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Abstract: GPU with the Single Instruction Multiple Data (SIMD) execution model enables a program to work effi-
ciently. However, the efficiency may decrease because of branch divergence that occurs when SIMD threads follow
different paths in some branches. Once the divergence occurs, some threads must wait until completion of the execu-
tion of the others. Thus, it is important to reduce branch divergence to improve the efficiency of GPU programs. On the
other hand, branch divergence may be increased by some traditional code optimizations based on code motion such as
partial redundancy elimination (PRE) and scalar replacement (SR). These methods insert some expressions into some
paths, on which insertion points may be included in divergent branches. That is, the insertion may increase branch
divergence, which may result in the decrease of execution efficiency of GPU programs. In this paper, we propose a
new SR approach, called Speculative SR based on Question Propagation (SSRQP), which not only removes redundant
memory accesses but also reduces branch divergence. SSRQP achieves SR based on speculative code motion, which
not only eliminates inter-iteration redundant memory accesses without increasing branch divergence but also decreases
branch divergence that originally exists through hoisting memory accesses in true and false sides of a divergent branch
out of it. To prove the effectiveness of our method, we have conducted experiments through applying it to some bench-
marks with divergent branches. The experimental results show that it can improve the efficiency about 40% in the best
case in comparison with traditional techniques.
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1. Introduction

GPU plays an increasingly important role in general purpose
applications. Most GPU exploits Single Instruction Multiple

Data (SIMD) execution model, which enables programs to be ex-
ecuted efficiently. However, the efficiency may decrease when
SIMD threads in a warp follow different paths of execution,
which is called branch divergence. In face of the divergence,
some threads have to wait the completion of the execution of
the others, so that it decreases execution efficiency of GPU pro-
grams. In addition, some traditional code optimizations based
on code motion may increase branch divergence, because they
may insert some expressions into the destinations of divergent
branches. Partial Redundancy Elimination (PRE) [3], [4], [5],
which is effective code optimization technique that not only re-
moves partially redundant expressions but also moves invariant
expressions out of loops, is one of such code motion approaches.
PRE may decrease the execution efficiency of GPU programs, so
that it is difficult to apply PRE to them [21]. Scalar Replacement

(SR) [11], [12], [13], [14], which removes inter-iteration redun-
dant memory accesses in a loop, is also one of such code mo-
tion approaches. SR may increase branch divergence because it
inserts memory accesses into some paths as well as PRE. The
property of SR, which can actually be achieved as an extension
of PRE, makes its application to GPU programs difficult.

In this paper, we propose a new approach, which is called
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Speculative Scalar Replacement based on Question Propagation

(SSRQP). The approach not only removes redundant memory ac-
cesses in a loop but also reduces branch divergence through spec-
ulative code motion. The redundancy checking is based on Ques-

tion Propagation [15], which checks whether each expression is
redundant while propagating questions on a control flow graph.
Furthermore, the speculative code motion takes advantage of a
property where GPU programs execute both true and false sides
of divergent branches. The property enables SSRQP to specu-
latively hoist an expression in one side of a divergent branch
out of it without decreasing execution efficiency. The specula-
tive code motion hoists all of the possible expressions in both
sides of a divergent branch out of it, which contributes to re-
ducing branch divergence. In addition, the speculative code mo-
tion makes more expressions redundant [7], [8], [9], [10], so that
SSRQP eliminates more expressions than traditional methods,
which contributes to further improvement of execution efficiency.
On the other hand, the speculative code motion for non-divergent
branches may decrease execution efficiency because it may intro-
duce new expressions on some paths [7], [8]. To avoid decreasing
performance, SSRQP applies the speculative code motion to only
divergent branches. Notice here that SSRQP does not insert any
expression into destinations of divergent branches, so that it does
not increase branch divergence.

The contributions of this paper are as follows:
( 1 ) The SSRQP removes redundant memory accesses in GPU

programs without increasing branch divergence.
( 2 ) The SSRQP speculatively hoists an expression out of a di-

vergent branch without decreasing execution efficiency.
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( 3 ) The SSRQP contributes to reducing branch divergence
through speculative code motion.

( 4 ) The SSRQP eliminates more expressions through specula-
tive code motion.

The rest of this paper is organized as follows: Section 2
presents the preliminaries of our approach. Section 3 describes
branch divergence. Section 4 provides brief explanations of a
method based on question propagation. Section 5 gives our pro-
posed method. Section 6 presents experimental results of our
methods. Section 7 discusses related works. Finally, we conclude
our paper and show future works in Section 8.

2. Preliminaries

2.1 Basics
We assume that a Control Flow Graph (CFG) has already been

generated for each function defined in the source program. The
CFG is a directed graph G(N, E, s, e) with a node set N and
an edge set E ⊂ N × N. Each node n ∈ N represents a basic

block consisting of continuous statements without any branch in
the middle. Each edge (n,m) ∈ E represents the flow of con-
trol between basic blocks n and m. s and e denote the unique
start node and end node of G. Every node n ∈ N is assumed
to lie on a path from s to e. pred(n) =d f {m | (m, n) ∈ E} and
succ(n) =d f {m | (n,m) ∈ E} denote sets of all the predecessors
and successors of a node n, respectively.

A node m dominates a node n if and only if every path from s
to n contains m. Also, a node m postdominates a node n if and
only if every path from n to e contains m. A node m is called
the immediate dominator of a node n if and only if m dominates
n, m is not equal n, and the node except m which dominates n

does not exist on every path from m to n. Inversely, a node m is
called the immediate post-dominator of a node n if and only if m

postdominates n, m is not equal n, and the node except m which
postdominates n does not exist on every path from n to m [1]. A
node m is control-dependent on a node n if and only if there is
a non-empty path from n to m such that m postdominates all the
nodes except n on the path [2]. We compute a control dependency
for an augmented CFG, which is the CFG augmented with a spe-
cial node ENTRY that has one edge going to the start node s and
another edge going to the end node e [26]. We assume that the
node ENTRY is non-divergent.

As well as the other code motion methods, critical edges [4],
which lead from nodes with more than one successor to nodes
with more than one predecessor, may block an effective code mo-
tion. We assume that critical edges are eliminated through insert-
ing a new node on the edges.

A dependence exists between two memory references if there
exists some paths of CFG from the first reference to the sec-
ond reference and both references access the same memory lo-
cation [12]. The dependence is called loop-carried dependence if
two dependent references are in different iterations of a loop. If
two dependent references are in the same iteration of a loop, the
dependence is called loop-independent dependence. The thresh-

old of a loop-carried dependence is the number of loop iterations
between two dependent references. If the threshold is constant
throughout the execution of the loop, the threshold is called con-

sistent threshold.

2.2 CUDA
The Compute Unified Device Architecture (CUDA) [30] pro-

vides a C-extended programming model for GPU. The program-
mer writes the host code processed on the CPU side and the de-
vice code processed on the GPU side separately in the program.
The device code is also called a kernel. The programmer launches
a kernel with hierarchical execution configuration, called grid. A
grid consists of multiple blocks. Each block contains multiple
threads. A group of 32 threads is called a warp. A kernel can
access multiple GPU memories during execution, including three
kinds of off-chip memories and one kind of on-chip memory. Off-
chip memory includes global, constant, and texture memory that
are shared by all GPU threads and the CPU. On-chip memory
includes shared memory that is shared among threads within a
block on the GPU.

2.3 Partial Redundancy Elimination
An expression e is available at node n if each path from the

start node s to n includes node m that has e and any operands of e

are not modified on the path between m and n. Also, e is partially

available at node n if e is available at some nodes of the prede-
cessors of n. If e is available at node n, n is up-safe for e. If an
expression e exists at node n and is available immediately before
n, e is totally redundant at n, and can be eliminated by replacing
it with the variable that holds the value of e. On the other hand,
if e exists at node n and is partially available immediately before
n, e is partially redundant at n, and cannot simply be removed as
totally redundant expressions.

An expression e is anticipated at node n if each path from n to
the end node e includes node m that has e and any operands of
e are not modified on the path between n and m. Moreover, e is
partially anticipated at node n if e is anticipated at some nodes of
the successors of n. If e is anticipated at node n, n is down-safe

for e.
The PRE removes partially redundant expressions through in-

serting expressions into the appropriate program points. At this
time, since PRE inserts expressions at the down-safe nodes, it
can remove partially redundant expressions without increasing
the number of expressions on any execution path. The code mo-
tion that inserts new expressions at non down-safe nodes is called
speculative code motion. The motion may increase the number of
executed statements, so that it may decrease execution efficiency
of a program.

3. Branch Divergence

Branch divergence is known as a problem that causes signifi-
cant performance bottlenecks for GPU programs with SIMD ex-
ecution model. In the model, GPU programs must execute the
statements in both true and false sides of a divergent branch be-
cause each warp has just a single control flow.

In Fig. 1 (a), we assume that the conditional branches at
nodes 1 and 2 cause branch divergence. As illustrated in
Fig. 1 (c), we assume that a warp has eight threads, which are
represented by squares. The black squares represent executing
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Fig. 1 Divergent branches and behavior of threads.

threads, and the gray ones represent waiting threads. First, all
the threads execute statements at node 1 in parallel. Second, the
threads from t0 through t3 execute statements at node 2 in the
true side of node 1. At this time, the threads from t4 through t7
wait without doing anything. Moreover, t0 and t1 execute state-
ments at node 3 in the true side of node 2. At this time, t2 and t3
wait until the completion of the execution at node 3. Then, t2 and
t3 execute statements at node 4 in the false side of node 2. At this
time, t0 and t1 wait. After the execution at node 4, the threads
from t0 through t3 execute statements at node 5. After that, the
threads from t4 through t7 execute statements at node 6 in the
false side of node 1. At this time, the threads from t0 through t3
wait. Finally, all the threads execute statements at node 7.

Volta GV100 or later GPUs of NVIDIA support Independent

Thread Scheduling (ITS) [33], which enables a program to be ex-
ecuted based on finer-grain parallel algorithms where threads in
the same warp may synchronize and cooperate. ITS interleaves
execution of statements in divergent branches, so that it can re-
duce some overhead of branch divergence in a program. How-
ever, branch divergence still decreases the execution efficiency of
the program because the execution of Volta and later GPUs is also
in SIMD fashion, which causes the branch divergence.

As discussed above, branch divergence takes both costs of the
true and false sides of a divergent branch to execute it, so that it
decreases execution efficiency of GPU programs. Several meth-
ods have been proposed to reduce branch divergence and improve

execution efficiency [19], [20], [21], [22], [23], [24], [25]. On the
other hand, some traditional optimizations may increase branch
divergence and decrease execution efficiency. Since code motion-
based approaches such as PRE or scalar replacement are included
in them, they cannot simply be applied to GPU programs with
branch divergence.

As shown in Fig. 1 (a), expressions originally exist in one side
of the divergent branch node 2 and in node 7, and the expression
in node 7 is partially redundant. The traditional PRE transforms
Fig. 1 (a) into Fig. 1 (b). In Fig. 1 (b), the redundancy is removed
by PRE. However, the expressions appear in both sides of the
divergent branches at nodes 1 and 2. Therefore, execution effi-
ciency is reduced compared with Fig. 1 (a) because of the diver-
gence at nodes 1 and 2.

4. Question Propagation

In this section, we first give an outline of question propaga-
tion. Then, we describe our extension of SR based on question
propagation.

4.1 Outline
Question propagation [15] is a method that checks whether

each expression is redundant or not while propagating ques-
tions on CFG. As methods related to question propagation,
partial redundancy elimination based on question propagation

(PREQP) [16], [18], and scalar replacement based on question

propagation (SRQP) [17] have been proposed. First, these meth-
ods visit each CFG node in topological sort order. Then, they
check whether each expression e can be eliminated through prop-
agating a query about availability backwardly in order to deter-
mine whether the lexically same expressions as e exist at the node
where the query is propagated. We call this expression e a ques-

tionary expression. If a query is propagated to a node that has
the same expression as a questionary expression, the node returns
true as its answer which is forwardly propagated to the originat-
ing node of the query. Conversely, if a query is propagated to a
node that has the statement that modifies the operands of a ques-
tionary expression, the node returns false. If both true and false

are returned to a node n from the predecessors, another question
propagation checks whether n is down-safe through propagating a
query about anticipatability forwardly. If the query is propagated
to a node that has the same expression as the questionary expres-
sion, the node returns true. Once n is found to be down-safe, the
questionary expression is inserted into the node that returns false

as its answer about availability to make the questionary expres-
sion totally redundant at n, so that n returns true as its answer
about availability toward the originating node of the propagation.
Consequently, e is decided to be redundant if the originating node
gets true as its answer about availability.

We illustrate the question propagation in PREQP about the ex-
pression a + b at node 4 in Fig. 2 (a). First, it propagates queries
about availability to check whether a + b is available to the pre-
decessors of node 4. Second, the query propagated to node 3
returns true as its answer because a + b is available in node 3, as
shown in Fig. 2 (b). On the other hand, the query propagated to
node 2 does not solve its answer because there are no statements
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Fig. 2 An example of PREQP.

in node 2. In this case, the query is propagated further to the pre-
decessor of node 2. Then, the query propagated to node 1 returns
false because the operand of a + b is modified by the statement
a = x at the node. As a result, both true and false are obtained at
node 4, which denotes the questionary expression is partially re-
dundant. To remove the redundancy, as illustrated in Fig. 2 (c), we
propagate a query about anticipatability in order to check whether
node 4 is down-safe. Consequently, we obtain true as the answer,
so that we find out node 4 is down-safe. Finally, we remove a+ b

at node 4 through inserting the same expression to node 2, which
results in the CFG shown in Fig. 2 (d).

4.2 Scalar Replacement Based on Question Propagation
Scalar replacement based on question propagation (SRQP) is

an extension of PREQP to scalar replacement. SRQP checks
whether each array reference expression e at each CFG node is
redundant through question propagation over iterations.

In SRQP, the answer of a query about availability is a tuple
of isAvail and isReal, where isAvail represents whether a ques-
tionary expression is available and isReal represents the fact of
reaching some occurrences of the same expression as a ques-
tionary expression. The expression that originates question prop-
agation is an array reference expression such as A[i], of which
the operands of the questionary expression include A and i. In the
propagation process, the answer of a query about availability at
node n is determined as follows:
( 1 ) If n is the start node s, the answer is (false, false).

( 2 ) If n is the node where the query has already been propagated
twice, the answer is (false, false).

( 3 ) If n is the node where the same query has already been prop-
agated, the answer is (true, false).

( 4 ) If n contains a statement that may modify the operands of
a questionary expression or a memory location accessed
through it, the answer is (false, false).

( 5 ) If n has the same expression as a questionary expression, the
answer is (true, true).

( 6 ) If n has definitions of the operands of a questionary expres-
sion and is visited for the first time, the operands are replaced
with the right-hand side of the definition statement for alge-
braic conversion.

( 7 ) If any above rules are not applied, the query is propagated to
all of the predecessors of n.

We apply the above rules in order from the top to the bottom.
In the process of question propagation, an answer can be solved
locally in each node if any of rules ( 1 ) to ( 6 ) is satisfied. If an
answer cannot be solved locally, SRQP propagates a query ac-
cording to the rule ( 7 ) and applies the rules to the predecessors.

As shown in the rule ( 2 ), we allow different queries to visit
a node at most twice to analyze loop-carried availability and re-
move inter-iteration redundant expressions. As shown in the rule
( 3 ), the answer of isAvail is true if the same query has already
been propagated to n. This is because the result of question prop-
agation corresponds to the maximum fixed point of the dataflow
equations. Moreover, as shown in the rule ( 4 ), a questionary ex-
pression must not be propagated beyond a modification statement
of the questionary expression. The modification includes a store
statement to the same memory location as the array reference. In
general, it is difficult to decide whether two memory references
access the same memory location because one may be an alias of
the other. In order to expose such alias relation, pointer analysis
or alias analysis may be required. If a store statement may modify
the memory location referenced, SRQP conservatively considers
that the referenced memory location is modified. As shown in
the rule ( 6 ), the operand i of a questionary expression is replaced
with the right-hand side of a definition statement such as i = i+1.
That is, the operand i is replaced with i+1. By means of this rule,
SRQP can analyze loop-carried availability.

If all of the queries propagated to predecessors of n have true as
their answers of isAvail, the answer of isAvail at n is also true. If
the answers of isAvail from predecessors of n have both true and
false, a questionary expression at n is partially available. At this
time, SRQP inserts a questionary expression into the predecessors
where the answers are false if the expression is anticipated at n, so
that the answer at n becomes true. Notice here that if predecessors
that have true as their answers of isAvail are caused by repropa-
gating a query to the same point without reaching an occurrence
of the same expression as a questionary expression, unnecessary
insertions at predecessors with false result in such as ineffective
code motion through empty loops (called hoisting-through-the-

loop effect [6]), as illustrated in Fig. 3 (b). To avoid the unnec-
essary insertions, SRQP defines a predicate isReal, which repre-
sents the fact of reaching some occurrences of the same expres-
sion as a questionary expression. SRQP inserts new expressions

c© 2022 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.30

Fig. 3 An example of unnecessary code motion.

only if some of predecessors with true as their answers of isAvail

have also true as isReal. As shown in Fig. 3 (c), the propagation
to node 3 does not satisfy this requirement, whereas the one to
node 5 satisfies isReal. As a result, SRQP inserts a new expres-
sion into node 4. Note that the result is same as that of Lazy Code

Motion (LCM) [4], [5], and the predicate isReal works the same
way as the predicate Latest used in LCM.

SRQP checks anticipatability through propagating another
query as well as availability. The query about anticipatability is
forwardly propagated contrary with the one about availability. In
addition, a questionary expression of a query about anticipata-
bility contains all the operands that have been algebraically con-
verted during the propagation of a query about availability. That
is, it contains i and i + 1 if the operand i have been converted
to i + 1, which denotes that SRQP checks the anticipatability of
A[i] and A[i + 1] at the same time. The answer of a query about
anticipatability at node n is decided as follows:
( 1 ) If n is the end node e, the answer is false.
( 2 ) If n is the node where the same query has already been prop-

agated, the answer is true.
( 3 ) If n contains a statement that may modify the operands of

a questionary expression or a memory location accessed
through it, the answer is false.

( 4 ) If n has the same expression as a questionary expression, the
answer is true.

( 5 ) If any above rules are not applied, the query is propagated to
all of the successors of n.

As described above, SRQP checks availability and anticipata-
bility for each array reference expression e at n. Let (isAvailp,
isRealp) be the value returned as the result of propagation from
the predecessors of n, and let isDownSafe be the result of prop-
agation of a query about anticipatability at n. The condition for
the availability of e at n is as follows:
∏

p∈pred(n)

isAvailp ∨ isDownS a f e ∧
⋃

p∈pred(n)

isRealp

If the above condition is true, n returns true toward the originating
node of the propagation.

Consider the question propagation for the expression A[i] in
node 8 in Fig. 4 (a), where an array reference A[i] denotes the
memory access to the i-th element of the array A. First, SRQP
propagates a query about availability to the predecessors of
node 8 to check the availability of A[i]. When the query visits
node 2, it is propagated further to nodes 1 and 9. The query prop-
agated to node 9 is propagated further to node 8. At this time,
SRQP performs algebraic conversion of the questionary expres-
sion because node 8 has the statement i = i + 1. Hence, SRQP
converts the questionary expression A[i] to A[i + 1]. Then, the
query about A[i + 1] is propagated to the predecessors of node 8
as shown in Fig. 4 (b). The query propagated to node 7 is propa-
gated further to the predecessors of node 7. The one about A[i+1]
propagated to node 5 gives true as its answer since the expression
A[i+ 1] exists in the node. On the other hand, the one propagated
to node 6 is propagated further to the predecessors of node 6,
resulting in false as its answer according to the rules ( 2 ) and
( 4 ). Consequently, at node 7, both true and false as answers of
queries about availability are obtained as illustrated in Fig. 4 (c),
so that SRQP forwardly propagates a query about anticipatabil-
ity to check whether node 7 is down-safe. In the process of the
propagation, it checks whether the expression A[i] or A[i + 1] is
anticipated. As a result, the query about anticipatability gives true

as the answer of node 8, which denotes that node 7 is down-safe.
Thus, node 7 returns true as its answer of the query about avail-
ability to node 8, and node 6, which returns false as its answer
of a query about availability, is marked as the destination of in-
sertion of the questionary expression A[i + 1]. Remember that
the query for A[i + 1] is propagated from node 8 to node 3. It
is propagated further to the predecessors of node 3, and it gives
false as its answer as the case of node 6. Consequently, as shown
in Fig. 4 (d), both true and false as answers of queries about avail-
ability are obtained at node 8. Similar to the case in node 7, SRQP
checks whether node 8 is down-safe through propagating a query
about anticipatability. The query results in true for down-safety
at node 8, so that node 8 returns true as its answer of the query
about availability to node 9, and node 3 is marked as an inser-
tion point of the questionary expression A[i + 1]. As shown in
Fig. 4 (e), node 2 obtains true as the answer of node 9 and false

as the answer of node 1. Similar to the case in nodes 7 and 8,
SRQP checks whether node 2 is down-safe through propagating
a query about anticipatability. The query results in true for down-
safety at node 2, so that node 2 returns true as its answer of the
query about availability, and node 1 is marked as an insertion
point of the questionary expression A[i]. As a result, node 8 that
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Fig. 4 Propagation of queries about availability and anticipatability in SRQP.

is the originating node of a query obtains true as the answer of
the query about availability. Based on the result of the question
propagation, SRQP transforms the CFG in Fig. 4 (a) to the one in
Fig. 4 (f) through inserting t2 = A[i] into node 1 and t = A[i + 1]
into nodes 3 and 6, which are the nodes marked during the prop-
agation.

In the CFG illustrated in Fig. 4 (f), the redundancy of an ar-
ray reference between A[i] and A[i + 1] is removed. However,
if the branch nodes 2 and 4 are divergent, branch divergence is
increased compared to the CFG in Fig. 4 (a). This is because of
the insertion into nodes 3 and 6, which are the destinations of

divergent branches at nodes 2 and 4.

5. Extension of SRQP

In this section, we extend SRQP in the following points:
( 1 ) insertion of expressions considering branch divergence, and
( 2 ) propagation of a query about speculation and code motion

based on the answer.

5.1 Insertion of Expressions Considering Branch Diver-
gence

As mentioned in the previous section, the application of SRQP
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may increase branch divergence. We suppress the increase
through insertion of expressions based on a control dependency
property. Here, we define a control dependence region of non-

divergence (CDRND) as follows:
definition. A control dependence region of non-divergence is the

set of nodes that are control-dependent on only non-divergent

branches.

A CDRND denotes a region where branch divergence is not
increased by inserting expressions to make a partially redundant
expression totally redundant. When inserting an expression to a
node, we check whether the node is included in CDRND. If a
node where an expression is inserted is not in CDRND, we sup-
press the insertion in order not to increase branch divergence.

Consider a CDRND of the CFG in Fig. 4, where we assume
that the branch nodes 2 and 4 are divergent while the node 8 is
non-divergent. In addition, we compute a control dependency for
the augmented CFG [26], of which the special node ENTRY to
be non-divergent. nodes 3, 4, and 7 are control-dependent on
node 2, and nodes 5 and 6 are control-dependent on node 4. On
the other hand, nodes 2, 8, and 9 are control-dependent on node 8,
and nodes s, 1, 2, and 8 are control-dependent on the special node
ENTRY. Thus, the CDRND of the CFG consists of nodes s, 1, 2,
8, and 9. Therefore, we suppress the insertion of expressions into
nodes 3 and 6 in Fig. 4 (f).

We extend SRQP to Extended SRQP (ESRQP) through sup-
pression of insertion based on a CDRND. As mentioned above,
if a node obtains true and false as the answers of queries about
availability from the predecessors, SRQP inserts a questionary
expression into the node that returns false. On the other hand,
ESRQP checks whether the node that returns false is included in
a CDRND. Then, it inserts a questionary expression into the node
if it gives true for whether the node is included in a CDRND, re-
sulting in suppression of increase in branch divergence. We show
the pseudocode of the algorithm of ESRQP in Appendix A.1.

5.2 Propagation of a Query about Speculation and Code
Motion Based on the Answer

Utilizing the property that both destinations of a divergent
branch are executed, we can speculatively hoist an expression
that exists only in one side of a divergent branch out of it without
decreasing execution efficiency. We realize the SSRQP through
propagating of a query about speculation. We extend ESRQP
through adding the speculative code motion, which we call Spec-

ulative SRQP (SSRQP).
We illustrate the effectiveness of speculative code motion for a

divergent branch in Fig. 5. In the figure, the shaded nodes 1 and
4 cause branch divergence. In Fig. 5 (a), expressions exist only in
one side of the destinations of these branches, and the expression
in node 5 is partially redundant. Traditional PRE or scalar re-
placement cannot remove the redundancy because of safety. On
the other hand, utilizing the property of branch divergence, we
can hoist the expression in node 2 to node 1 speculatively as
shown in Fig. 5 (b). In consequence of this, the expression A[i]
becomes available at node 5, so that it can be eliminated as shown
in Fig. 5 (c). In addition, comparing Fig. 5 (a) with Fig. 5 (c), we
see that branch divergence of the CFG in Fig. 5 (c) is reduced

Fig. 5 Speculative code motion for a divergent branch.

more than that in Fig. 5 (a) because the statements at nodes 2 and
5, which are control-dependent on divergent branches, are sup-
pressed. Thus, speculative code motion for a divergent branch
makes more expressions available without decreasing execution
efficiency and reduces branch divergence.

We propagate a query about speculation to check whether we
can hoist an expression out of a divergent branch speculatively.
The propagation realizes speculative code motion from node m

to node n based on a control dependency relation between m and
n. As discussed above, we can reduce branch divergence through
hoisting an expression from a node that is control-dependent on a
divergent branch out of the branch. The answer of a query about
speculation is a tuple of an answer that denotes whether specula-
tive code motion can be performed and a set of nodes to which
a questionary expression e is inserted if the answer is true. We
backwardly propagate the query about speculation (e, m, n) based
on the following rules:
( 1 ) If n is the start node s, the answer is (false, ∅).
( 2 ) If n is a node where the same query has already been propa-

gated, the answer is (true, ∅).
( 3 ) If n contains a store statement which may modify the mem-

ory location referenced by the questionary expression, or a
definition statement of the operands of the questionary ex-
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pression, the answer at n is decided by the following rules:
(i) If n is a divergent branch node, the answer is decided

by the following rules:
(a) If m is control-dependent on n, the answer is (true,
{n}).

(b) If m is not control-dependent on n, the answer is
(false, ∅).

(ii) If n is not a divergent branch node, the answer is (false,
∅).

( 4 ) If n is a divergent branch node, the answer is decided by the
following rules:
(i) If m is control-dependent on n, the query is propagated

further to the predecessors of n to check whether e can
be hoisted to an earlier node; therefore m is replaced
with n. Let qans be the answer in which the propagation
results. The answer at n is decided by the following
rules:
(a) If qans is (true, x), the answer is also qans.
(b) If qans is (false, x), the answer is (true, {n}).

(ii) If m is not control-dependent on n, the answer is the
result of the query propagated further.

( 5 ) If n is a non-divergent branch node, the answer is decided by
the following rules:
(i) If n is down-safe, the answer is decided by the following

rules:
(a) If m is control-dependent on n, the answer is the re-

sult of the query propagated further after replacing
m with n.

(b) If m is not control-dependent on n, the answer is
the result of the query propagated further.

(ii) If n is not down-safe, the answer is (false, ∅).
( 6 ) If any above rules are not applied, the query is propagated to

all of the predecessors of n.
We apply the above rules in order from the top to the bottom.

Here, m and n are initialized to the node where a query about
speculation originates, A query is propagated to the predeces-
sors p of n while n is replaced with p, so that n represents the
node where the query is currently being propagated. Let (can-

Hoist, Node) be the answer of a query about speculation. If can-

Hoist is true, we can speculatively hoist e to the nodes in Node.
Conversely, we cannot perform any transformation if canHoist is
false.

In the process of propagation, it is blocked by a store state-
ment which may modify the memory location referenced by e or
a definition statement of the operands of e because e cannot be
hoisted beyond such a statement. Thus, as shown in the rule ( 3 ),
the answer at node n is decided based on whether n with a store
statement or a definition statement is a divergent branch node. If
n is a divergent branch node, we also check whether m is control-
dependent on n. If m is control-dependent on n, the answer is
(true, {n}) because the hoisting from m to n contributes to reduc-
ing branch divergence and making more expressions available. If
m is not control-dependent on n, the hoisting from m to n is inef-
fective, so that the answer is (false, ∅). These correspond to the
rule ( 3 )-(i). On the other hand, If n is not a divergent branch
node, the hoisting from m to n is also ineffective, so that the an-

swer is (false, ∅). This corresponds to the rule ( 3 )-(ii).
As shown in the rule ( 4 ), if n is a divergent branch node and

m is control-dependent on n, the query is propagated further to
the predecessors of n after m is replaced with n to check whether
e can be hoisted to an earlier node than n. This means that we
check whether n is control-dependent on an earlier node that is a
divergent branch node. If the result of the further propagation is
(true, x), e can be hoisted to the nodes in x. Conversely, if it is
(false, x), e cannot be hoisted to the nodes in x. However, e can
be speculatively hoisted to n, so that the answer at n is (true, {n}).
These correspond to the rule ( 4 )-(i). On the other hand, if m is
not control-dependent on n, the hoisting from m to n is ineffec-
tive. Thus, we check whether m is control-dependent on an earlier
node that is a divergent branch node through the further propaga-
tion. The answer at n depends on the result of the propagation,
corresponding to the rule ( 4 )-(ii).

As shown in the rule ( 5 ), if n is a non-divergent branch node,
we need to check whether n is down-safe. If n is down-safe, we
can hoist e from m to n safely, so that we also check whether m

is control-dependent on n. If m is control-dependent on n, m is
replaced with n to check whether n is control-dependent on an
earlier node that is a divergent branch node, and then the query is
propagated further to the predecessors of n. If m is not control-
dependent on n, the query is propagated further without replacing
m with n to check the control dependence between m and an ear-
lier node than n. These correspond to the rule ( 5 )-(i). On the
other hand, if n is not down-safe, we cannot hoist e to n safely, so
that the answer is (false, ∅), corresponding to the rule ( 5 )-(ii).

We propagate a query about speculation and transform a pro-
gram based on the answer after ESRQP finds that an expression e

which originates a query about availability is not redundant. We
show the pseudocode of the algorithm of propagation of a query
about speculation in Appendix A.2.

Consider the application of SSRQP to the CFG in Fig. 6. In
the figure, the shaded nodes 2 and 4 cause branch divergence.
First, SSRQP visits node 5 and propagates a query about avail-
ability for the expression A[i+1]. The result of the propagation is
false, so that as illustrated in Fig. 6 (a) SSRQP propagates a query
about speculation (A[i + 1], 5, 4) to the predecessor of node 5 in
order to check whether it can speculatively hoist the expression
to an earlier node than node 5. When the query visits node 4,
the rule ( 4 )-(i) is applied because node 4 is a divergent branch
node and does not have a store statement or a definition state-
ment, so that the query (A[i + 1], 4, 2) is propagated to node 2.
Then, at node 2, the rule ( 4 )-(i) is applied as with node 4, so
that the query (A[i + 1], 2, 1) is propagated to node 1, and the
query (A[i + 1], 2, 9) is propagated to node 9. At node 1, the
rule ( 3 )-(ii) is applied because the statement i = 0 is a definition
statement of A[i + 1] and node 1 is not a divergent branch node.
Thus, the former query gives the answer (false, ∅) at node 1 as
shown in Fig. 6 (b). On the other hand, at node 9, the rule ( 6 ) is
applied, so that the query (A[i + 1], 2, 8) is propagated to node 8.
Then, at node 8, the query gives the answer (false, ∅) because
the rule ( 3 )-(ii) is applied. Consequently, at node 2, the answers
obtained from the predecessors are both (false, ∅) as illustrated
in Fig. 6 (b). In this case, the rule ( 4 )-(i)-(b) is applied, so that
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Fig. 6 An example of application of SSRQP.

the answer (true, {2}) is returned toward node 5. In consequence,
the originating node 5 obtains the answer (true, {2}), so that SS-
RQP hoists A[i+ 1] from node 5 to node 2 speculatively. Second,
SSRQP propagates a query about availability for the expression
A[i] at node 8. As a result, it can remove the inter-iteration redun-
dancy between A[i + 1] and A[i] because of the speculative code
motion of A[i + 1] from node 5 to node 2. Finally, it obtains the
CFG in Fig. 6 (c).

Remember that SRQP increases branch divergence because it
inserts A[i + 1] into nodes 3 and 6 as shown in Fig. 4 (f). On the
other hand, as illustrated in Fig. 6 (c), SSRQP hoists the expres-
sion speculatively, so that it does not increase branch divergence
and furthermore makes A[i+1] available across the loop iteration
at node 8.

6. Experiments

To evaluate the effectiveness of our method, we compared it
with traditional approaches about execution efficiency for three
benchmarks. We have implemented our method on the open-
source software Ocelot CUDA compiler [27]. The Ocelot is a
backend for PTX [32] corresponding to GPU assembly code and
also works as a PTX optimizer. Furthermore, we used the diver-
gence analysis [19] implemented in Ocelot to identify divergent
branches. The descriptions of environments where we conducted
experiments are as follows:
• Environment 1
– OS: Ubuntu 16.04 LTS,
– CPU: Intel Core i7-4770K,
– GPU: Geforce GTX TITAN Black, and

Fig. 9 A comparison of execution speed of Treelogy benchmark in the en-
vironment 1. Each result is normalized by the baseline O3.

– CUDA Toolkit 5.0.
• Environment 2
– OS: Ubuntu 18.04 LTS,
– CPU: Intel Core i9-9900K,
– GPU: NVIDIA TITAN RTX, and
– CUDA Toolkit 11.1.
In the experiments, we implemented the proposed method

and the related methods SRQP, ESRQP, and SSRQP S. SRQP
neither considers CDRND nor applies propagation of a query
about speculation. ESRQP considers CDRND without apply-
ing propagation of a query about speculation. SSRQP S con-
siders CDRND and applies propagation of a query about spec-
ulation to move an expression speculatively without considering
branch divergence. We compared the execution time of object
code for the three benchmarks, Rodinia [29], Treelogy [28], and
NVIDIA SDK sample code [31]. For SobelFilter and bilateral-
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Fig. 7 A comparison of execution speed of Rodinia benchmark in the environment 1. Each result is
normalized by the baseline O3.

Fig. 8 A comparison of execution speed of Rodinia benchmark in the environment 2. Each result is
normalized by the baseline O3.

Fig. 10 A comparison of execution speed of Treelogy benchmark in the en-
vironment 2. Each result is normalized by the baseline O3.

Filter in NVIDIA SDK sample code, we changed the memory
access pattern and compared execution efficiency before and af-
ter the change. The change will be described later. Each pro-
gram was executed 10 times. We report the average of all execu-
tion time. We measured execution time using the CUDA profiler
nvprof.

First, we applied these methods to the PTX code generated by
the NVIDIA CUDA compiler, nvcc. Figures 7 and 9 show the

results of the experiments in the environment 1 for Rodinia and
Treelogy benchmark, respectively. Figures 8 and 10 show the
experimental results in the environment 2 for these benchmarks,
respectively. Our baseline for comparison is the execution time of
object code generated by nvcc with the optimization option O3.
In the rest of this paper, we call this baseline O3. In the figures,
The SRQP, ESRQP, SSRQP S, and SSRQP respectively represent
the execution time when applying SRQP, ESRQP, SSRQP S, and
SSRQP to the PTX code used by the baseline O3. Each result is
normalized by O3.

As illustrated in Fig. 7, our method SSRQP improved perfor-
mance for five programs in Rodinia benchmark in the environ-
ment 1: b+tree,bfs, huffman, lavaMD, and leukocyte. For the pro-
gram of b+tree, SRQP, ESRQP, and SSRQP improved the execu-
tion efficiency by 21%, 21%, 22%, respectively. These mothods
moved loop-invariant expressions out of the loop. SSRQP could
move more loop-invariant expressions out of the loop than SRQP
and ESRQP did through hoisting some expressions speculatively.
On the other hand, SSRQP S achieved less efficiency than other
method did because it hoisted many expressions without con-
sidering branch divergence and introduced new expressions into
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some paths. For the program of bfs, SSRQP S and SSRQP im-
proved the execution efficiency by 19.6%, 22.5%, respectively
through moving loop-invariant expressions out of the loop. SRQP
and ESRQP could not have an opportunity to transform, so that
they could not get performance gain. For the program of huffman,
all methods improved the execution efficiency by 7% through re-
moving intra-iteration redundancy. For the program of lavaMD,
SRQP, ESRQP, and SSRQP improved the execution efficiency
by about 1.5% through removing intra-iteration redundancy. SS-
RQP S hoisted many expressions speculatively through the prop-
agation of a query about speculation, but it could not improve the
execution efficiency. For the program of leukocyte, SRQP and
ESRQP could improve the execution efficiency by 1% through
removing intra-iteration redundancy. SSRQP S could remove a
lot of intra-iteration redundancy through speculative code motion
without considering branch divergence, resulting in the improve-
ment of the efficiency by 4%. Since SSRQP performs speculative
code motion that considers branch divergence, it could remove
less redundancy than SSRQP S, resulting in the improvement of
the efficiency by 3%. For the programs of backprop and srad,
SSRQP S could improve the execution efficiency while the other
methods could not transform the programs. On the other hand,
for the programs of hotspot, lud, and particlefilter, SSRQP S re-
duced the execution efficiency of them. This is because SSRQP S
hoists expressions speculatively for not only divergent branches
but also non-divergent branches. For the programs of heartwall,
kmeans, myocyte, nw, and pathfinder, SSRQP and other methods
had an opportunity to transform, but they could not improve the
execution efficiency of those programs. For the other programs,
all methods did not have an opportunity to transform, so that they
could not get performance gain.

As shown in Fig. 8, the result in the environment 2 showed the
almost same tendency as the one in the environment 1. However,
for the program of b+tree, SSRQP S improved more execution
efficiency than SRQP and ESRQP did. In addition, SSRQP could
improve the most efficiency of the four methods. SRQP, ESRQP,
SSRQP S, and SSRQP improved the efficiency by 58.5%, 58.5%,
84.9%, 88%, respectively.

As shown in Fig. 9, SSRQP improved performance for three
programs barnshut, kmeans, and knearestneighbor in Treelogy
benchmark in the environment 1. SSRQP S and SSRQP im-
proved the execution efficiency of them by about 10%, 40%, and
3%, respectively while SRQP and ESRQP could not transform
the programs. This is because the speculative code motion that
SSRQP S and SSRQP performed made some expressions totally
redundant.

As illustrated in Fig. 10, in the environment 2, all methods
could not improve performance for five programs in Treelogy
benchmark: barnshut, fastmultipole, knearestneighbor, nearest-

neighbor, and pointcorr. For the program of kmeans, SSRQP S
and SSRQP improved the execution efficiency by about 10%, but
it was less efficient than ones in the environment 1.

In these two benckmarks, geometric mean speedup in the envi-
ronment 1 for SRQP, ESRQP, SSRQP S, and SSRQP is 1.011,
1.011, 1.026, and 1.034, respectively, and one in the environ-
ment 2 is 1.02, 1.02, 1.032, and 1.032, respectively. These meth-

Fig. 11 (a) Coalesced memory accesses. There are redundant memory ac-
cesses among threads in each iteration, (b) The access pattern af-
ter our modification. There are redundant memory accesses within
threads in across iterations.

ods could not improve execution efficiency of many programs be-
cause benchmark programs are well known and have already been
heavily optimized. Nevertheless, our method could get great per-
formance gains in three programs. On the other hand, ESRQP ob-
tained the same performance gain as SRQP. Moreover, although
SSRQP S obtained performance gains a little greater than SS-
RQP in some cases, it obtained much less execution efficiency
than SSRQP in some cases. Therefore, SSRQP S is not practi-
cal. From the above, our method, which considers CDRND and
speculative code motion based on branch divergence, is the best
of these methods.

As mentioned above, for SobelFilter and bilateralFilter in
NVIDIA SDK sample code, we changed the memory access pat-
tern and conducted experiments with them. The access pattern
of the original programs was coalesced, so that there were re-
dundant memory accesses among threads, which could not be re-
moved. Therefore, we changed the memory access pattern so
that there are redundant accesses within each thread. We show
the pattern of the memory accesses before and after our modifi-
cation in Figs. 11 (a) and (b). The figure shows the 2nd to 10th
elements of an array are calculated on three threads with three it-
erations of a loop. Assume that we need to access the i-1th and
i+1th elements to calculate the i-th element. In Fig. 11 (a), thread
t1 calculates the 2nd, 5th, and 8th elements, t2 does the 3rd, 6th,
and 9th ones, and t3 does the 4th, 7th, and 10th ones for each
loop iteration. There are no redundant memory accesses within
each thread, but there are redundant ones among threads. That is,
at the first iteration of the loop, since thread t1 accesses the 1st,
2nd, and 3rd elements, and t2 does the 2nd, 3rd and 4th ones,
the accesses to the 2nd and 3rd elements are redundant between
these two threads. As well, since thread t3 accesses the 3rd, 4th,
and 5th elements, the accesses to the 3rd and 4th ones are re-
dundant between t2 and t3. This type of redundancy exists at
each iteration, and it is difficult to remove the redundancy. On
the other hand, in Fig. 11 (b), in the loop iterations, thread t1 cal-
culates the 2nd, 3rd, and 4th elements, t2 does the 5th, 6th and
7th ones, and t3 does the 8th, 9th and 10th ones, respectively. In
this case, there is no redundancy among threads in the same iter-
ation. Instead, there is redundancy across iterations within each
thread. Since thread t1 accesses the 1st, 2nd, and 3rd elements at
the 1st iteration of the loop, and it accesses the 2nd, 3rd and 4th
ones at the 2nd iteration, the accesses to the 2nd and 3rd ones are
redundant in this iteration. This type of redundancy exists in each
thread, and it can be removed by scalar replacement.

We compared the execution efficiency before and after chang-
ing the memory access pattern as described above. Figures 12
and 13 show the experimental results of SobelFilter and bilater-
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Fig. 12 A comparison of execution speed of SobelFilter and bilateralFilter
in Nvidia SDK in the environment 1. Each result is normalized by
the baseline O3.

Fig. 13 A comparison of execution speed of SobelFilter and bilateralFilter
in Nvidia SDK in the environment 2. Each result is normalized by
the baseline O3.

alFilter in the environments 1 and 2, respectively. Each result
is normalized by O3, which represents the execution time of ob-
ject code before our modification of the access pattern with the
optimization option O3. SRQP, ESRQP, SSRQP S, and SSRQP

represent the same ones as in Figs. 7, 8, 9, and 10. O3 mod

represents the execution time of object code after our modifi-
cation of the access pattern with the optimization option O3.
SRQP mod, ESRQP mod, SSRQP S mod, and SSRQP mod rep-
resent the execution time when respectively applying SRQP, ES-
RQP, SSRQP S, and SSRQP to the PTX code of O3 mod.

For the program of SobelFilter, SRQP, ESRQP, SSRQP S,
and SSRQP could not transform and improve the PTX code of
O3. In the environment 1, as shown in Fig. 12, O3 mod de-
creased the execution efficiency by 2% because the change of
the memory access pattern prevents the memory coalescing op-
timization. SRQP mod, ESRQP mod, SSRQP S mod and SS-
RQP mod could remove inter-iteration redundancy. However,
SSRQP S mod hoisted expressions speculatively without consid-
ering branch divergence, and the number of statements to be ex-
ecuted increased, so that it decreased the execution efficiency by
9% in the environment 1. SRQP mod, ESRQP mod and SS-
RQP mod could improve the efficiency by 2% in the environ-
ment 1 because SRQP mod and ESRQP mod do not perform
speculative code motion, and SSRQP mod suppresses speculative
code motion for non-divergent branches. In the environment 2, as
shown in Fig. 13, all methods could not improve the efficiency
after modifying the memory access pattern. O3 mod and SS-
RQP S mod did not decrease the efficiency. Our modification
that prevents the memory coalescing optimization and speculative
code motion did not affect the performance of this program in the
environment 2. For the program of bilateralFilter, as well as So-

belFilter, SRQP, ESRQP, SSRQP S and SSRQP could not trans-

form and improve the PTX code of O3. In the environment 1, for
the same reason as SobelFilter, O3 mod decreased the execution
efficiency by 5% as shown in Fig. 12. SRQP mod, ESRQP mod,
SSRQP S mod and SSRQP mod could remove inter-iteration re-
dundancy and improve the efficiency by 14%, 14%, 8%, and 14%,
respectively. SSRQP S mod was less efficient than other meth-
ods for the same reason as SobelFilter. In the environment 2, as
shown in Fig. 13, O3 mod decreased the execution efficiency by
11%. SRQP mod, ESRQP mod, and SSRQP mod could improve
the efficiency by 3%, and SSRQP S mod could not improve the
efficiency.

Most GPU programs access memory through the pattern shown
in Fig. 11 (a). This pattern coalesces memory access, so that it has
few memory transactions. In addition, the pattern has a high rate
of cache hit because the spatial locality of the pattern is high at
the same iteration. In general, the strided memory access shown
in Fig. 11 (b) is less efficient than the coalesced access shown
in Fig. 11 (a). However, since the access to a register is faster
than the memory access, the execution speed of a program can be
faster if the data is stored in a register as many as possible. The
results of this experiment show that we can improve the execution
efficiency of GPU programs by changing the pattern of the mem-
ory access and applying scalar replacement to increase accesses
through registers.

7. Related Works

Coutinho et al. [19] proposed the branch fusion that reduces
the computational cost of a divergent branch through combining
computations with the same operator in the true and false sides
of the branch into a single statement. However, this method may
need to insert new branches and select statements. The insertion
may decrease execution efficiency of GPU programs. The num-
ber of the insertions depends on the order of statements in the
original branch. Our method hoists array references out of diver-
gent branches speculatively, so that combining it with the branch
fusion results in reduction of more branch divergence than the
branch fusion only.

Wu et al. [22] transforms an unstructured control flow graph
to structured one, which contributes to reducing branch diver-
gence. In an unstructured CFG, some basic blocks may be ex-
ecuted 2 times or more because of the divergence. On the other
hand, in a structured CFG, such redundant execution does not
occur. However, this method increases the code size exponen-
tially because it performs transformation through copying code.
Anantpur et al. [23] transforms an unstructured CFG to a struc-
tured one through the linearization based on the idea of guarded
execution of basic blocks. For each basic block of a CFG, the
linearization method creates a guard basic block to guard its ex-
ecution. The mechanism reconverges the divergent threads as
early as possible. In addition, it does not duplicate code, so that
it incurs only a linear increase in the number of basic blocks.
Reissmann et al. [24] proposed control flow restructuring tech-
nique that consists of loop restructuring and branch restructuring.
Loop restructuring converts all loops to tail-controlled loops, and
branch restructuring ensures proper nesting of control flow. These
restructuring techniques work by adding predicates and branches
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to a CFG, so that they avoid the risk of exponential code inflation.
Applying our method together with these method reduces branch
divergence further.

Fukuhara et al. [21] proposed the Speculative Sparse Code Mo-

tion method that reduces branch divergence through hoisting ex-
pressions in the true and false sides of divergent branches specula-
tively. It computes sparse insertion points of expressions by using
dataflow analysis. As well as SSRQP, the method allows specu-
lative code motion considering branch divergence to be applied
through regarding partially anticipated expressions as anticipated
ones at the exit of divergent branch nodes. However, the method
cannot take advantage of loop-carried availability because it uses
traditional dataflow analyses. In addition, it performs code mo-
tion based on sparse insertion points, so that it does not perform
speculative code motion as often as SSRQP. The method is ex-
clusive to SSRQP and is expected to have a synergistic effect.
Simultaneously applying the method and SSRQP to a program
enables eliminating more expressions and reducing branch diver-
gence further.

8. Conclusions

In this paper, we presented a new method for GPU programs to
reduce branch divergence through scalar replacement and specu-
lative code motion. Our experimental results have indicated that
our method can improve more execution efficiency of GPU pro-
grams with branch divergence. However, our method may ap-
ply speculative code motion to non-divergent branches because it
uses the result of a static divergence analysis. To solve the prob-
lem, we hope to achieve selective application based on dynam-
ically checking of branch divergence in the future. In addition,
although our method does not insert the destinations of divergent
branches through utilizing a CDRND, the restriction may sup-
press harmless insertion of SRQP. The insertion into the destina-
tions of divergent branches does not always increase execution
cost of them. That is, the code motion that SSRQP performs is
too conservative. In the future, we hope to develop a method that
analyzes an actual execution cost of the programs before and after
performing code motion in the presence of branch divergence.
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Appendix

A.1 The algorithm of Extended SRQP based
on a CDRND

Algorithm 1 Extended SRQP based on a CDRND
1: function Propagate(n, q)

2: let isDownSafe� antqp(n, q)

3: let Nf � ∅
4: for all p ∈ pred(n)

5: let (isAvailp, isRealp)� Local(p, q)

6: if isAvailp then add p to Nf

7: let isAvail�
∏

p∈pred(n) isAvailp

8: let isReal�
⋃

p∈pred(n) isRealp

9: if both true and false are in isAvailp then

10: if Nf ⊆ CDRND then

11: if isAvail ∨ (isDownSafe ∧ isReal) then

12: add Nf to insert dst

13: isAvail� true

14: if isAvail ∨ (isDownSafe ∧ isReal) then

15: return (isAvail, isReal)

16: else return (false, false)

17: function Local(n, q)

18: if n = s then return (false, false)

19: if answer[n] � ⊥ then return answer[n]

20: if visited[n] > 1 then return (false, false)

21: if query[n] = q then return (true, false)

22: query[n]� q

23: visited[n]++

24: for i=instSize(n) to 0

25: let inst � getInstruction(n,i)

26: if mayAlias(q, inst) then

27: answer[n]� (false, false)

28: return (false, false)

29: if isSameVal(q, inst) then

30: answer[n]� (true, true)

31: return (true, true)

32: if isDefVal(q, inst) ∧ visited[n] = 1 then

33: updateQuery(q, inst)

34: let rlt � Propagate(n, q)

35: answer[n]� rlt

36: return rlt

A.2 The Algorithm of Propagation of a Query
about Speculation

Algorithm 2 Propagation of a query about speculation
1: function PropagateSpeculativeQuery(e,m, n)

2: for all p ∈ pred(n)

3: let (canHoistp,Nodep)� Local Spec(e,m,p)

4: if canHoistp is false then add p to Np

5: let canHoist �
∏

p∈pred(n) canHoistp

6: let Node�
⋃

p∈pred(n) Nodep

7: if (both true and false are in canHoistp) ∧ (Np ⊆ CDRND) ∧ (n is

down-safe) then

8: Node� Node ∪ Np

9: canHoist � true

10: if canHoist then return (true, Node)

11: else return (false, ∅)
12: function Local Spec(e,m, n)

13: if n = s then return (false, ∅)
14: if answer[n] � ⊥ then return answer[n]

15: if query[n] = q then return (true, ∅)
16: query[n]� (e, m)

17: let rlt � ⊥
18: if containsMayAlias(e,n) ∨ containsDefVal(e,n) then

19: if n is a divergent branch node then

20: if m is control-dependent on n then

21: rlt � (true, {n})
22: else rlt � (false, ∅)
23: else rlt � (false, ∅)
24: else

25: if n is a divergent branch node then

26: if m is control-dependent on n then

27: m � n

28: let (canHoist, Node)� PropagateSpeculativeQuery(e,m, n)

29: if canHoist is false then

30: (canHoist, Node)� (true, {n})
31: rlt � (canHoist, Node)

32: else rlt � PropagateSpeculativeQuery(e,m, n)

33: else if n is a non-divergent branch node then

34: if n is down-safe then

35: if m is control-dependent on n then

36: m � n

37: rlt � PropagateSpeculativeQuery(e,m, n)

38: else rlt � PropagateSpeculativeQuery(e,m, n)

39: else rlt � (false, ∅)
40: else rlt � PropagateSpeculativeQuery(e,m, n)

41: answer[n] � rlt

42: return rlt
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