC-C benchmark, each task executes equivalent SQLs to 

the TPC-C benchmark, but each client task issues the next SQL 

without any interval time. Instead of using 1U servers with 

8-core CPUs, we used 2U-servers with 18-core CPUs, so we 

evaluated 30 client tasks. The number of warehouses we used 

was 800, totaling 400 million rows. We created B-tree indexes 

for each table on the primary key and some foreign keys. The 

physical size of the index and table was 9.6 GB and 74 GB, re-

spectively. We cached all index data in the database buffer, while 

we cached 5–100% (3.7–74 GB) of the table data in the database 

buffer.

4.4　 Test Cases for Evaluation

Table 1 presents the test cases for database performance eval-

uation. Case A evaluates a single database system using mid- 

latency and low-latency SSDs with I/O latencies of O(100 µs) 

and O(10 µs) respectively, to confirm the estimation described in 

Section 2. Case B evaluates the performance overhead of the 

high-availability configuration by comparing configurations #1 

and #3. For the evaluations of Case A and B, we used the primi-

tive workload.

Case C evaluates a more practical system and workload. We 

evaluated three different types of high-availability database con-

figurations using low-latency SSDs, mid-latency SSDs, and ex-

ternal storage. We executed a mixed workload based on the 

TPC-C benchmark.

5.　 Performance Evaluation Results

5.1　 Case A

Case A evaluates the effectiveness of low-latency I/O devices 

for a single-database configuration. Figure 5 shows the results 

of the SELECT and UPDATE transactions. The horizontal axis 

shows the relative DB buffer size compared to the table size, and 

the vertical axis shows the total throughput of the transaction.

In the case of a 100% buffer size, all data are cached in mem-

ory. Therefore, the throughput is almost the same for both 

low-latency and mid-latency SSD configurations. With a buffer 

size of 1%, 99% of the transactions miss the database buffer, and 

I/O access to the data occurs. For SELECT transactions, a data 

page is read from the I/O devices; and for UPDATE operations, 

a dirty page is written back and then a data page is read from the 

I/O devices, and update logs are written on commit.

The transaction throughput gradually decreases when the DB 

buffer size is decreased. Figure 5(a) shows the performance of 

SELECT transactions. The performance at 1% buffer size is 

90% compared to 100% buffer size for low-latency SSD, but for 

mid-latency SSDs, the performance at 1% buffer size decreases 

to 54% compared to the 100% buffer size case. Figure 5(b) 

shows the performance of UPDATE transactions. The perfor-

mance of the 1% buffer size is 78% compared to the 100% buf-

fer size for low-latency SSDs, but in the case of mid-latency 

SSDs, the performance decreases to 34% compared to the 100% 

buffer size case.

In the evaluation of case A, the SELECT performance of 

Fig. 5　Evaluation result of case A.

Table 1　Test cases for evaluation.
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low-latency SSDs was 1.7 times larger than that of mid-latency 

SSDs, and the UPDATE performance of low-latency SSDs was 

2.3 times larger.

This result confirms the relative performance estimation by I/

O latency in Section 2. Because the CPU time between I/O oper-

ations was 100–150 µs and I/O latency was 20–30 µs in the con-

figuration of low-latency SSDs, the relative performance was es-

timated as 80–90% (Fig. 1). The performance of the mid-latency 

SSDs also matched the estimate in Fig. 1.

5.2　 Case B

Case B evaluates the overhead of the HA configuration, that 

is, the overhead of synchronous data replication. As explained in 

Section 3.4, we evaluated a single configuration with low- 

latency SSDs, HA configuration with low-latency SSDs, and HA 

configuration with mid-latency SSDs. In the HA configuration, 

two servers are connected using a 100 Gb ethernet. We duplicate 

data and log by using NVMe over Fabrics (NVMe-oF) protocol, 

which uses the RDMA protocol that reduces the overhead of re-

mote data access. Both data and log are duplicated synchronous-

ly, so there is no data loss if the active server fails. Because the 

SELECT transaction does not perform any write access to I/O 

devices, there is no performance difference between the single 

configuration and the HA configuration. Therefore, we evaluated 

these configurations by using a single row update transaction, 

which is the same as the primitive workload.

Figure 6 shows the results for Case B. The vertical axis shows 

the transaction throughput, and the horizontal axis shows the rel-

ative DB buffer size. The performance of HA configurations in 

the case of 100% buffer size is 88% compared to a single config-

uration. Because there is access to data page access when the 

buffer size is 100%, the overhead of log duplication via NVMe-

oF is 12%. The performance of HA configurations using low- 

latency SSDs and mid-latency SSDs was almost the same be-

cause the same amount of log was duplicated via NVMe-oF.

With a buffer size of 1%, the performance of the HA configu-

ration using low-latency SSDs is 93% compared to the perfor-

mance of a single configuration. The relative performance ratio 

is higher than when the buffer size is 100%, because the data 

pages are read from the local SSDs and the overhead of data du-

plication becomes relatively small. The performance of the HA 

configuration using mid-latency SSDs decreases to 39% because 

it takes O(100 µs) to read a data page for updates. Consequently, 

the performance of the HA configuration using low-latency 

SSDs was 2.4 times higher than the HA configuration using 

mid-latency SSDs in the case of 1% buffer size. The HA config-

uration using low-latency SSDs was 70% compared to the per-

formance of the HA configuration with 100% buffer hits.

5.3　 Case C

Case C evaluates the HA configuration using a mixed work-

load based on the TPC-C benchmark. In this evaluation, we 

compared the HA configurations using low/mid-latency SSDs 

with a practical HA configuration using an external SAN storage 

for data storage.

Figure 7 shows the result of the evaluation of Case C. Be-

cause we used larger servers than Cases A and B, we executed 

30 transactions concurrently. Compared to the performance of 

the external storage configuration, the performance of the low- 

latency SSD configuration was 1.1 times faster at a buffer size of 

100%, and 6.1 times faster at a buffer size of 5%. The low- 

latency SSDs configuration was 71% faster than the performance 

of the external storage configuration with 100% buffer hit. Com-

pared to the mid-latency SSD configuration, it was 1.4 times 

faster for both 100% and 5% buffer size tests.

Because the Case C workload is based on the TPC-C bench-

mark, a single transaction updates multiple tables, and conse-

quently the size of the update logs becomes larger than the up-

date transactions of the primitive benchmark. This affects the 

performance of mid-latency SSDs, using NAND flash memory.

Figure 8 shows the traces of the mixed workload in the case 

of 100% buffer size. The horizontal axis indicates the elapsed 

Fig. 7　Evaluation result of case C.Fig. 6　Evaluation result of case B.
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time, and the vertical axis shows the individual transaction pro-

cesses. As we execute 30 transactions simultaneously, each 

graph includes 30 transaction processes. Figure 9 shows the no-

tations of the trace chart. In the graph, red indicate read I/O, and 

light-blue indicate write I/O. An update operation consists of a 

dirty buffer write and a buffer read for the update data. A commit 

operation consists of the waiting for of other log writes to com-

plete and a log buffer write.

Because the database buffer size is 100% of the data size, 

there are no data page read I/Os. Deep blue indicates the waiting 

completion of the log writes. As this database system uses a 

group commit mechanism, sometimes multiple processes wait 

for a log write to complete at the same time.

In configurations of low-latency SSDs and external storage 

cases, I/O was not a significant bottleneck. However, in the con-

figuration of mid-latency SSDs, the log writes indicated in light-

blue sometimes took several milliseconds, resulting in a long 

wait for the log write to complete, causing a performance bottle-

neck.

Figure 10 shows the traces of the mixed workload in the case 

of a 5% buffer size. In this 5% buffer size case, most data access 

missed the database buffer, and read I/O was performed fre-

quently.

Even though the read I/O was frequently issued, the trace of 

low-latency SSDs indicated that there was no significant bottle-

neck due to I/O, and most of the time was spent on database pro-

cessing in the CPUs. The trace of external storage shows that the 

read access to the data pages, which is shown in red, was a pri-

mary bottleneck. Therefore, most mission critical database sys-

tems that use external storage allocate a sufficiently large data-

base buffer to reduce I/O access to storage. The trace of 

mid-latency SSDs indicates that read access to data pages some-

times takes O(ms). Mid-latency SSDs need to periodically gather 

and erase updated data pages. This causes long I/O latency and 

affects the database performance.

5.4　 Cost Performance Analysis

According to the results of test cases B and C, the HA config-

uration using conventional NVMe SSDs or an external SAN 

storage is recommended to have the same size as the database 

buffer as data because the performance degrades rapidly if the 

buffer hit ratio is low. In contrast, the HA configuration using 

low-latency SSDs maintains 70% performance even in the case 

of a 5% buffer compared to the 100% buffer.

Table 2 lists the two server configurations. For these configu-

rations, we assume that the database size is 1.5 TB. Table 2 (a) 

shows an on-memory configuration with mid-latency SSDs and 

a full-size database buffer. Table 2(b) shows a low-latency SSD 

configuration with low-latency SSDs and a database buffer of 

5% size.

Figure 11 shows a relative comparison of the server costs for 

Fig. 8　Traces of mixed workload (100% buffer size).

Fig. 9　Notations of the trace chart.
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these two configurations. In the case of the on-memory configu-

ration, 77% of the total cost is spent as memory cost. In the 

low-latency SSD configuration expensive low-latency SSDs are 

used instead of mid-latency SSDs, but the total cost is reduced to 

51% compared to the on-memory configuration. Based on the 

results of test case B described in Section 5.2, the performance 

of the 5% buffer hit case for the configuration using low-latency 

SSDs was 70% compared to the 100% buffer hit case. Conse-

quently, the cost performance of the configuration using low- 

latency SSDs was 1.4 times better than that of the on-memory 

configuration.

6.　 Concluding Remarks

In this study, we studied the performance of high-availability 

database systems using low-latency I/O devices. Because low- 

latency I/O devices are connected to the PCI bus on a database 

server, we configured two database servers connected with a 100 

GbpE network, and we duplicated data using the NVMe over 

Fabrics protocol, which is suitable for NVMe SSD devices. We 

evaluated the single configuration and the HA configuration by 

changing the database buffer size from 1% to 100% of the data-

base size.

The results of the single database configurations showed that 

the configuration using low-latency I/O devices with 1% data-

base buffer size indicated 90% and 78% performance for select 

and update benchmarks, respectively, compared to the perfor-

mance of 100% buffer size configuration. This result confirms 

the relative performance assessment by I/O latency described in 

Section 2.

In the evaluation of the HA configuration, we showed that the 

performance of the HA configuration using low-latency SSDs 

and the NVMe over Fabrics protocol was 88% compared to a 

single configuration, in the case of a 100% update transaction 

workload in Case B. The HA configuration using low-latency 

SSDs was 70% compared to the performance of the HA configu-

ration with 100% buffer hit.

The result of the mixed workload benchmark in Case C indi-

cated that the database system configuration using low-latency I/

O devices was up to 6.1 times faster than the performance of the 

Fig. 11　Relative cost comparison of servers.

 Note that the price of each component may change, and this comparison re-

sult may change in the future.

Table 2　Server configurations for cost comparison.

Fig. 10　Traces of mixed workload (5% buffer size).
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configuration using conventional NVMe SSDs when the allocat-

ed database buffer was 5% of the database size. The configura-

tion using low-latency SSDs was 71% faster than the perfor-

mance of the external storage configuration with 100% buffer 

hit.

HA configuration using conventional NVMe SSDs or an ex-

ternal SAN storage, experienced a rapid drop in performance at 

a low buffer hit ratio. However, the HA configuration using 

low-latency SSDs maintained 70% performance even in the 5% 

buffer case compared to the 100% buffer case. We evaluated the 

cost performance in Section 5.4 and found that the cost perfor-

mance of the configuration using low-latency SSD was 1.4 times 

better than that of the on-memory configuration.

From the above results, we conclude that low-latency I/O de-

vices are promising devices for high-availability database sys-

tems.

References

[1]  Barroso, L., Marty, M., Patterson, D. and Ranganathan, P.: At-
tack of the Killer Microseconds, Comm. ACM, Vol.60, No.4, 
pp.48–54 (2017).

[2]  Webb, M.: Overview of Persistent Memory, Proc. of Flash 
Memory Summit 2018 (Pre-conference Seminars), Santa Clara, 
USA. Available from (2018). 〈https://www.flashmemorysummit. 
com/Proceedings2019/08-05-Monday/20190805_PreConfC_
Sainio.pdf〉, (accessed 2021-01-18).

[3]  Intel [Internet]. Santa Clara, USA: News Release; [cited 2015 
Jul 28]. Intel and Micron produce breakthrough memory tech-
nology; [about 2 screens]. Available from 〈https://newsroom.
in t e l . com/news- re l eases/ in t e l- and-mic ron-p roduce- 
breakthrough-memory-technology/〉, (accessed 2021-01-18).

[4]  Samsung [Internet]. Korea: Newsroom; c2010–2019 [cited 
2018 Jan 30]. Samsung Electronics Launches 800-Gigabyte 
Z-SSDTM for HPC Systems and AI Applications. Available 
from 〈https://news.samsung.com/global/samsung-electronics-
launches-800-gigabyte-z-ssd-for-hpc-systems-and-ai- 
applications〉, (accessed 2021-01-18).

[5]  NVM Express [Internet]. Beaverton, USA; c2007–2017 [cited 
2017 May 1]. NVM Express Revision 1.3. Available from 
〈http://nvmexpress.org/wp-content/uploads/NVM_Express_
Revision_1.3.pdf〉, (accessed 2021-01-18).

[6]  Drake, S., Hu, W., McInnis, D. M., Sköld, M., Srivastava, A., 
Thalmann, L., Tikkanen, M., Torbjørnsen, Ø. and Wolski, A.: 
Architecture of Highly Available Databases, Proc. of First In-
ternational Service Availability Symposium, Munich, Germany. 
Berlin: Springer (2015).

[7]  Xu, Q., Siyamwala, H., Ghosh, M., Suri, T., Awasthi, M., Guz, 
Z., Shayesteh, A. and Balakrishnan, V.: Performance analysis 
of NVMe SSDs and their implication on real world databases, 
Proc. of the 8th ACM International Systems and Storage Con-
ference, Haifa, Israel. New York: ACM (2015).

[8]  Coburn, J., Bunker, T., Schwarz, M., Gupta, R. and Swanson, 
S.: From ARIES to MARS: transaction support for next- 
generation, solid-state drives, Proc. of the 24th ACM Sympo-
sium on Operating Systems Principles, Pennsylvania, USA. 
New York: ACM (2013).

[9]  Renen, A., Leis, V., Kemper, A., Neumann, T., Hashida, T., Oe, 
K., Doi, Y., Harada, L. and Sato, M.: Managing Non-Volatile 

Memory in Database Systems, Proc. of the 2018 ACM SIG-
MOD International Conference on Management of Data, Hus-
ton, USA. New York: ACM (2018).

[10]  Arulraj, J. and Pavlo, A.: How to Build a Non-Volatile Memory 
Database Management System, Proc. of the 2017 ACM SIG-
MOD International Conference on Management of Data (tuto-
rial), Chicago, USA. New York: ACM (2017).

[11]  Zhang, Y., Yang, J., Memaripour, A. and Swanson, S.: Mojim: 
A Reliable and Highly Available Non-Volatile Memory Sys-
tem, Proc. of the 20th International Conference on Architectur-
al Support for Programming Languages and Operating Sys-
tems, Istanbul, Turkey. New York: ACM (2015).

[12]  NVM Express [Internet]. Beaverton, USA; c2007–2016 [cited 
2016 Jun 5]. NVM Express over Fabrics Revision 1.0. Avail-
able from 〈http://nvmexpress.org/wp-content/uploads/NVMe_
over_Fabrics_1_0_Gold_20160605-1.pdf〉.

[13]  Guz, Z., Li, H., Shayesteh, A. and Balakrishnan, V.: Perfor-
mance Characterization of NVMe-over-Fabrics Storage Disag-
gregation, ACM Trans. Storage, Vol.14, No.4, pp.Article 31 
(2018).

[14]  TPC [Internet]. San Francisco, USA; c2001–2019 [cited 2010 
Feb]. TPC BENCHMARKTM C Standard Specification Revi-
sion 5.11. Available from 〈http://www.tpc.org/tpc_documents_
current_versions/pdf/tpc-c_v5.11.0.pdf〉, (accessed 2021-01-
18).

[15]  HammerDB [Internet]. c2019. HammerDB Benchmarks. Avail-
able from 〈https://www.hammerdb.com/index.html〉, (accessed 
2021-01-18).

Shinji Fujiwara  is a chief engineer of the IoT 

& Cloud Services Business Division at Hitachi, 

Ltd., and a working student of a doctorate 

course at Tokyo Metropolitan University. He is 

also a member of IPSJ, IEICE, DBSJ, IEEE, 

and ACM.

Riro Senda  is a senior engineer of the IoT & 

Cloud Services Business Division at Hitachi, 

Ltd. He has been engaged in developing of da-

tabase management systems.

Isamu Kaneko  is a senior engineer of the IT 

Platform Products Management Division at  

Hitachi, Ltd. He is engaged in the development 

of storage devices for server.

©  2022 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing　Vol.30



Hiroshi Ishikawa  is a distinguished leading 

professor and an emeritus professor of Tokyo 

Metropolitan University (TMU). He is also the 

director of TMU Social Big Data Research 

Center. His research interests include database, 

data mining, and big data. He has published ac-

tively in international journals and conferences, such as ACM 

TODS, IEEE TKDE, VLDB, IEEE ICDE, and ACM SIGSPA-

TIAL and MEDES. He has authored a dozen of books, which in-

clude books entitled How to Make Hypotheses (in Japanese, 

Kyoritsu Shuppan, 2021) and Social Big Data Mining (CRC, 

2015). He received Commendation for Science and Technology 

by the Minister of Education, Culture, Sports, Science and Tech-

nology of Japan in 2021. He is fellows of IPSJ and IEICE and 

members of ACM and IEEE.

Electronic Preprint for Journal of Information Processing　Vol.30

©  2022 Information Processing Society of Japan


