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Abstract

In this paper, we propose an approach to slhicing
aspect-oriented software.  To solve this problem, we
present a dependence-based representation called aspect-
oriented system dependence graph (ASDG), which ez-
tends previous dependence. graphs, to represent aspect-
oriented software. The ASDG of an aspect-oriented pro-
gram. consists of three parts: (1) a system dependence
graph for non-aspect code, (2) a group of aspect depen-
dence graphs for aspect code, and (8) some additional
dependence arcs used to connect the system dependence
graph to the aspect dependence graphs. After that, we
show how to compute a static slice of an aspect-oriented
program based on the ASDG.

1 Introduction
1.1 Program Slicing

Program slicing, originally introduced by Weiser [17},
is a decomposition technique which extracts program e
ements related to a particular computation from a pro-
gram. A program shce counsists of those parts of a pro-
gram that may directly or indirectly affect the values
computed at some program point of interest, referred
to as a slicing criterion. The task to compute program
slices is called program slicing.

Program slicing has been studied primarily in the
context of procedural programming languages {15]. In
such languages, slicing is typically performed by using
a control flow graph or a dependence graph [10, 14].
Program slicing has many applications in software engi-
neering activities including program understanding [7],
debugging [1], testing [3]. maintenance [9], reuse {13],
reverse engineering [4], and complexity measurement
[14]. Recently program slicing has been also applied
to object-oriented software to handle various object-
oriented features [6, 12, 16, 19].

1.2 Aspect-Oriented Programming with
AspectJ

Aspect-orienited programming has been proposed as
a technique for improving separation of concerns in soft-
ware design and implementation [11]. Aspect-oriented
programming works by providing explicit mechanisms
for capturing the structure of crosscutting concerns in
software systems.

Aspect] [2] is a seamless aspect-oriented extension to
Java. It can be used to cleanly modularize the cross-
cutting structure of concerns such as exception han-
dling, synchronization, performance optimizations, and
resource sharing, that are usually difficult to express
cleanly in source code using existing programming tech-
niques. Aspect] can control such code tangling and
make the underlying concerns more apparent, making
programs easier to develop and maintain.

Aspect] adds some new concepts and associated con-
structs to Java. These concepts and associated con-
structs are called join points, pointcuts, advice, and as-
pect. The join point is essential element in the design

of any aspect-oriented programming language since join

points are the common frame of reference that defines
the structure of crosscutting concerns. The join point
in Aspect] are well-defined points in the execution of a
program. In Aspect], there are nine types of join points,
that is, method call, constructor call, method ezecution,
constructor execution, object initialization, class initial-
1zation, field reference, field assignment, and handler
execution. Aduvice is a method-like mechanism used to
define certain code that is executed when a pointcut is
reached. There are three types of advice, that is, before,
after, and around. In addition, there are also two special
cases of after advice, after returning and after throwing,
corresponding to the two ways a sub-computation can
return through a join point. Aspects are modular units
of crosscutting implementation. Aspects are defined by
aspect declarations, which have a similar form of class
declarations. Aspect declarations may include pointcut
declarations, advice declarations, as well as other dec-
larations such as method declarations, that are permit-
ted in class declarations. An Aspect]J program is com-
posed of two parts: (1) non-aspect code part which in-
cludes some classes, interfeces, and other language con-
structs as in Java, (2) aspect code part which includes
aspects for modeling crosscutting concerns in the pro-
gram. Moreover, any implementation of Aspect] is to
ensure that aspect and non-aspect code run together in
a properly coordination fashion. Such a process is called
aspect weaving and involves making sure that applicable
advice runs at the appropriate join points. For detailed
information about Aspect], one can refer to [2]. In this
paper, we will use Aspect] (version 1.0b) as our target
language to show the basic idea of our slicing approach.

Ezample. Figure 1 shows a sample AspectJ program
taken from [2]. The program associates shadow points
with every Point object, and contains a Point class, a
Shadow class, and a PointShadowProtocol aspect that
stores a shadow object in every Point.

1.3 Why Slicing Aspect-Oriented Software
?

Aspect-oriented programming languages present
unique opportunities and problems for program analysis
schemes such as program slicing. For example, to per-
form slicing on aspect-oriented software, specific aspect-
oriented features such as joint point, pointcut, advice,
and aspect, that are different from existing procedu-
ral or object-oriented programming languages, must be
handled appropriately. Moreover, although these spe-
cific features. provide the great. strengths for aspect-
oriented languages to model the crosscutting concerns
in an aspect-oriented program, they also introduce dif-
ficulties to program analysis tasks. :

However, we found that although a number of ap-
proaches have been proposed for slicing procedural or
object-oriented software, there is no, until recently, slic-
ing algorithmn for aspect-oriented software, and due to
the specific aspect-oriented features, existing slicing al-



ced public class Point (
sl protected int x, yi

me2  public Point(int _x, int _y) (
53 x = X
s4 y = _¥i

b
mes5 public int getX({} {
s6 return Xx;
)
me7  public int getY() (
58 return y;
i
me9  public void setX{int _x) (
510 x = _X;
}
mell public void setY(int _y) {
sl2 Y = _Yi
}
mell public void printPositiom(} {
s14 System.out.println(*Point At{"+x+", “+y+"}");
}
mel5 ~ public static veid main(String(] args) (

s16 Point p = new Point(l,1);
517 p.setX(2);
518 p.sety(2);

)

celd class Shadow {
s20 public static final int offset = 10;
s21  public int'x, y:

me22 = Shadow(int x, int y) (
823 this.x = x;
s24 this.y = y:
me25  public void printPosition() (
s26 System.outprintln("Shadow at
(axam mayat)h) g

ase2?7 aspect PointShadowProtocol {

ae48  afrer(Point p): settingY(Point p) (

s28  private int shadowCount = 0;
me29  public static int getShadewCount() {
s30 return PointShodowProtocol.
aspectOf () . shadowCount;
)
s31  private Shadow Point.shadow:
me32 public static void associate(Point p, Shadow s){
533 p.shadow = s;
¥
mel34 public static Shadow getShadow(Point pi {
835 return p.shadow;
}
pelé pointcut setting(int x, int y, Point p}:
args(x,y) && call(Point.new(int,int)};
pe3? pointcut settingX(Point p): target(p) &&
call{void Point.setX(int));
pe38  pointcut settingY(Point p): target({p) &&
call(void Point.setY{int)};
ae39 after{int x, int y) returning(Point p):
setting(Point p) {

540 Shadow s = new Shadow(x,y};
s41 associate{p,s);
s42 shadowCount++;

}
ae43 after (Point p}: settingX(Point p} {

s44 Shadow s = new getShadow(p);
845 s.x = p.getX() + Shadow.offset;
546 p.printPosition(};

s47 s.printPosition(};

i

s49 Sahdow s = getShadow(p); .
s50 s.y = p.get¥{} + Shadow.offset;
551 p.printPosition(};

552 s.printPosition(};

Figure 1: A sample Aspect] program.

gorithms for procedural or object-oriented software can
not be applied to aspect-oriented software straightfor-
wardly.

1.4 Our Approach to Slicing Aspect-
Oriented Software :

In this paper, we present a slicing approach for
aspect-oriented software. To solve this problem, we de-
velop a dependence-based representation called aspect-
oriented system dependence graph, that extends pre-
vious dependence graphs, to represent aspect-oriented
“software. The aspect-oriented system dependence graph
consists of three parts: (1) a system dependence graph
for non-aspect code, (2) a group of aspect dependence
graphs for aspect code, and (3) some additional de-
pendence arcs used to connect the system dependence
graph to the aspect dependence graphs. After that, we
show how to compute a static slice of an aspect-oriented
program based on the aspect-oriented system depen-
dence graph. Our main contribution in this paper is a
new dependence-based representation, namely, aspect-
oriented system dependence graph for aspect-oriented
software on which static slices of aspect-oriented soft-
ware can be computed efliciently.

The rest of the paper is organized as follows. Section
2 presents the aspect-oriented system dependence graph
for aspect-oriented software. Section 3 shows how to
compute static slices based on the graph. Concluding
remarks are given in Section 4.

2 The Aspect-Oriented System Depen-
dence Graph

Aspect-oriented programming languages differ from
procedural or object-oriented programming languages
in many ways. Some of these differences, for example,
are the concepts of joint points, advice, aspects, and
their associated constructs. These aspect-oriented fea-
tures may impact on the development of dependence-
based representation for aspect-oriented software, and
therefore should be handled appropriately.

In this section we present the aspect-oriented system
dependence graph (ASDG) to represent aspect-oriented
software. An ASDG of an aspect-oriented program con-
sists of three parts: (1) a system dependence graph
(SDG) for non-aspect code, (2) a group of aspect depen-
dence graphs for aspect code, and (3) some additional
dependence arcs used to connect the system dependence
graph to the aspect dependence graphs.

The construction of the ASDG of an aspect-oriented
program consists of four phases:

(1) Constructing the SDG for non-aspect code of the
program, by using existing techniques for object-
oriented software.

(2) Counstructing the aspect dependence graphs for as-
pect code of the program.

(3) Determining weaving-points in non-aspect code
and inserting weaving-vertices into the SDG.
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Figure 2: (a) A CDG for class Point, (b) A CDG for class Shadow, and (c) A SDG for non-aspect code of the

program in Figure 1.

(4) Weaving the SDG and the ADGs at weaving ver-
tices to form the ASDG by adding some special
kinds of dependence arcs between the SDG and
each of the advice dependence graphs.

In the rest of this section, we give our construction
algorithm in more detail.

2.1 Representing Non-Aspect Code

The first part of our algorithm is to construct the
SDG for non-aspect code of an aspect-oriented program.
Since the non-aspect code of an AspectJ program is sim-
ilar to a Java program, in this paper, we use the Java
system dependence graph (JSDG) [18] originally devel-
oped for Java software, to represent the non-aspect code
of an AspectJ program.

The JSDG is an extension of the system. dependence
graph (Larsen-Harrold SDG)[12] proposed for represent-
ing object-oriented software such as C4++, to the case
of Java software. However, it differs from the Larsen-
Harrold SDG in that in addition to common object-
oriented features such as classes and objects, class in-
heritance, polymorphism, and dynamic binding, it can
also represent some specific features in Java such as in-
terface and package. Therefore, we can use the JSDG

to represent non-aspect code of an Aspect] %rogram.
For the rest of the paper, we use the terms “SDG” and
“JSDG” interchangeably.

The SDG for the non-aspect code is a collection of
method dependence graphs each representing a main()
method, or a method 1n a class of the program, and some
additional arcs to represent direct program dependen-
cies between a call and the called method and transitive
interprocedural data dependencies.

First, we use the method dependence graph proposed
in [18] to represent a method of a class. The method
dependence graph is an arc-classified digraph whose ver-
tices are connected by several types of dependence arcs.
The vertices of the method dependence graph represent
statements or control predicates of conditional branch
statements in the method. There is an unique vertex
called method start verter to represent the entry of the
method. In order to model parameter passing between
methods, a method dependence graph also includes for-
mal parameter vertices and actual parameter vertices.
At the method entry there is a formal-in vertez for each
formal parameter of the method and a formal-out vertez,
for each formal parameter that may be modified by the
method. At each call site there is an actual-in vertex



for each actual parameter at call site and an actual-out
vertex for each actual parameter that may be modified
by the called method. In addition, at each call site
of the method, a call verter is created for connecting
the called method. The arcs of the method dependence
graph represent two types of dependence relationships.
Le., control dependence, and data dependence. There is
a control dependence arc hetween two vertices u and v
if u is control dependent on v, and there is a data de-
pendence arc between two vertices v and v if u is data
dependent on v. In addition, each formal parameter
is control dependent on the method start vertex, and

each actual parameter is control dependent on the call

statement.

Second, we use the class dependence graph (CDG)
proposed in [12, 18] to represent a single class in the
non-aspect code. The CDG of a class is an arc-classified
digraph which consists of a collection of method depen-
dence graphs each representing a single method in the
class, and some additional vertices and arcs to model pa-
rameter passing between different methods in the class.
There is an unique class start vertez for the class to rep-
resent the entry of the class, and the class start vertexis
connected to the method start vertex of each method in
the class by class-membership arcs. If a method invokes
another method in the class, the method dependence
graphs of two methods are connected at call site. In
such a case, a call arc is added between a call vertex of
a method and the method start vertex of the method
dependence graph of the called method, and parameter
arcs are added to connect actual-in and formal-in ver-
tices, and formal-out and actual-out vertices to model
parameter passing between the methods in the class.
Moreover, similar to [10], we use summary arcs to rep-
resent the transitive flow of dependencies in the CDG.
Transitive flow of dependence occurs between an actual-
in vertex and an actual-out vertex if the value associ-
ated with the actual-in vertex affects the value associ-
ated with the actual-out vertex. The transitive flow of
dependence can be caused by data dependence, control
dependence, or both. A summary arc models the tran-
sitive flow of dependence across a procedure call.

In addition to the things mentioned above, the CDG
for a class can also represent the effects of return state-
ments. A return statement leads to a method to re-
turn a value to its caller. In a CDG, a vertex for each
return statement is connected to its corresponding call
vertex by a parameter-out arc. Moreover, if a actual-
in parameter may affect the returned value, we add a
summary arc between the actual-in vertex and the call
vertex. This kind of summary arcs facilitate interproce-
dural slicing.

Finally, the construction of the SDG for the non-
aspect code can be performed by connecting calls in the
partial SDG to methods in the CDG for each class. It
contains connecting call vertices to the method start
vertices to form call arcs, actual-in vertices to formal-
in vertices to form parameter-in arcs, and formal-out
vertices to actual-out vertices to form parameter-out
arcs. Summary arcs for methods are added in a previ-
ously analyzed class between the actual-in and actual-
out vertices at call sites. Moreover, to create the
SDG, the method dependence graph for the main()
method is connected with other methods in classes of
the non-aspect code at call sites. A call arc is added
between a method call vertex and the method start
vertex of the method dependence graph of the called
method. Actual-in and formal-in vertices are connected
by parameter-in arcs, and formal-out and actual-out
vertices are connected by parameter-out arcs.

Ezample.  Figure 2 (a) shows the CDG for class
Point, and Figure 2 (b) shows the CDG for class Shadow
of the program in Figure 1. Figure 2 (¢) shows the SDG
for non-aspect code of the program in Figure 1.

2.2 Representing Aspect Code

The second part of our algorithm is to construct the
ADG for aspect code in an aspect-oriented program.
An aspect in Aspect] is a modular unit of crosscutting
implementation. Its definition is very similar to a class
in Java. and can contain methods, fields, and initial-
izers. Implementation of crosscutting concerns can be
done by using pointcuts and advice, and ouly aspect
may include advice, making Aspect] be able to define
crosscutting effects. The declaration of those effects is
localized. In general, each aspect is composed of an
association with other program elements that may in-
clude ordinary variable, methods, pointcuts, introduc-
tions, and advice, where advice may be before, after,
and around. In this subsection, we first describe how to
construct the advice dependence graph for advice and
the introduction dependence graph for an introduction.
We then show how to construct the aspect dependence
graph for an aspect that may consists of advice, intro-
ductions, pointcuts, and methods. Finally, we show how
to represent interactions among aspects and classes.

The Advice Dependence Graph

Advice in Aspect] is a method-like mechanism used to
define certain code that is'executed when a pointcut is
reached. We use advice dependence graph to represent
advice in an aspect. The advice dependence graph is an
arc-classified digraph such that its vertices represent a
statement or a control predicate of a conditional branch
statement in the advice, and its arcs represent control or
data dependence relationships between these statements
as in a method dependence graph. There is an unique
vertex called advice start vertez to represent the entry
of the advice.

To model parameter passing, we create a formal-in
or formal-out vertex at each advice start vertex (i.e.,
there is a formal-in vertex for each formal parameter
of the advice and there is a formal-out vertex for each
formal parameter that may be modified by the advice),
and an actual-in or actual-out vertex at each call site
in the advice (i.e., there is an actual-in vertex for each
actual parameter of the advice, and an actual-out vertex
for each actual parameter that may be modified by the
advice). We also create a call vertex at each call site
of the advice. Moreover, each actual parameter vertex
is control dependent on the call vertex of the advice,
and each formal parameter vertex is control dependent
on the advice start vertex. Finally, we treat instance
variables at the advice entry and call sites in the advice
as parameters. Therefore, we should also create actual-
in, actual-out, formal-in, formal-out vertices for these
variables.

The Introduction Dependence Graph

In Aspect], an introduction can add whole new ele-
ments (i.e., fields, methods, or constructors) in the given
types (i.e., classes). We use an introduction depen-
dence graphs to represent an introduction in an aspect.
The introduction dependence graph is an arc-classified
digraph such that its vertices represent a statement or
a control predicate of a conditional branch statement in
the introduction, and its arcs.represent control or data
dependence relationships between these statements as
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Figure 3: An ADG for aspect PointShadowProtocol of the program in Figure 1.

in a method dependence graph. There is an unique ver-
tex called iniroduction start vertex to represent the en-
try of the introduction. To model parameter passing.
we create a formal-in or formal-out vertex at each in-
troduction start vertex (i.e.. there is a formal-in vertex
for each formal parameter of the introduction and there
is a formal-out vertex for each formal parameter that
may be modified by the introduction), and an actual-in
or actual-out vertex at each call site in the introduc-
tion (i.e., there is an actual-in vertex for each actual
parameter of the introduction, and an actual-out ver-
tex for each actual parameter that may be modified by
the introduction). We also create a call vertex at each
call site of the introduction. Moreover, each actual pa-
rameter vertex is control dependent on the call vertex
of the introduction, and each formal parameter vertex
is control dependent on the introduction start vertex.
Finally, we treat instance variables at the introduction
entry and call sites in the introduction as parameters.
Therefore, we should also create actual-in, actual-out,
formal-in, formal-out vertices for these variables.

The Aspect Dependence Graph

In order to efficiently perform analysis on an individ-
ual aspect, we present the aspect dependence graph to
represent dependence relationships and the parameter
passing between advice, or between advice and method
in the aspect.

An aspect dependence graph (ADG) consists of a col-
lection of advice, introduction, or method dependence
graphs and some additional arcs and vertices. Each ad-
vice, introduction, or method dependence graph repre-
sents advice, introduction, or a method in the aspect.
In an ADG, there is an aspect start vertez to represent
the entry of the aspect. The aspect start vertex is con-
nected to the advice start vertez of advice dependence
graph, the introduction start vertex of each introduc-
tion dependence graph, and the method start vertez of
each method dependence graph in the aspect by aspect
membership arcs. If there is a call in the advice, intro-
duction, or method to call another advice, introduction,

or method in the aspect, we connect the advice, intro-
duction, or method dependence graphs of the advice,
introduction, or method at call sites. In this case, a call
arc is added between a call vertex of the advice, intro-
duction, or method and the start vertex of the advice,
introduction, or method dependence graph of the called
advice, introduction, or method, and parameter-in and
parameter-out arcs are added to connect actual-in and
formal-in vertices, and formal-out and actual-out ver-
tices. Note that parameter-in and parameter-out arcs
represent the parameter passing between advice, or be-
tween advice and method in the aspect. For the instance
variables declared in an aspect, since they are acces-
sible to all advice, introductions, and methods in the
aspect, we create formal-in and formal-out vertices for
all instance variables that are referenced in the advice,
introductions, and methods.

Moreover, for each pointcut designator, we create
a pointcut start vertex to represent the entry for the
pointcut, and connect the aspect start vertex to each
pointcut start vertex through aspect membership arcs
to represent the membership relations among them.

Finally, similar to [10], we use summary arcs to rep-
resent the transitive flow of dependencies in the ADG.
Transitive flow of dependence occurs between an actual-
in vertex and an actual-out vertex if the value associ-
ated with the actual-in vertex affects the value associ-
ated with the actual-out vertex. The transitive flow of
dependence can be caused by data dependence, control
dependence, or both. A summary arc models the tran-
sitive flow of dependence across a procedure call.

Ezample. Figure 3 shows the ADG for aspect
PointShadowProcotol of the program in Figure 1. In
the figure, a rectangle represents the aspect start ver-
tex and is labeled by the statement label related to the
aspect entry. Circles represent statements in the as-
pect, including advice start, and are labeled with the
corresponding statement number in the aspect. El-
lipses in solid line represent formal and actual param-
eter vertices. For example; ase27 is the aspect start
vertex, and ae39, ae43 and ae48 are the advice start ver-
tices of advices setting, settingX, and settingy. Bold
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Figure 4: An ASDG of the program in Figure 1 and a slice of the program on slicing criterion (s49, p).

dashed arcs represent aspect membership arcs that con-
nect the aspect start vertex to advice or method start
vertex of advice or methods. Therefore, (ase27, ae38),
(a5e27,ae43), and (ase27, ae48) are aspect membership
arcs. Each advice or method start vertex is the root
of a subgraph which is itself an advice or method de-
pendence graph corresponding to the advice or method.
Therefore each subgraph may contain control, data de-
pendence arcs, parameter-in and parameter-out arcs,
and summary arcs. Finally, each pointcut such as
setting, settingX, or settingY has no correspond-
ing subgraph since no exact body element in it, and the
start vertex for each pointcut is connected to its cor-
responding advice start point by call arcs to represent
relationship between the pointcut and advice.

2.3 Representing Interactions among As-
pects and Classes
Interactions among aspects and classes can be caused
from two cases: (1) Creating an object of a class from an
aspect, and (2) Declaring an introduction in an aspect
to add a field, method, or constructor to a class. Here
we show how to represent these two cases.

Interactions by Object Creations

In Aspect], an aspect may create an object of a class
through a declaration or by using an operator such as
new. When an aspect A creates an object of class C,
there is an implicit call to C’s constructor. To represent
this implicit constructor call, we adds a call vertexin A
at the location of object creation. A call arc connects
this call vertex to (s constructor method. We also
adds actuai-in and actual-out vertices at the call vertex
to match the formal-in and formal-out vertices in C’s
constructor. When there is a call site in method m, or
advice a; in A to method my in the public interface of
C', we connect the call vertex in A to the method start
vertex of my to form a call arc, and also connect actual-
in and formal-in vertices to form parameter-in arcs and
actual-out and formal-out vertices to form parameter-
out arcs. As a result, we can get a partial ASDG that
represents a partial Aspect] program by connecting the
ADG for A and CDG for C.

Interactions by Using Introductions

In Aspect], an aspect A can interact with a class C' by
declaring an introduction I in A for adding an addi-
tional field, method, or constructor to C'. To represent
such an interaction, we connect the class start vertex
of C''s class dependence graph to the introduction start



vertex of the I's introduction- dependence graph by a
class membership arc.

2.4 Determining Weaving-Points in Non-
Aspect Code :

The third part of our algorithm is to determine weav-
ing points in the SDG at which the ADG of aspect code
can be connected to the SDG of non-aspect code.

In AspectJ, join points are defined in each aspect
of an aspect-oriented program with the pointcut desig-
nator. DPointcuts are further used in the definition of
advice which defines code that is run when join points
are reached. By carefully examining join points in the
pointcuts and their associated advice, one can deter-
mine the weaving points statically in the non-aspect
code to facilitate the connection of non-aspect code to
the aspect code. In this paper, we use weaving vertices
in the SDG to represent the weaving points in the non-
aspect code which can be used to connect the SDG of
non-aspect code to the ADGs of aspect code.

Ezample.  We show how to determine the weaving
point for weaving the code declared in advice settingy
to a method in class Point. First, from poiotcut
settingY declaration, we knew that the code in ad-
vice seetingY should be inserted into method setY of
class Point. But we are still unknown the exact place
where we should insert the code. By examining advice
settingY’s declaration we further knew that this advice
is after advice. According to the Aspect] programming
guide [2]: “after advice runs after the computation "un-
der the joint point’ finishes, i.e., after the method body
has run. and just before control is returned to the caller
(p.12).” we can know that the code declared in advice
settingY should be inserted into the place after the last
statement of method setY, i.e., after y = _y.

2.5 Weaving the SDG with ADGs

The fourth part of our algorithm is to weave the SDG
and the ADGs at weaving vertices to form the ASDG.
It consists of two steps: (1) Inserting weaving-vertices
to the SDG to represent the corresponding weaving-
points determined in the third part of our algorithm,
and (2) Adding some special kinds of dependence arcs
between the weaving-vertices and their corresponding
advice start vertices of the advice dependence graphs in
the ADG to form the ASDG.

Generally, an AspectJ program consists of classes. in-
terfaces, and aspects. In order to execute the program,
the program must include a special class called main()
class. %he program first starts the main() class, and
then transfers the execution to other classes.

We use the ASDG to represent a complete Aspect]
program. An ASDG of an aspect-oriented program con-
sists of a collection of advice dependence graphs each
representing advice of an aspect, introduction depen-
dence graphs each representing an introduction of an
aspect, method dependence graphs each representing a
main()method or a standing method in a class or an
aspect, and some additional dependence arcs to repre-
sent direct program dependencies between a call and
the called advice, introduction, or method and transi-
tive interprocedural data dependencies.

To construct the ASDG for a complete Aspect] pro-
gram, we first construct the SDG for the non-aspect
code and then insert the weaving vertices obtained from
the third part of our algorithm to the SDG. After that,
we use a coordination arc to connect each weaving ver-
tex to the advice start vertex of its corresponding advice
dependence graph. A call arc is added between advice,
introduction, or method call vertex and the start ver-
tex of the advice, introduction, or method dependence

graph of the called advice, introduction. or method. Ac-
tual and formal parameter vertices are connected by pa-
rameter arcs, We also add the summary arcs for advice,
introduction. or methods in a previously analyzed as-
pect between the actual-in and actual-out vertices at
call sites.

Erample. Figure 4 shows the complete ASDG
for the program in Figure 1. The construction of
the graph includes (1) the advice dependence graphs
for advice settingX. settingY, and setting, (2) the
method dependence graphs for main() method and
standing methods Point, getX, getY, setX, setY,
printPosition of class Point, (3) the method depen-
dence graphs for methods Shadow and printPosition
of class Shadow, (4) the method dependence graphs
for methods associate and getShadow and the rep-
resentation of introduction Point.shadow for asepct
PointShadowProtocol,-and (5) the connection of each
subgraph using call, parameter-in and parameter-out
arcs.

3 Slicing Aspect-Oriented Programs

In this section, we define some notions about static
slicing of an aspect-oriented program, and show how to
compute static slices of the program based on its ASDG.

In understanding and maintenance of aspect-oriented
software. information that can answer the following
questions may help software developers to understand a
program’s behavior.

(1) What code might affect by a statement in an
aspect-oriented program ? .

(2) What non-aspect code might affect by a statement
of aspect code in an aspect-oriented program ?

(3) What aspect code might affect by a statement of
non-aspect code in an aspect-oriented program ?

In order to compute slices that answer these ques-
tions, we can define three types of slicing problems. .

1. A static slicing criterion for an aspect-oriented pro-
gram is a tuple (s;,v1), where s is a statement in
the program and vy is a variable used at s, or a call
called at s;. A static slice S5(sy.v1) of an aspect-
oriented program on a given static slicing criterion
(s1,v1) consists of all statements: in the program
that possibly affect the value of the variable v; at
sy or the value returned by the call v} at s;.

3]

. A static slicing criterion for an aspect-oriented pro-
gram is a tuple (s2,v2), where s, is a statement in
the non-aspect code of the program and v, is a vari-
able used at sy, or a call called at s,. A static shce
S$5(sy, vy) of an aspect-oriented program on a given
static slicing criterion (sy,vy) consists of all state-
ments in the aspect code that possibly affect the
value of the variable vy at sy or the value returned
by the call vy at s3.

3. A static slicing criterion for an aspect-oriented pro-
gram is a tuple (s3,v3), where s3 is a statement in
the aspect code of the program and vy is a vari-
able used at ss, or a call called at s3. A static
slice SS(s3,v4) of an aspect-oriented program on a
given static slicing criterion (s3,vs) consists of all
statements in the non-aspect code of the program
that possibly affect the value of the variable vy at
s3 or the value returned by the call vg at s3.



Since the ASDG proposed for an aspect-oriented pro-
gram can be regarded as an extension of the Larsen-
Harrold SDG, we can use the two-pass slicing algorithm
proposed in [12] to compute a static slice of an aspect-
oriented program based on the ASDG.

In the first step, the algorithm -traverses backward
along all arcs except parameter-out arcs, and set marks
to those vertices reached in the ASDG, and then in the
second step, the algorithm traverses backward from all
vertices having marks during the first step along all arcs
except call and parameter-in arcs, and sets marks to
reached vertices in the ASDG. The slice is the union of
the vertices of the ASDG have marks during the first
and second steps. Similar to the backward slicing de-
scribed above, we can also apply the forward slicing al-
gorithm [10] to the ASDG to compute a forward slice of
an aspect-oriented program.

Ezample. Figure 4 shows a backward slice which
is represented in shaded vertices and computed with
respect to the slicing criterion (s49, p).

4 Concluding Remarks

In this paper, we presented a slicing algorithm
for aspect-oriented software. To solve this problem,
we developed a dependence-based representation called
aspect-oriented system dependence graph, which ex-
tends previous dependence graphs, to represent aspect-
oriented software. The aspect-oriented system depen-
dence graph consists of three parts: (1) a system de-
pendence graph for non-aspect code, (2) a group of as-
pect dependence graphs for aspect code, and (3) some
additional dependence arcs used to connect the system
dependence graph to the aspect dependence graphs. Af-
ter that, we showed how to compute a static slice of
an aspect-oriented program based on its aspect-oriented
system dependence graph. We believe that in addi-
tion to computing static slices of an aspect-oriented
program, the aspect-oriented system dependence graph
can also be used as an underlying base to develop soft-
ware engineering tools for testing and debugging aspect-
oriented software [20].

While our initial exploration used Aspect] as our
target language, the concept and approach presented
in this paper are language independent. However, the
implementation of a slicing tool may differ from one
language to another because each language has its own
structure and syntax which must be handled carefully.

As one of our future researches, we plan to develop a
slicing tool for AspectJ which includes a generator for
automatically constructing the aspect-oriented system
dependence graph for an Aspect] program and a slicer
for computing static slices of an AspectJ program.
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