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1 Introduction

The goal of this research is to create a Neural
Network model capable of generating music without
any user input.
The generated music should be “meaningful”, that is
to say, it should sound like it has a purpose. This is
similar to how a human composer would write music.
Throughout the years, many attempts have been
made at creating music procedurally. However, very
few of those attempts were concerned with the actual
“meaning” of the music that was generated.
This idea of “meaning” makes a composition tell a
story or express feelings. This is the reason humans
write music, as well as create other forms of arts. As
the goal of artificial creativity is to approach human
creativity as close as possible, Artificial Intelligence
should try to imitate humans as close as possible.
Therefore, it is important for a music generating AI
to understand “meaning” in music.

2 Approach to composition

To define “meaning” in music, it is first necessary
to identify its key components. In modern western
music, those components are melody, harmony, and
rhythm [1].
It appears as evident that the most important musical
component in giving a musical piece its identity and
its “meaning” is the melody, as the other components
revolve around it.
Therefore, it becomes necessary to understand what
makes a melody. As we have already defined, a
melody consists of motifs, which are short successions
of notes. Those motifs can have variations, which for
the purpose of this research can be defined as small
changes to those motifs (either in pitch or in rhythm).
By using motifs and variations, a melody can be given
purpose. It can tell a story, and is therefore given
meaning.
In order to approach composition procedurally, it is
necessary to separate the composition process into
several sub-processes.
For the purpose of this research, this can be
summarized into two elements: melody generation
and harmony generation.
Melody generation should be done using a randomly
generated seed, which means that no initial input is
required. It should also be set to a fixed number of
measures, so that it can be repeated, and used for the
harmony generation.
The harmony generation process should generate
a chord progression that effectively supports a
generated melody, using that melody as input data.
It now becomes necessary to determine what kind of
music should be used as training data for the Artificial
Intelligence. Since the most important feature is
meaning, it should be music that uses motifs in the
most effective way possible.
Such use of motifs is usually found in video game
music, or movie scores. This is due to the necessity
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in such genres to represent ideas, characters, or
locations. By using motifs to compose a meaningful
melody, a composer can represent the story of a video
game or a movie as music.
It is also necessary to have harmony (in the form of a
chord progression) that supports the melody, to give
it context, which helps in telling that story.
Therefore, the training data should consist of such
genres of music, and have both melody and harmony.
Furthermore, it should be possible to separate the
melody and the harmony to train two separate AI
models, one specializing in melody generation, and
the other in harmony generation.

3 Method

To represent the music data, intervals relative to
the key of the musical piece were chosen, instead of
absolute pitch representation. This is akin to movable
do solfège, where each degree in the musical scale is
expressed as a different syllable (i.e. Do, Di, Ra, Re,
etc.).

Figure 1. Kinds of music data representation.

For the actual melody and harmony generating
models implemented in this research, bidirectional
LSTMs are used, as they are able to access a more
global context [2] when training, which is necessary
when composing music since a given note depends on
the notes both preceding and following it.
Due to the small amount of training data available,
an algorithm that extracts the outline of melodies has
been implemented. It is used to extract the outlines of
the melodies used for training the melody generator.
The extracted outlines are used as additional training
data.
The following figure shows the topology for the
melody generating model.

Figure 2. Topology of the melody generator.
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Each interval is converted into an ASCII character
based on its value. The first character outside the
ASCII range, ’Ā’, is used to represent the time (one
character corresponding to a 64th note triplet).
This is done for each “interpretation” of the melody.
Each melody is thus converted and added to the
training set, with a special character, ’ā’ (the second
unicode character outside the ASCII range), being
used as a delimiter between the melodies. The
melodies are then split into sequences of 50 characters
overlapping each other, and converted into one-hot
vectors.
The network is then trained for 15 epochs.
For generation, the input data consists of a seed
randomly sampled from the distribution of the
training data. A separate LSTM model is specifically
trained to this end. This input is processed by a
bidirectional LSTM layer consisting of 128 units.
The output is a prediction of the next character.
The prediction process is repeated iteratively for the
desired length of the melody to be generated. The
activation function for the output layer is softmax.
To study the relationship between melody and
harmony, which is necessary to implement the
harmony generator, a simple GRU-based classifier was
implemented to label chord symbols to snippets of
melodies.
The training data for that GRU consists of melody
snippets labeled with chord symbols.

Figure 3. Example of a melody snippet over a chord
represented as a sequence.

The input data consists of those sequences of notes,
vectorized as sequences of a maximum length of 50
words. The vocabulary size of the vectorizer is 250
words.
This input is processed by a GRU layer consisting of
128 units. In this case, a GRU layer was used due to
getting better results than with an LSTM layer, which
is due to the relatively small size of the training data
[3] (around 45,000 samples).
The output is a prediction of the chord symbol
corresponding to the input melody snippet. There
are 47 chord labels. The activation function for the
output layer is softmax.
Once the relationship between melody and harmony
had been studied, and promising results obtained, the
harmony generator could be implemented.
As there is more training data as well as more
chord labels than with the previously used dataset, a
bidirectional LSTM layer with 128 units is used this
time. Otherwise, the principle is exactly the same.
A chord symbol, which includes the chord root and
the chord quality, is predicted for a given melody
snippet.
Given a generated melody as input, a pre-processing
algorithm divides that melody into snippets of around
the same length: four quarter notes. Those snippets
are then used as the inputs for the harmony generator,
and a chord is predicted for each one, then added on
top.

4 Evaluation of output

To evaluate the quality of the output of the
melody generator, subjective evaluation is necessary.
This would include both musically trained and non
musically trained listeners.
For the GRU-based classifier, a validation accuracy
of around 78% was reached for a training accuracy of
around 83% after training for 50 epochs.
Even though this suggests overfitting, 78% is still
more than acceptable for predicting something as
arbitrary as a chord based on the melody it
corresponds to.
Those results show promise for the harmony
generator.
Unlike the GRU-based chord classifier, the harmony
generator (bidirectional LSTM) does not converge
during training (the accuracy remains at around
30%).
However, this is most likely due to there being a lot of
chord that are similar in feeling, but have a different
chord name.
Chords such as C and CMaj7 are virtually the same
since the latter contains all the notes of the former.
It should therefore be possible to change the target
labels into chord families (e.g. the C family using
the two previous examples) during training, instead
of individual chords.
However, this has not been done as satisfactory results
were still obtained during testing.

5 Current progress and future work

Currently, both melody and harmony generation
have been implemented. The obtained results are
good enough given the small amount of training data.
The currently implemented model has no notion of
tempo, and generates melodies of a fixed length (16
measures, assuming a tempo of 120bpm and a time
signature of 4/4).
The separate LSTM for melody seed sampling is
currently being tuned. Since poor results were
obtained when training solely on the beginning of
melodies, the model will be trained on the entirety
of the melodies. The next step in this research will
be to implement the notion of tempo. Work has
already begun in that regard. This involves the
implementation of an additional neural model that
predicts tempo for a melody.
Furthermore, it will be necessary to obtain more
training data, possibly through other forms of data
augmentation, or through finding a suitable dataset.
Finally, once more data has been obtained, proper
evaluation of the final output will be done, likely in
the form of a survey.
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