WEKO3
アイテム
リカレントニューラルネットワークによる無拘束肺音分類手法の提案
https://ipsj.ixsq.nii.ac.jp/records/214992
https://ipsj.ixsq.nii.ac.jp/records/21499281b27cda-15e2-4b04-a016-1a623401b824
名前 / ファイル | ライセンス | アクション |
---|---|---|
![]() |
Copyright (c) 2021 by the Information Processing Society of Japan
|
Item type | National Convention(1) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
公開日 | 2021-03-04 | |||||||||||||||
タイトル | ||||||||||||||||
タイトル | リカレントニューラルネットワークによる無拘束肺音分類手法の提案 | |||||||||||||||
言語 | ||||||||||||||||
言語 | jpn | |||||||||||||||
キーワード | ||||||||||||||||
主題Scheme | Other | |||||||||||||||
主題 | 人工知能と認知科学 | |||||||||||||||
資源タイプ | ||||||||||||||||
資源タイプ識別子 | http://purl.org/coar/resource_type/c_5794 | |||||||||||||||
資源タイプ | conference paper | |||||||||||||||
著者所属 | ||||||||||||||||
青学大 | ||||||||||||||||
著者所属 | ||||||||||||||||
青学大 | ||||||||||||||||
著者所属 | ||||||||||||||||
青学大 | ||||||||||||||||
著者所属 | ||||||||||||||||
国際基督教大 | ||||||||||||||||
著者所属 | ||||||||||||||||
青学大 | ||||||||||||||||
著者名 |
JIAHUI, SHAO
× JIAHUI, SHAO
× 西尾, 啓汰
× 浜田, 百合
× 鏑木, 崇史
× 栗原, 陽介
|
|||||||||||||||
論文抄録 | ||||||||||||||||
内容記述タイプ | Other | |||||||||||||||
内容記述 | 肺がんや新型コロナウィルスなどの肺疾患においては、在宅環境で日々の肺音をモニタリングし異常を自動的に検出できると早期発見、早期治療につながる。しかし、肺音は聴診器により診察する必要があるため、在宅環境で日々使用することは難しい。そこで、本研究では高感度圧力センサを用いて就寝中のヒトの肺音を無拘束で計測し、異常音の特性に基づき肺音の種類を分類する手法を提案する。計測した肺音にたいしリカレントニューラルネットワークを適用することで肺音の種類を分類する。検証実験では肺音シミュレーターを用いて、x種類の肺音をベッド上で発生させ圧力センサで計測し、隠れマルコフモデルを適用した場合と分類の精度を比較する。 | |||||||||||||||
書誌レコードID | ||||||||||||||||
収録物識別子タイプ | NCID | |||||||||||||||
収録物識別子 | AN00349328 | |||||||||||||||
書誌情報 |
第83回全国大会講演論文集 巻 2021, 号 1, p. 383-384, 発行日 2021-03-04 |
|||||||||||||||
出版者 | ||||||||||||||||
言語 | ja | |||||||||||||||
出版者 | 情報処理学会 |