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i. Introduction 

Normal reinforcement learning (RL) without an 

appropriate reward system takes longer for learning. Then, 

setting midpoint rewards (sub-rewards) in RL is 

challenging, but can accelerate RL. A way to settle these 

2 problems concurrently is introduced in this paper. Trial 

data is made use of to set extrinsic rewards, allowing 

decreases in learning cost and time. Changing the reward 

system can restrict the agent from an exploration of 

solution spaces [1]. Hence the way to minimise such 

restrictions is also explained. This new approach on RL is 

called “Active reward system.” Physical experiments were 

impractical; hence they were simulated with Python 

programming. As a RL algorithm, Q-learning was used for 

this research. 

 

ii. Problem setting 

The one-dimensional RL problem "Curling" is set to 

validate the Active reward system. The game's objective 

is to stop the stone at the designated range where 𝑥 =
6.0~8.0. Initial conditions for launching a stone are for 

𝑥 = 0.0 at 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 5.0 (Fig. 1). At every timestep, the 

agent selects a backwards force from differing options of 

magnitude to exert on the stone to reduce its velocity. The 

agent’s action is updated by Q learning (Eq.1).  

𝑄(𝑠𝑡, 𝑎𝑡) ← 𝑄(𝑠𝑡, 𝑎𝑡) + 𝛼 [𝑅𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎

𝑄(𝑠𝑡, 𝑎) − 𝑄(𝑠𝑡, 𝑎𝑡)] (1) 

The original reward is set as shown in Fig 2. The states 

(𝑥, 𝑣) are discretised and each cell is given an individual 

reward. This is called a reward table. The rewards -1.0 or 

+1.0 on the 2nd column and the lowest row are the original 

rewards and are determined by just the game’s rule and 

not from any prior knowledge or experiments. 

 
Figure 1 Schematic of "Curling" 

 
Figure 2 Original reward table 

iii. Active reward system procedure and theory 

The Active reward system is how to produce and update 

the sub-reward in cells which are originally set to 0.0 in 

Fig. 2. The process of Q learning with implementation of 

Active reward system is separated into 3 phases over 

numerous trials, as illustrated in Fig. 3. 

 
Figure 3 The Procedure of the RL using active reward system 

In addition to the original reward, sub-reward is 

implemented. Though the original reward is kept constant, 

the sub-reward is constantly updated as the trial progresses.  

 

How to update sub-reward 

All trials’ trajectories are stored and the expected value for 

each state on the trajectory is calculated based on how 

much reward was obtained for each trial. The expected 

values become sub-rewards 𝐴(𝑠) for individual states, and 

the relationship is given as follows. 

𝐴(𝑠) = 𝐸 [∑ 𝑅(𝑠𝑡)] (2) 

 

How to update discounted sub-rewards 

Implementing a discount rate (𝛾𝐸)  for each discretised 

state decreases the sub-reward of states further from the 

state which obtains the final reward (Eq.3) (Fig.4). It is 

updated in similar fashion to the state value function. Eq. 

3 shows how the discounted sub-reward is calculated. 

𝐴𝛾(𝑠) = 𝐸 [∑ 𝛾𝐸
    𝑒−𝑡𝑅(𝑠𝑡)

𝑡=𝑒

𝑡=1

] (3) 

 
Figure 4 Schematic how 𝐴𝛾 is updated 

After the training phase, the sum of the original reward 

table and sub-reward table(𝐴) gives the total reward table 

(𝑅) . The sub-reward accelerates Q learning and can 

narrow the exploration space and change the Q table’s 

characteristics compared to Q learning with only the 

original reward. To minimise these repercussions, the sub-

reward is shrunk by reducing hyperparameter τ(1 → 0) 

which happens in the convergence phase (Eq.4). In this 

paper, τ decreases linearly with respect to the number of 

x\v 0.0-0.05 0.05-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0 1.00

0.0-1.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.80

1.0-2.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.60

2.0-3.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.40

3.0-4.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.20

4.0-5.0 -1.0 0.0 0.0 0.0 0.0 0.0 0.00

5.0-6.0 -1.0 0.0 0.0 0.0 0.0 0.0 -0.20

6.0-7.0 1.0 0.0 0.0 0.0 0.0 0.0 -0.40

7.0-8.0 1.0 0.0 0.0 0.0 0.0 0.0 -0.60

8.0-9.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -0.80

-1.00
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trials in the convergence phase. The number of distributed 

trials in the convergence phase affects the final test 

phase’s accuracy. For instance, if the number of trials in 

the convergence phase is too small, then 𝜏  decreases 

sharply. As such, the reward table changes abruptly, and 

Q-learning cannot adjust in response. 
𝑅𝑡+1 = 𝑅𝑡 + 𝜏𝐴𝑡 (4)

An analogy for the sub-reward table is like training wheels 

for a bike that accelerates a child’s learning (Q learning). 

However, when the child (agent) keeps using them 

continuously, he or she cannot learn the appropriate way 

to ride a bike. Therefore, decreasing the sub-reward 

transfers to the original Q learning can allow the reward 

system to respond to any situation. Even in the 

convergence and test phases, the trial data is constantly 

being used to update the sub-reward. 

iv. Result 

The simulation of Active reward system was performed 

using the Eq. 2 on this paper. From results of the success 

rate and the total reward table ran by actual code 

implementing “Active reward system”, some 

characteristics of this Q learning were identified. In 

between 0 to 500 trials, training was performed followed 

by 150 trials’ convergence phase. The reason why the 

system requires approximately 150 trials for convergence 

is because as the reward table changes, the Q table needs 

to adjust accordingly. The normal RL data was performed 

for comparison. Though normal RL showed a gradual 

increase of the success rate, Active reward RL gives better 

improvement and accuracy, as shown in Figure 5. 

 
Figure 5 Average success rate for every 50 trials 

Fig. 6 shows an updated reward table after 500 trials. The 

difference between Figs. 2 and 6 are the updated sub-

rewards. Then, the final converged graph reward table is 

shown in Fig. 7, which has a tiny sub-reward in 

comparison and is almost identical to the original reward 

table (Fig. 2). 

 
Figure 6 Total reward table after 500 trials. 

 
Figure 7 Total reward table at 650 trials (1-500 training, 501-

650 convergence) 

v. Discussion 

This “Active reward system” Q learning is related to data 

driven offline RL which uses reward sketches [2]. It asks 

human experts to provide reward models for subsets of the 

huge offline dataset. From the professional reward model, 

appropriate reward models are made and applied to all 

datasets and the training progresses. As it requires human 

involvement, this might restrict other solutions, or it is 

difficult to apply this approach to problems unsolvable for 

humans. In contrast, our approach requires only the 

original reward setting, which is the final aim of the game 

or problem. Moreover, our approach does not discourage 

other solutions since the sub-reward is used just for 

acceleration of RL and not as a permanent reward.  

 

vi. Conclusion 

This paper proposes the new “Active reward system” to be 

updated by trials’ data for RL. This approach was 

validated on a simple one-dimensional problem. As it can 

enhance RL with less restrictions for the exploration space, 

it can contribute to solve a problem when resources are 

finite. The limitation of this system is that in addition to 

discount rate and learning rate for Q-learning, it has more 

hyperparameters such as τ. As these hyperparameters alter 

the characteristics of the system, determining appropriate 

hyperparameters for each specific problem will be an extra 

cost. Exactly how these hyperparameters can affect Q-

learning can be ground for future work. The prospect of 

more effective methods to find sub-rewards or 

improvements to advance RL based on this research is 

certainly possible.  
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x\v 0.0-0.05 0.05-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0

0.0-1.0 -1.0 0.000 0.000 0.000 0.000 0.455

1.0-2.0 -1.0 0.000 0.000 0.000 0.478 0.372

2.0-3.0 -1.0 0.000 0.000 0.000 0.451 0.090

3.0-4.0 -1.0 0.000 -0.299 -0.149 0.668 0.381

4.0-5.0 -1.0 -0.584 -0.181 0.595 0.991 -1.000

5.0-6.0 -1.0 -0.435 0.659 0.987 0.450 -1.000

6.0-7.0 1.0 1.000 1.000 0.868 -0.911 -1.000

7.0-8.0 1.0 0.986 0.660 -0.953 -1.000 -1.000

8.0-9.0 -1.00 -1.00 -1.00 -1.00 -1.00 -1.00

x\v 0.0-0.05 0.05-1.0 1.0-2.0 2.0-3.0 3.0-4.0 4.0-5.0

0.0-1.0 -1.0 0.000 0.000 0.000 0.000 0.045

1.0-2.0 -1.0 0.000 0.000 0.000 0.019 0.044

2.0-3.0 -1.0 0.000 0.000 0.000 0.039 0.044

3.0-4.0 -1.0 0.000 -0.014 -0.011 0.045 0.010

4.0-5.0 -1.0 -0.026 -0.012 0.039 0.045 -0.046

5.0-6.0 -1.0 -0.021 0.040 0.045 0.021 -0.046

6.0-7.0 1.0 0.046 0.046 0.039 -0.042 -0.046

7.0-8.0 1.0 0.045 0.030 -0.044 -0.046 -0.046

8.0-9.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
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