
Query language designed for processing JSON data in a complex
event processing engine

Tao Wenlong† Satoru Fujita‡

Graduate School of Computer and Information Sciences, Hosei University†

Computer and Information Sciences, Hosei University‡

ABSTRACT
In recent years, with the popularity of the Internet and

the high-speed flow of various information, dealing

with this kind of streaming data has become a

meaningful topic. Besides, this kind of research on

complex event processing (CEP) can be applied to

many fields, such as finance, cloud computing, and

education. We designed a system that can be used to

analyze JSON data from the stock market, with the

help of container technologies. This paper presents the

design of the query language, which can be used to

query data from streams. In addition, our language has

query, union, decouple, and other complex operations,

which contains most of the operations in a CEP

system.

Keywords
streaming data, CEP, JSON, query language

1. INTRODUCTION
For any CEP system, the design of the query

language is an important part, and it is also important

for users to learn and use the query language easily in

the system.

In this paper, we describe the design of an

efficient query language based on JSON data. First,

we present a CEP system architecture and details of its

components. Then, we show the syntax details of the

query language and the data structure we used, and

then, we give some examples to show how this query

language is working.

2. SYSTEM DESIGN
The basic architecture of our system is shown in

Figure1. It contains data resources, stream queue, user

query, condition tree, query engine, and output

stream[1]. These components are described in more

detail below.

Data Resources: This system can get data from

different resources, such as databases, the internet,

inputting by users through their computers, and so on.

For testing, we used stock data from the database.

Figure1: The architecture of CEP system

Stream Queue: When data recourses send their data

to the system, it creates priority queues to store data

temporarily, and resend them to query engines.

User Query: Users need to present their query

(similar to SQL) into the system before data come.

Condition Tree: When our system gets the query

input by a user, the system compiles the query into a

condition tree[2] used in the query engine later.

Query Engine: After the query is compiled, the

system activates a query engine, which continuously

check if data from stream queues are satisfied with the

conditions in the query.

Output Stream: While the engine is running, it

generates the data that users need into a new data

stream, and stores it into a new queue.

3. LANGUAGE DESIGN
3.1 Data Model

We first describe the data model which is the

base for the language. Our target data are stock data

from the stock market, so we assume that it contains

price, volume, and timestamp. In addition, data

structure that we choose is JSON, because of its

easiness to use, and it looks like the following:

{ "time":"2020/9/15/13:50",
 "price":"25.5",

"volume":"256568" }

Query language designed for processing JSON data in a
complex event processing engine
†Tao Wenlong, Graduate School of CIS, Hosei University
‡Satoru Fujita, CIS, Hosei University

Copyright 2021 Information Processing Society of Japan.
All Rights Reserved.1-347

4L-01

情報処理学会第83回全国大会

3.2 Query Operation
The basic grammar of the query operation is

constructed as follows:

select < attributes >

from < input streams >

to < output stream >

where < conditions >

window <window condition>

The grammar of the query operation is similar to

SQL. For example, the select statement consists of a

part specifying attributes for output data and some

clauses. The from clause is used to get input stream

names and the to clause is to define the output stream

name. The where clause represents conditions, which

need to be satisfied with, in the input data, and it is

transformed into condition trees in query engines, and

the window clause is an optional constraint to the

lifespan of data [3][4].

Example1:
select AAPL.price as new-price

 from AAPL
 to AAPL-PRICE
 where AAPL.price > 20 and AAPL.volume >19000;

This sample query checks data from the AAPL

stream, and gets an attribute called “price” from the

input stream. Moreover, it renames “price” to “new-

price”. It also defines that “AAPL-PRICE” as the

name of our output stream. This query only gets

results when these two conditions are satisfied: price

data > 20, and volume data > 19000.

Example2:
select AAPL[1].price as new-price

from AAPL
to AAPL-PRICE
where AAPL[1].price > AAPL[2].price
window size 5;

This example is similar to the example1, but it

specifies a window size as 5. AAPL[1] determines the

first data within the window. Similarly, AAPL[2]

determines the second one.

3.3 Union Operation

union < stream expression >

to < output stream >

The union statement contains more than two

input streams to be combined and the to clause used to

define the name of the output stream. Furthermore, in
the stream expression, we can use new streams created

by the Query Operation that we mentioned before. In

this situation, it will become a complex query.

Example3:
union AAPL and IBM
to AAPL-IBM;

This union operation creates a new stream called

AAPL-IBM as a result of combining AAPL and IBM

streams.

3.4 Decouple Operation

decouple < stream expression >

to < output stream prefix>

by < decouple key >

The decouple statement divides an input stream

to several output streams defined by the to clause

according to a keyword defined by the by clause. The

names of output streams are the specified prefix with

colon and values corresponding to the keyword.

Example4:
decouple STOCK
to company
by STOCK.name;

This operation decouples a stream called

“STOCK” to new streams according to the name

attribute of the data. For example. If there are two

kinds of name attributes in the data, “AAPL” and

“IBM”. Then we will get two output streams, like

“company: AAPL” and “company: IBM”. Each of the

output streams only contains data whose name

attribute is “AAPL” or “IBM” respectively.

4. CONCLUSION
We successfully designed an efficient query

language for a CEP system, and explained the details

of it. We are also designing and developing a query

engine for the CEP system, but have not completed yet.

There are many optimization points in the engine to

increase the operating speed of the system and

additional functions required for the query language.

REFERENCES
[1] Krishnamurthy, S., Chandrasekaran, S., Cooper, O.,

Deshpande, A., Franklin, M. J., Hellerstein, J. M., ... &
Shah, M. A. (2003). TelegraphCQ: An architectural status
report. IEEE Data Eng. Bull., 26(1), 11-18.

[2] Liu, Hongying, Satoshi Goto, and Junhuai Li. "The study
and application of tree-based RFID complex event
detection algorithm." Proceedings. The 2009 International
Symposium on Web Information Systems and Applications
(WISA 2009). Academy Publisher, 2009.

[3] Gyllstrom, D., Wu, E., Chae, H. J., Diao, Y., Stahlberg, P.,
& Anderson, G. (2006). SASE: Complex event processing
over streams. arXiv preprint cs/0612128.

[4] Demers, Alan J., et al. "Cayuga: A General Purpose Event
Monitoring System." Cidr. Vol. 7. 2007.

Copyright 2021 Information Processing Society of Japan.
All Rights Reserved.1-348

情報処理学会第83回全国大会

