V7 b7 I% 128-2
(2000. 7. 28)

HBERENHTIINITUXLAD BRI AT A!
AR
EBASTHEEH (BER)

=

EERESHS AT LEEPES AT LAO—FET, TOYMRECEOSTERRRy b7 —7REICK
FITBYAFATH D, HEREV AT L. FEOEEOZL TEROEREO —-REEICHA > 5
AFLTH B, MRS, —RESRENKET L EEROY 2T AREZ Fi/- 2REBE 20T BUE
By T REBCEETENETH 5. ‘

BORESHS ATFAEBEHT IR, TOEL SORFOREISBELRD. HBIATLD
ERBEICMA T, EEOYUHREN S EETRENOBEEORERLELENSTH %,

IORNTIE. HERESBY AFLARBAOSHEERRL . TOEHRIL AT LEL TOERLE
FEBETS, BETIREI AT AR, ELLBVWHBRESHS R T LICHL TRIEERRY b T7—
ZREIZEEL BWE S REFRAZE TRHF) U TRTRT 5. BOLOHCRESHS AT LIIHLT
EFEFREBEAL . TOEUEDORIEET o,

Mechanical Verification of 'Self-Stabilizing Distributed Systems
Hirotsugu Kakugawa

Faculty of Engieering, Hiroshima University

Abstract

Self-stabilizing distributed systems are a class of distributed systems which converge to correct system states even
if they start from arbitrary system states. A self-stabilizing system can recover from finite number of transient
faults (e.g., message loss, memory corruption). Therefore, they are fault-tolerant systems. When we design a
self-stabilizing system, its verification, such as convergence from arbitrary initial system state to a correct system
state, is a difficult task; typically, a proof is long, complex and error-prone.)

In this paper, we introduce a description language and its processor for self-stabilizing systems of arbitrary
network topology to verify mechanically, i.e., a verification system. For an incorrect self-stabilizing system, the
verification system outputs a counterexample which consists of an initial system state and an execution sequence
which does not converge. Some distributed self-stabilizing systems have been verified by our verification system
and their results are reported.)

VAR O8N XHEREHRRTENS REPIE A, BEES 11780229 OBHEZIF TS,

1 Introduction

A distributed system consists of a set of processes
and a set of communication links, each connecting a
pair of processes. A distributed system is said to be
self-stabilizing if it converges to a correct system state
no matter which system state it starts with[S, 17]. A
self-stabilizing system is considered to be a fault tol-
erant system, since it tolerates any kind and any fi-
nite number of transient failures. Consider transient
faults (e.g., message loss, memory corruption) occur
in a system, after which the system will be in an in-
correct system state. Starting from this system state,
self-stabilization property guarantees that the system
converges to a correct system state again.

Generally speaking, verification of self-stabilizing
system is not an easy task. The difficulty arises from
following reasons:

o for any initial system state, convergence to cor-
rect system state must be guaranteed, and

e for any execution scheduling, convergence to
correct system state must be guaranteed.

Many of self-stabilizing systems are proven by the
variant function method proposed in [14]. A variant
function, say f, is a function mapping from system
states to non-negative integers. A system is verified
by proving (1) a system state, say (2, is a correct state
if and only if £(Q) =0, (2) f(Q) > f(Q"), where Q
is an arbitrary incorrect system state and Q' is an arbi-
trary system state that follows @, and (3) for any exe-
cution scheduling, the value of f eventually decreases
if the system is not in a correct system state. To use
this method, we must find a variant function which
satisfies above conditions. Self-stabilizing algorithms
verified by this method are, for example, {13, 20].

A complex self-stabilizing system can be obtained
by composition of several self-stabilizing subsystems.
For example, composition of a spanning tree genera-
tion system on arbitrary network topology and a reset
system on a spanning tree yields a reset system on ar-
bitrary network topology[1]. Several methods to com-
pose self-stabilizing systems are proposed, for exam-
ple, in [6, 3]. But composed self-stabilizing subsys-
tems must be verified by another method such as the
variant function method.

Another verification method is reasoning on state
transition rules. In [2], Beauquier et. al proposes a
verification method based on rewriting system. State
transition rules are considered as a set of rewriting
rules. Although their method can be used to show
correctness of correct self-stabilizing systems, it can-
not be used to show incorrectness. In addition, net-
work topologies of target distributed systems are lim-
ited only to ring and linear networks.

In [16], Lakhnech and Siegel discuss a deductive
verification method of self-stabilizing systems based
on linear temporal logic. In [11], Hsu and Huang pro-
pose a verification method based on finite-state ma-
chine model. As a case-study, they show correctness
of a self-stabilizing maximal matching system [12], in
which they show its correctness based on the variant
function method.

By all methods above, we must interpret systems
and operate manually to verify. An opposit approach
is to describe a self-stabilizing system as a program
in a description language and simulate the system by
executing the program. To verify correctness of self-
stabilizing systems, following conditions are impor-
tant: (1) simulation should be started from each sys-
tem state, and (2) every possible execution scheduling
of processes should be considered.

In [18], Shukla et. al propose a method based
on this scheme, except condition (1). Their verifica-
tion system randomly selects an initial system state
and check arbitrary execution scheduling of processes.
Their verification system behaves as a preprocessor to
SPIN which is a model verification system for concur-
rent event systems [7, 8, 19].

In this paper, we introduce a mechanical veri-
fication system of self-stabilizing systems. We de-
fine a description language of self-stabilizing systems,
named SPR, and implement a language processor. Our
verification system is based on exhaustive search of
all possible system state transitions: for each (initial)
system state, check every possible system state tran-
sition, and check some correctness criteria. Our veri-
fication system checks if a given self-stabilizing sys-
tem is correct or not. If a given self-stabilizing sys-
tem is incorrect, the verification system outputs an ex-
ecution scheduling which causes an infinite loop (i.e.,
non-converging execution) as a counterexample.

Obviously, the number of possible system states
exponentially explodes when the number of processes
increases. Currently, we adopt SPIN as an underlay-
ing verification system, since it provides strong tech-
niques to save memory (state compression technique
[10]) and execution time (partial oder reduction tech-
nique [9]), for example.

This paper is organized as follows. In section 2,
we give a formal definition of self-stabilizing systems.
In section 3, we propose a description language for
our verification system. In section 4, we explain how
self-stabilizing systems are mechanically verified. In
section 5, we descrive experience of mechanical ver-
ification with our system. In section 6, we give con-
cluding remarks.

2 Self-Stabilizing Systems

In this section, we describe self-stabilizing systems
briefly. For details, please refer to [5, 17], for exam-
ple.

A distributed system S consists of a set of n pro-
cesses Py, Py, ..., P,—1. A process P; can refer to lo-
cal states of neighbor processes. Neighboring relation
is defined by a network topology of a given system.

An algorithm of a process, say P;, is described as
a set of guarded commands:

* [
g’i(ql’q‘i’qiaaqzk) i i .
o o o= e a)
— g = f3(gi, 61,45, -, qk)
]
where

e ¢; is a local state (a tuple of local variables) of
process P;,

e ¢} isalocal state of Py, which is a neighbor pro-
cess of P; (neighboring relation is determined
by network topology of a system),

e each gi(---) — g = f}(---) is called a
guarded command,

° gj- is a boolean function on local states of P; and
it’s neighbors, called a guard, and

e g; := fi(---) is called a command, which up-
dates next state of P; from local states of P; and
it’s neighbors.

The system is executed by repeating the following
steps forever:

1. Evaluate each guard of each process. A process
is privileged if and only if it has a guard evalu-
ated to true.

2. A scheduler, called the c-daemon, arbitrarily se-
lects one process, say P;, among privileged pro-
cesses.

3. Process F; executes a command whose associ-
ated guard is true.

A configuration of S is a tuple of local states of
all processes. Let I' be a set of all configurations. A
system S is self-stabilizing with respectto A C T if
and only if starting from any initial configuration, con-
figuration reaches a configuration in A regardless how
central daemon selects privileged process to execute.
A € A is called a legitimate configuration. A set of

legitimate configurations A must be closed, i.e., for
each A € A and each possible next configuration A’
(if any), A’ must be in A.

If there is no privileged process at each legitimate
configuration), then such a self-stabilizing system is
called silent.)

3 SPR: A Description Language

For mechanical verification, we define a description
language, named SPR, for self-stabilizing systems.
In this paper, we consider verification of silent self-
stabilizing systems. Our language SPR adopts Lisp-
like notation for its syntax. In SPR, integer is the only
data type for variables and expressions. For boolean
values, an integer zero is treated as boolean “false”,
and non-zero integers are treated as boolean “true”.
Each process is identified by a unique integer, called
id.

The motivation to define a new language is to
make high level description of self-stabilizing system
possible. When we write a verification program in
some existing programming languages, we must ex-
plicitly write a whole distributed system. This implies
that such a verification model is heavily dependent on
the number of processes and network topology. If we
want to verify another network size or another net-
work topology, we must re-write verification model
from scratch.

In SPR language, such network parameters are pa-
rameterized; it is possible to write guarded commands
which should not be modified for different network
size and network topology. For example, it provides a
predicate like “there exists a neighbor such that F is
true”, “for each neighbor, F is true”, and a construct
“let x be a neighbour process such that F is true at
z”, for example.

In SPR, we use following top level directives to
define a self-stabilizing system to be verified.

 The number of processes in a system:
(the-number-of-processesn)

e The minimum value of process id:
(process-id-base n)

This is an optional directive; default value is 1.

e Network topology:
(network-topology (Name) [{opt)])

Supported topologies (Name) are: linear,
binary-tree, tree (an optional parameter

defines the number of children), bidirectional-processes is prime. This algorithm can be written in

ring,unidirectional~ring, regular
(an optional parameter defines degree), chordal
(an optional parameter defines degree), and
complete.

Local variables of a process:

(process-state
((vary) (miny) (max;)
({varg) (mina) (max,)
)

)
)

By this directive, (var;} is declared as a local
variable of process and its range is (min;) ...
(max;) for each i = 1,2..... Since supported
data type is integer only, there is no declaration
of data type.

e A set of guarded commands of a process:

(algorithm (Process)
({Guardy) —> (Command,)
({Guards) -> (Commands))

. P)

(Processy — all | root | other |i

We can define different or the same set of
guarded commands for each process. By key-
word all, all process have the same guarded
commands. By keyword root, guarded com-
mands of the root process (root is a process with
minimum process id) is defined. Process can
be selected by explicitly giving process id. By
keyword other, a set of guarded commands is
defined for processes which is not defined yet.

Legitimate state:
(legitimate-state (Expr))

(Expr) is an expression on local variables of
processes. It evaluates to true if and only if a
configuration is legitimate.

A self-stabilizing leader election algorithm pro-
posed by Huang [13] is shown in Figure 3. It as-
sumes bidirectional ring network and the number of
processes is prime. This algorithm can be written in
our SPR language. In Figure 4, his SPR version of his
algorithm is shown (the number of processes is 7). For
verifying networks of different sizes, only the number
of processes should be modified.

Syntaxes for (Guard) and (Expr) are shown in
Figure 1, and syntax for (Command) in Figure 2.

A self-stabilizing leader election algorithm pro-
posed by Huang [13] is shown in Figure 3. It as-
sumes bidirectional ring network and the number of

our SPR language, for the case of the number of pro-
cesses is 7, as shown in Figure 4. For verifying net-
works of different sizes, only the number of process
should be modified. Figure 5 shows an SPR version of
Sur and Srimani’s 2-coloring algorithm for bipartite
network topology[20].

4 Verification Method

In this section, we explain how we can verify silent
self-stabilizing systems.

Suppose that a description of a silent self-stabilizing
system S is given. Let n be the number of processes
of S, and let P; be a process of S. For simplicity of
explanation, we assume processes are numbered from
Oton — 1. Let vi, vé, .., v, be local variables of pro-
cess F;, and R; be a range of v} (A range of v;- is the
same for each .) Let gj- be the j-th guard of process
i, and let L be a predicate on configurations which
evaluates to true if and only if a given configuration is
legitimate.

Let G be a logical-OR of all guards of all pro-
cesses, i.e, G = V,;9% By G(v), we denote that
if there exists a g} for some 7 and j such that gj is true
at configuration . In other words, G(vy) is true if and
only if there exists a privileged process.

Now we discuss our verification scheme in terms
of n, P;, v}, R, g%, G, and L. A set of all configura-
tions I'g of S is defined as follows:

{09, 00,01, vk, WP oY
| Vi, 5[v; € Rj)}

I's =

A self-stabilizing system S is verified by the fol-
lowing algorithm:

var Visit : subset of I's;

Verify(S) {
Visit .= 0;
/* start from each configuration */
foreachy € I's
Traverse(y, €},
/% S is verified */

}

Traverse(y, path) {
if (y € Visir)
return;
if (v appears in path)
abort; /* infinite loop exists */
Visit = Visit U {v};
if (G {
if (L{7))
abort; /* legitimate but non-stable */
for each ~' reachable by single step from v
Traverse(y', path - v');
} else {
if (=L(v))
abort; /* stable but non-legitimate */

(Guard) — {Expr)
(Expr) — .
(not (Expr)) | (and (Expri) ...) | (or (Expri) ..) | (= (Expr1) (Expra))
| (< (Expr1) (Expra)) | (<={(Expry) (Expra)) | (> (Expr1) (Expra))
| (>= (Expri) (Expra)) | (+ (Expri)..) | (= (Expri) ..) | (* (Expri)..)
| (/ (Expry) (Expra)) | (modulo (Expri) (Expra))
| (modulo-n-processes (Expr)) — (Expr) modulo the number of processes.
| (cond-expr (Expri) (Expra) (Exprs))
— Conditional expression. (Expr) if (Expri) is true; otherwise, (Expra)
| (state-ref (var)) — Reference to local variable (var).
| (state-ref (var) (Expr)) — Reference to local variable (var) of process (Expr).
| (root) -— Process id of the root.
| (me) — Process id of itself.
| (right-process) | (Left-process) — Process id of right/left process. Ring networks only.
| (itself) — Process id that satisfys a condition, used inside of for-each-process,
for-each-neighbor, etc.
| (neighbor? (Expr)) — True if and only if (Expr) is a neighbor’s process id.
| (the-neighbor) — Neighbor’s process id that satisfys a condition, used inside of let-neighbor
in (Command) part. See (Command).
| (exists-process (Expr)) | (exists-neighbor (Expr))
— True if and only if there exists a (neighbor) process such that (Expr) is true.
| (for-each-process (Expr)) | (for-each-neighbor (Expr))
— True if and only if (Expr) is true at each (neighbor) process.
| (the-number-of-neighbors (Expr)) | (the-number-of-processes (Expr))
* — The number of (neighbor) processes such that (Expr) is true.
| (neighbor-with~max-id (Expr)) | (neighbor-with-min-id (Expr))
— Maximum (minimum) process id among neighbor processes such that (Expr) is true.
| (neighbor-with-max-value (Expr)) | (neighbor-with-min-value (Expr))
— Process id such that (Expr) is maximum (minimum) among neighbor processes.
| (max-value-among-neighbors (Expr)) | (min-value-among-neighbors (Expr))
— Maximum (minimum) of (Expr) among neighbor processes. :
| (sum-for-each-neighbor {Expr)) | (product-for-each-neighbor (Expr))
— Sum (product) of (Expr) for each neighbor process.

Figure 1: Syntax for (Guard) and (Expr)

(Command) —>

(begin (Command+) (Commands) ...)
— Sequential execution of (Commandy) ...

| (state-set! (variable) (Expr))

~ —- Update value of local variable (variable) to (Expr).

| (Let-neighbor (Expr) {Command;) (Commands) ...)
— Let the value of (the-neighbor) be process id of a neighbor
such that (Expr) is true and execute (Command,) ...

| (skip)
— Empty statement. Do nothing.

Figure 2: Syntax for (Command)

}
}

By Traverse(wy, path), every configuration reach-
able from initial configuration + is checked. To avoid
checking a visited configuration more than once, a
variable Visited is used to hold visited configurations.
A variable path contains an execution history staring
from an initial configuration. This is used to check
a non-converging execution. A given self-stabilizing
S is correct if and only if the following conditions
never hold for every configuration « reachable from
arbitrary configuration. (recall that we are discussing
silent self-stabilizing systems.) ‘

e G(v) AL(7)
This implies that there exists a process which

has a true guard but « is legitimate; S is not
silent.

* ~G(y) A=L(7)
This implies that no process can make a move
at a non-legitimate configuration «. That is, S
does not reach a legitimate configuration.

e 7 is in an execution path from an initial config-

uration
Suppose 7o be an initial configuration and an
execution path is yg -y -+ -+ Vn, Where Vily; &

A], ¥i41 is a next configuration of -y; by single
step of move, and 7y,, = 7. This is a counterex-
ample of a non-converging execution.

We implemented a verification system of self-
stabilizing system written in SPR language. Current
implementation adopts SPIN for underlaying system,
and our verification system consists of the following
two components:

1. A SPR Compiler — We implemented a com-
piler, which generates a PROMELA code that
implements an verification algorithm discussed
above. It is written in a programming language
SCHEME, a dialect of LISP. Our SPR compiler
behaves as a preprocessor to SPIN.

2. A Model Checker SPIN — SPIN is a verifier for
concurrent systems[7, 8, 19] and it adopts a lan-
guage called PROMELA to model a system to be
verified.

5 Verification Examples

We executed our verification system on a following
plathome:

¢ Operating System: FreeBSD 3.2

¢ Hardware: IBM PC compatible computer with
dual Pentium III 450Mhz and 1G byte of main
memory

e Software: SCM scheme interpreter version 5d0,
SPIN version 3.3.3, EGCS C compiler version
2.91.66

Verification process consists of following two
phases:

o Checking of assertion (GA L) V (=G A =L) is
violated or not, and

o Checking of infinite loops

We used our verification system to verify the self-
stabilizing leader election algorithm for unidirectional
ring network by Huang [13]. (See Figure 3 and 4.)
His algorithm assumes that the number of processes
is prime. (It is known that there exists no determin-
istic algorithm which solves the leader election prob-
lem if the ring network size is composite.) Verifica-
tion results for n = 5,6,...,9 are shown in Table 1.
The table shows consumed amount of memory and
execution time to verify. For the cases of n = 5,7,
which are prime numbers, the verification system ver-
ified each systems. On the other hand, for the cases of
n = 6,8,9, which are composite numbers, the veri-
fication system stops and outputs an initial configura-
tion and a non-converging execution scheduling.

We also used our system to verify the self-
stabilizing coloring algorithm for bipartite graph net-
work by Sur et. al [20], and the self-stabilizing max-
imal matching algorithm for arbitrary network topol-
ogy by Hsu et. al {12].

6 Conclusion

In this paper, we introduced a language SPR to
model self-stabilizing distributed systems for mechan-
ical verification. We developed a compiler from SPR
to PROMELA which is an input language of SPIN sys-
tem. We mechanically verified several self-stabilizing
systems for some network sizes.

Our SPR language makes us possible to model
self-stabilizing systems almost the same as original
description (a set of guarded commands parameter-
ized by the number of processes and network topol-
ogy). This means that our system makes the verifica-
tion process much easier.

Currently, our language processor does not im-
plement a verification algorithm for non-silent self-
stabilizing systems, such as mutual exclusion system.
Implementation of verification systems for such sys-
tems is left as a future task. Current definition of SPR
does not have arrays. Future tasks include extending
the language and the language processor to handle ar-
rays.

Table 1: Verification Results of the Leader Election Algorithm [13]

Processes | Check of (GA L)V (=G A-L) | Check of non-convergence
n Memory (Mb) Time (Sec) Memory (Mb) | Time (Sec)
5 02 0.4 0.2 1.2
6 67.8 03 68.1 0.6
7 3278 265.3 - 6583 733.7
8 89.7 19.6 116.3 83.4
9 312.1 535.9 601.2 1340.7
References [11] Su-Chu Hsu and Shing-Tsaan Huang. Analyz-

[1] Anish Arora and Mohamed G. Gouda. Dis-
tributed reset. I[EEE Transactions on Computers,
43:1026-1038, 1994.

[2] J. Beauquier, B. Berard, and L. Fribourg. A
new rewrite method for proving convergence of
self-stabilizing systems. In 13th International
Symposium on Distributed Computing (DISC),
LNCS:1693, pages 240-253. Springer-Verlag,
1999.

[3] J. Beauquier, M. Gradinariu, and C. Johnen.
Randomized self-stabilizing optimal leader elec-
tion under arbitrary scheduler on rings. Techni-
cal Report 1225, LRI, 1999.

[4] Ajoy K. Datta, Maria Grandinariu, and Sébastien
Tixeuil. Self-stabilizing mutual exclusion using
unfiar distributed schedular. Technical Report
1227, LRI, 1999.

(s

—

E. W. Dijkstra. Self-stabilizing systems in spite
of distributed control. Communications of the
ACM, 17(11):643-644, November 1974,

[6] S. Dolev, A. Israeli, and S. Moran. Self sta-
bilization of dynamic systems assuming only
read/write atomicity. In Proceedings of the 9th
ACM Symposium on Principles of Distributed

Computing, pages 103-117. ACM, 1990.

—

¥

—

Gerard J. Holzmann. Design and Validation of
Computer Protocols. Prentice Hall, 1991.

[8] Gerard J. Holzmann. The model checker SPIN.
IEEE Transactions on Software Engineering,
23(5):279-295, May 1997.

[9]1 Gerard J. Holzmann and D. Peled. An improve-
ment in formal verification. In FORTE, 1994.

[10] Gerard J. Holzmann and Anuj Puri. A min-
imized automaton representation of reachable
states. International Journal on Software Tools
for Technology Transfer, 2(3):270-278, 1999.

ing self-stabilization with finite-state machine
model. In Proceedings of International Confer-
ence of Distributed Computing Systems, pages
624-631, 1992.

{12] Su-Chu Hsu and Shing-Tsaan Huang. A self-
stabilizing algorithm for maximal matching. In-
formation Processing Letters, 43:77-81, 1992.

{13] Shing-Tsaan Huang. Leader election in uniform
rings. ACM Transactions on Programming Lan-
guages and Systems, 15(3):563-573, July 1993.

{14] 1. L. W. Kessels. An exercise in proving self-
stabilization with a variant function. Informa-
tion Processing Letters, 29(1):39-42, September
1988.

[15] S. S. Kulkarni, J. Rushby, and N. Shankar. A
case-stydy in component-based mechanical ver-
ification of fault-tolerant programs. In Proceed-
ings of the Second Workshop on Self-Stabilizing
Systems (WSS99), 1999.

[16] Y. Lakhnech and M. Siegel. Deductive verifi-
cation of stabilizing systems. In Proceedings of
the Second Workshop on Self-Stabilizing Systems
(WSS597), pages 201-216, 1997.

[17] M. Schneider. Self-stabilization. ACM Comput-
ing Surveys, 25(1):45-67, March 1993.

[18] Sandeep K. Shukla, Daniel J. Rosenkrantz, and
S. S. Ravi. Simulation and validation tool for
self-stabilizing protocols. In SPIN Workshop,
1996.

[19] The web page of SPIN. http://netlib.
bell-labs.com/netlib/spin/
whatispin.html.

{20] Sumit Sur and Pradip K. Srimani. A
self-stabilizing algorithm for coloring bipartite
graphs. Information Sciences, 69:219-227,
1993.

Processes: Py, P,,P,
Local variables of P;: b; € {0,1,...,(n - 1)}
Macro: g(z,y) =n, ifz=y

=y —z(modn), otherwise.

Rule I: (g(bim1,b:) = g(bs, biy1)) A (g(bs, big1) = n)

~—b; =b;+1modn

Rule 2: (g(bi—lybi) < g(bz, bi+1))

N LS W

O NMA N

—-»bi=b1»+1modn

Figure 3: A Self-Stabilizing Leader Election Algorithm [13]

(the-number-of-processes 7)

(process-id-base 0)

(network-topology bidirectional-ring)

(process-state '(label 0 (- (the-number-of-processes) 1))}

(algorithm - all
;7 Rule 1
((and (= (state-ref label) (state-ref label (left-process)})
(= (state-ref label) (state-ref label (right-process})))
-> (state-set! label (modulo-n-processes (+ (state-ref label) 1))))
;+ Rule 2
((< {cond-expr (= (state-ref label (left-process)) (state-ref label))
(the-number-of-processes)
(modulo-n-processes
(- (state-ref label) (state-ref label (left-process)))))
(cond-expr (= (state-ref label) (state-ref label (right-process)))
(the-number-of-processes)
{modulo-n-processes
(- (state-ref label (right-process)) (state-ref label)))))
-> (state-set! label (modulo-n-processes (+ (state-ref label) 1)))))

(legitimate~state
(and (for-each-process
(= (modulo-n-processes
(- (state-ref label) (state-ref label (left-process))))
(modulo-n-processes
(- (state-ref label (right-process)) (state-ref label)))))
(= (the-number-of-processes (= (state-ref label) 0)) 1)))

Figure 4: A Self-Stabilizing Leader Election Algorithm [13] in SPR

(the-number-of-processes 7)

(process-id-base 1)

(network-topology bipartite 2)

(process-state (level 0 (the-number-of-processes)))

(algorithm root
({!= (state-ref level) 0)
-> (state-set! level 0)))

(algorithm other
((and (!= (state-ref level (neighbor-with-min-value (state-ref level)))
(= (nprocs) 1))
(!= (state-ref level)
(+ (state-ref level (neighbor-with-min-value (state-ref level)))
1)))
-> (state-set! level
(+ (state-ref level (neighbor-with-min-value (state-ref level)))

1)))

(legitimate-state
(and (= (state-ref level (root)) 0)
(for-each-non-root-process
(= (state-ref level)
(+ (state-ref level (neighbor-with-min-value (state-ref level)))
13))))

Figure 5: A Self-Stabilizing Coloring Algorithm [20] in SPR

