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Abstract: In recommender systems, capturing the rich sequential information in historical interaction sequences is
essential for user representation learning. However, most of the existing methods only focused on modeling the user’s
historical information into one fixed-length vector, which brings two limitations. First, one fixed-length vector is in-
sufficient to model a user’s varying interests. This simplified user modeling leads to monotonous recommendations,
making users bored and trapped in the information cocoon. Second, since the user’s interests are naturally dynamic
and evolving, merely considering past information can only capture the user’s outdated interests and predict the interest
changes based on a fixed period (i.e., they model the elapsed times since the historical interactions into a same interval).
As a result, they cannot give different predictions when users access the system after different time intervals, resulting
in suboptimal recommendation performance. In this paper, we seek to explicitly model the users’ diverse interests and
elapsed time within a sequential interests modeling framework to explore the causality between users’ multi-interests
and the influence of different elapsed times. We propose a Dynamic Evolutionary Multi-Interest network for sequen-
tial RECommendation (DemiRec), which models user’s historical interactions into an interest sequence and predicts
evolved interests based on sequential information and elapsed time. Extensive empirical studies on real-world datasets
demonstrate that the proposed method significantly outperforms state-of-the-art multi-interest baselines.
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1. Introduction
With the development of the Internet, recommendation sys-

tems have played an increasingly important role in many fields
as an information filtering tool. Recommendation algorithms dis-
cover users’ interests in content or products based on user profiles
and historical interactions. User interests are naturally dynamic.
Therefore capturing the sequential information in the interactions
has become a key to improving recommendation performance.

In the sequential recommendation, most of the existing works
consider the user’s historical interactions as an ordered sequence
and focused on modeling sequential patterns to predict the user’s
next interest. Typical methods, such as Markov Chain, pre-
dicts the user’s next interaction based on few previous interac-
tions [11, 30]. Recurrent neural networks summarizes user’s in-
teraction sequence into a fixed-length hidden vector through a
cyclic structure [13]. The attention mechanism can learn a set
of weights to determine the importance of different parts of the
sequence so that the model can better use the information in a
long sequence [18]. Besides, temporal recommendation [21, 38]
focuses on modeling specific time information in user sequences.
The absolute timestamps of user’s interactions help capture the
periodicity and forgetfulness of users’ behaviors.

Generally, previous works only focused on modeling the or-
der and time information in users’ interaction sequences. How-
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Fig. 1: An example of the effect of elapsed time on recommendation.

ever, such an approach can only capture users’ historical interest
and simply predict users’ interest based on a fixed period. In
other words, these methods implicitly assume that the time inter-
vals between the target interactions and the historical interactions
(or the elapsed times) are the same. Based on this assumption,
a user’s predicted interest is used to make recommendations in
any elapsed time situation. These methods cannot give different
predictions when users access the system after different elapsed
times, resulting in suboptimal recommendation performance.

In addition, a user’s interests are naturally diversified, and only
modeling a user as a fixed-length vector is insufficient to rep-
resent user’s complex interests [22]. Therefore, various meth-
ods including nonlinear factorization [35], Capsule Network [22]
and the attention mechanism [5] are used to model the user with
multiple-interest representations. However, they regard these in-
terests as separate and static, ignoring the possible causality and
interaction of the evolving interests.

In this paper, we argue that the causality and interactions of
interests are essential for multi-interest recommendation meth-
ods. We argue that the elapsed time from historical interactions
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is an extra important factor for predicting users’ evolving inter-
ests, as shown in Figure 1. Thus, we propose a dynamic evo-
lutionary multi-interest network for the sequential recommenda-
tion (DemiRec) for learning and predicting users’ diverse inter-
ests with varying degrees of evolution. Inspired by the dynamic
routing [22], and the Relative Position Representation of Self-
Attention [32], our model first performs soft clustering on users’
historical interactions to capture diverse and unordered interests.
Then, the timestamps of the interactions in each cluster are used
to restore the order and the latest interaction time of the user’s
interests. After restoring the user’s interest sequence, we use the
self-attention mechanism to learn the sequential relationship be-
tween interests by considering the absolute positions and causal-
ity. By considering the elapsed time since the latest interaction
of interests, the model can give different predictions according
to the possible degree of evolution with the user’s interests. To
summarize, the main contributions of this work are as follows:
• We propose to consider the causality and interaction rela-

tionships between the user’s interests and different elapsed
times since the user’s historical interactions to better predict
users’ time-evolving interests.

• We designed a novel elapsed time aware multi-interest evo-
lution model called DemiRec by combining the soft cluster-
ing of dynamic routing and the advantages of absolute posi-
tion and elapsed time encodings for self-attention. DemiRec
can learn the sequential relationship and interactions across
the user’s different interests to better predict the evolution of
users’ complex interests after a certain time interval.

• DemiRec significantly improves diversity with comparable
accuracy performance, and outperforms the state-of-the-art
multi-interest baseline in terms of both accuracy and diver-
sity. In addition, we present the experiments to study the
impact of elapsed time, and different components.

2. Related Work
2.1 Sequential Recommendation

Sequential recommendation methods consider sequential pat-
tern information to obtaind higher accuracy and are widely used
in the industry. Traditional methods such as FPMC [30] cap-
ture users’ long-term interests by Matrix Factorization and adapt
users’ short-term interests by Markov Chains.

In recent years, deep learning technology has been widely
used in sequential recommendation due to its powerful nonlinear
representation and generalization ability. Recurrent Neural Net-
work (RNN) has great performance to summarize long sequences
into a fixed-length hidden vector. GRU4Rec [13] first introduces
RNN based method to leverage complete interaction sequences.
DREAM [40] based on RNN, learns the dynamic representation
of items in the user’s basket to reveal the user’s dynamic inter-
est. RRN [36] is the first recurrent recommender network that
attempts to capture the dynamics of both user and item represen-
tation. HRNN [29] models user’s interaction sequence with two
levels hierarchical RNN to propagate user’s historical interests to
current interest. DIEN [41] combines attention mechanism with
RNN to capture users’ evolving interests. SR-GNN [37] model
users’ interaction sequences as a graph and use Graph Neural Net-

work to capture the complex relationship between interactions.

2.2 Capsule Network
Capsule Network was first proposed by Hinton, et al . [14] and

has become well-known since the dynamic routing method [31]
was proposed and showed unique performance in Computer Vi-
sion. MIND [22] uses it to do soft clustering on users’ historical
interactions to capture diverse interests of users. ComiRec [5]
studied to capture users’ multiple interests by a dynamic rout-
ing model and a self-attention model respectively and consideres
the order of the sequence. In addition, they proposed to balance
the diversity and accuracy performance by a controllable factor.
FAT [26] extracts future interactions from neighbors and uses dy-
namic routing to obtain the trend representation.

2.3 Attention Mechanisms
In recent years, the attention mechanism has gained a lot of

consideration with its performance and interpretability in various
fields [3, 39]. The attention mechanism determines which part
of the input is more important and needs more concentration be-
ing paid by learning a set of weights. Earlier, NARM [24] and
STAMP [25] incorporated vanilla attention mechanisms to cap-
ture user’s current preference. Later, the Encoder-Decoder frame-
work Transformer [34], became a breakthrough sequence method
on machine translation tasks. It uses the scaled dot-product atten-
tion which is defined as:

Attention(Q,K,V) = softmax
(

QKT
√

d

)
V (1)

where Q, K, V represent queries, keys and values respectively,
and usually use the same object in self-attention. The self-
attention modules of Transformer have also achieved state-of-the-
art results on sequential recommendation, such as SASRec [18]
and BST [6]. Since the self-attention layers don’t treat the in-
puts as structured data, it is not aware of the order of the items.
Vaswani, et al . [34] and Shaw, et al . [32] give solutions to add
learnable position embeddings and relative position embeddings,
respectively. TiSASRec [23] and MEANTIME [7] leverage the
exact time information in the users’ interaction sequences, by
adding learnable absolute and relative time embeddings. Inspired
by Bert [9] which leverages the Transformer, Bert4rec [33] uses
bidirectional information of sequence context for training mask
embedding of the target item.

3. Methodology
In this section, we first formulate the sequential recommenda-

tion problem and then introduce the details of each component of
our multi-interest evolution model. The overall structure of our
proposed framework is illustrated in Figure 2.

3.1 Problem Formulation
Given a set of users and a set of items which can be denoted

as u ∈ U and i ∈ I respectively. In the setting of sequen-
tial recommendation, the implicit feedback of user u to items
can be denoted as an item sequence as Su =

{
iu1, i

u
2, . . . , i

u
|Su |

}
where iut ∈ I ordered by the corresponding timestamp sequence
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Fig. 2: An overview of DemiRec. DemiRec takes the user’s interaction sequence as input. The embedding layer transforms item IDs into corresponding embed-
dings. Through the dynamic routing, unordered interests are extracted from item embeddings. Then, according to the timestamp of the first interaction and the
last interaction in each interest cluster, which indicate the order and elapsed time respectively, position embedding and elapsed time embedding are added to each
interest embedding for value and key in self-attention layers. The evolved interest embeddings generated through the self-attention layers are then used for model
training and serving. For model training, the most similar interest embedding to the target embedding will be chosen to compute the sampled softmax loss. For
serving, each interest embedding will independently retrieve top-N nearest items, generating the overall top-N recommendation.

Table 1: Notations

Notation Description

u a user
i an item
t a timestamp
d the dimension of item embeddings
U the set of users
I the set of items
T the set of timestamps
V the set of interests
n the maximum sequence length
k the number of interest embeddings

T u =
{
tu
1, t

u
2, . . . , t

u
|Su |

}
. The goal of sequential recommendation

task is to provide a recommendation list for each user u based on
Su, and the real next interacted item iu

|Su |+1 ∈ I should be ranked
as high as possible. Notations are summarized in Table 1.

3.2 Interest Sequence Extractor
3.2.1 Item Embedding Layer

First, we transform the user’s historical interaction sequence
into a fixed-length item sequence Iu =

{
iu1, i

u
2, . . . , i

u
n

}
and times-

tamp sequence T u =
{
tu
1, t

u
2, . . . , t

u
n

}
by clipping the earlier inter-

actions or adding paddings. The interest sequence extractor layer
takes item IDs sequence as the input. Then we adopt the widely-
used embedding technology to embed these ID features into low-
dimensional dense vectors. Therefore, the item embedding ma-
trix is MI ∈ R|I|×d. For item i in set I, the embedding layer looks
up and outputs the corresponding embedding ei.
3.2.2 Dynamic Routing

We utilize the dynamic routing method based on MIND [22] to
extract user’s diverse interests. The item embeddings from user
can be viewed as primary capsules. Through iterative dynamic
routing, the outputs of interest capsules v j ∈ R

d are determined
by the weighted sum of primary capsules according to the cou-
pling coefficients. The orientation and length of the output vector

represent the user’s specific interest and the probability that the
interest exists, respectively.
3.2.3 Restoring Interests Sequence

After dynamic routing, the user’s interactions are clustered into
unordered interests according to the coupling coefficients. Then
we restore the order and time information of the user’s interests
according to the item timestamps in the clusters. First, we find
the subordination between items and interests according to the fi-
nal coupling coefficients. If the coupling coefficient of item i to
interest j is greater than the average coefficient of this interest,
the item i is considered to belong to the interest j. Thus, the time
information of interests can be obtained by the timestamp of the
earliest and the latest interactions in each interest:

t j = min
ci j≥c j

ti and t̂ j = max
ci j≥c j

ti (2)

where t j are the start time of interest j, t̂ j are the latest inter-
action time of interest j, ci j are the coupling coefficients. Then
according to the start time of interests, we can restore the or-
der of the user’s interests Vu =

{
vu1, v

u
2, . . . , v

u
k

}
and timestamps

indicated the latest interaction time of corresponding interest
Lu =

{
t̂u
1, t̂

u
2, . . . , t̂

u
k

}
.

3.3 Interests Sequence Modeling
3.3.1 Elapsed Time Modeling

We model the elapsed time since the latest interaction of the
user’s interests with the target interaction to find the relationship
between the user’s historical interests and the user’s current in-
terests. Generally, interest changes usually occurs after a long
time interval, but the time interval of access is extremly diverse,
leading to the data sparsity problem. Therefore, we use loga-
rithm operation to map the elapsed times to a smaller range and
make more data in a longer elapsed time encode. Specifically,
giving the latest interaction time sequence L and a target interac-
tion timestamp tn+1, the scaled elapsed time of interest j is:
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r j = log1+l

(
tn+1 − t̂ j

)
(3)

where l is a hyperparameter of the base of logarithm operation.
Tuning l can balance the precise encoding of each timestamp and
alleviating data sparsity problem.
3.3.2 Auxiliary Embedding Layer

The self-attention model doesn’t use the recurrent structure,
it’s not aware of the order of items in a sequence. Therefore
following [32], we use two distinct learnable positional embed-
ding matrices MP

K ∈ R
k×d, MP

V ∈ R
k×d for keys and values in the

self-attention mechanism, respectively. For interest vi in the user
interest sequenceV, the auxiliary embedding layer looks up and
outputs the embedding pk

i and pvi . Compare with the one learn-
able position embedding injected into the sequence, this method
is more suitable and flexible for use in the self-attention mecha-
nism without requiring additional linear transformations.

Similar to the positional embedding, elapsed time embedding
matrices are MR

K ∈ R
p×d and MR

V ∈ R
p×d for keys and values in

self-attention. For elapsed time encoding ri in the timestamp se-
quenceL, the auxiliary embedding layer looks up and outputs the
embedding rk

i and rvi .
3.3.3 Elapsed Time-Aware Self-Attention

Based on Li, et al . [23], we apply the self-attention mechanism
on interest sequence to predict users’ interest changes. We add
position embeddings and elapsed time embeddings to the keys
and values in the self-attention calculation so that the order and
elapsed time information can be considered:

K j = v jWK + rk
j + pk

j and V j = v jWV + rvj + pvj (4)

Consider the causality in users’ interest sequences, we for-
bade links between Qi and K j ( j > i), where Qi = viWQ,K j =

v jWK + rk
j + pk

j , so that only the first t interests will be considered
when predicting the (t + 1)st interest.

After the self-attention layer, a point-wise feed-forward net-
work is applied identically to all zi with sharing parameters to
endow the model with nonlinearity and consider the interactions
between different dimensions:

FFN (zi) = ReLU
(
ziW1 + b1

)
W2 + b2 (5)

where W1, W2 are d × d matrices and b1, b2 are d dimensional
vectors. The output interests from are then formed as a matrix
Zu = [z1, z2, . . . , zk] ∈ Rd×kfor downstream task.

3.4 Prediction
3.4.1 Model Training

After stacking self-attention layers and feed-forward layers, we
get the prediction of the user’s evolved interests according to the
item clusters, sequence information and elapsed time. Then, we
use an argmax operator to choose a corresponding interest em-
bedding vector for the target item i:

zu = Zu

[
argmax

(
ZT

u ei

)]
(6)

where ei denotes the embedding of the target item i, and Zu is the
matrix formed by user interest embeddings. Then given a train-
ing sample (u, i) with the corresponding user interest embedding

zu and item embedding ei, we can compute the probability of the
user u interacting with the item i as:

P(i | u) =
exp

(
zT

u ei

)
∑

j∈I exp
(
zT

u e j

) (7)

The sum operator of Equation 7 is computationally expensive.
Therefore, we use a sampled softmax technique [16] to compute
the approximate probability in training.
3.4.2 Serving

For online serving, we use the multiple interest embeddings
processed by the multi-interest evolution model for each user.
Through the approximate nearest neighbour approach, such as
Faiss [17], each interest embedding can independently retrieve
top-N items from the item pool with the highest similarities.
Then, the items retrieved by multiple interests are ranked to de-
termine the final overall recommend items for each user.

A common and straightforward way for ranking retrieved items
is to use their inner production proximity with user interests.
However, to achieve high accuracy, based on the sequence infor-
mation, the multi-interest evolution model modified interest em-
beddings not only on direction but also on length, make interest
representations got various strengths. This makes the simple use
of proximity ignore some of the user’s interests, make the recom-
mendation results single, and damage the diversity. Although it
is an effective method to maximize accuracy, diversity and nov-
elty recommendation also contribute to improving the user expe-
rience. Therefore, follow the ComiRec [5], we use the following
value function Q(u,R) to balance the accuracy and diversity of
the recommendation by a controllable factor λ ≥ 0:

Q(u,R) =
∑
i∈R

f (u, i) + λ
∑
i∈R

∑
j∈R

g(i, j) (8)

f (u, i) = max
1≤k≤K

(
e⊤i z(k)

u

)
(9)

g(i, j) = δ(CATE(i) , CATE( j)) (10)

where R is a set of items for final recommendation. Function
f (u, i) computes the maximum inner production proximity of the
k-th interest embedding of the user u and item i, and function
g(i, j) is an indicator function. By adjusting λ from 0 to ∞, we
can switch from only use the straightforward method to obtain
the high accuracy to only consider the category diversity.

4. Experiments
In this section, we first introduce the benchmark datasets and

our experimental settings. And then, we present the comparisons
between DemiRec and other state-of-the-art methods to evaluate
recommendation performance and in-depth analysis to verify the
effectiveness of each component.

4.1 Datasets
We evaluate our methods on three large datasets from real

world platforms. The statistics of the three datasets are shown
in Table 2.
• Amazon Books: Amazon is a series of datasets introduced

in [12, 27]. It comprises a large number of product reviews
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Table 2: Statistics of datasets

Dataset # users # items # interactions

Amazon Books 459,133 313,966 8,898,041
Steam 2,567,538 15,474 7,793,069
MovieLens-1M 6,040 3,416 999,611

of various category crawled from Amazon.com. We use the
Books category of the Amazon dataset, which include 8.9
million reviews spanning May 1996 to July 2014.

• Steam: A dataset from a large online video game distribu-
tion platform introduced in [32], including 7.8 million re-
views spanning October 2010 to January 2018. The dataset
also includes rich information about user and games.

• MovieLens-1M: MovieLens [10] is a widely used bench-
mark for evaluating recommendation algorithms. We use the
MovieLens-1M, which includes 1 million ratings on movies.

For all datasets, we determine the sequence order of implicit
feedback by timestamps. Following the preprocessing procedure
from [5], we partition all users in each dataset into training, val-
idation and test set by the proportion of 8:1:1. To avoid data
sparsity, we filter out the users and items with fewer than five
interactions in our experiment. We train models using the entire
interaction sequences of training users. In the evaluation, the first
80% interactions of the user from validation and test set are used
to infer user embeddings from trained models, and the remaining
20% interactions are treated as target items to compute metrics.

4.2 Evaluation Metrics
We adopt two commonly used Top-N metrics, Recall and Nor-

malized Discounted Cumulative Gain (NDCG) to compare the
accuracy of models. Recall is obtained by dividing the number
of corrected recommended items by the total number of all tar-
get items refers to the ratio of the real interacted items presenting
in the top-N recommendation lists [19]. NDCG takes the exact
ranking positions of correct recommended items in the list into
consideration [15]. The recommend list length N is set to 20, 50
respectively as metrics for evaluation. For better interpretability,
we adopt a per-user average for each metric [5, 19].

4.3 Competitors
We compare our proposed model, DemiRec, with the follow-

ing methods. These methods include classic general recommen-
dation (e.g. POP) without user modeling, Neural Network based
methods (e.g. YouTube DNN, GRU4Rec, SASRec), and Capsule
Network based methods (e.g. MIND, ComiRec). In our experi-
mental setting, models should give the prediction for unseen users
in the validation and test sets. Thus factorization-based methods
are inappropriate for this setting.
• POP: A simple baseline that ranks all items according to

their popularity in all users of training set, and the popular-
ity is calculated by counting the number of interactions.

• GRU4Rec [13]: GRU4Rec use GRU unit in RNN to model
to leverage complete interaction sequences.

• SASRec [18]: Using the self-attention mechanism to model
user interaction sequences, SASRec can flexibly leverage the
information of different parts in the sequence and achieve

state-of-the-art results on sequential recommendation.
• YouTube DNN [8]: One of the most successful industrial

recommender systems using a deep candidate generation
network and a deep ranking network to complete the rec-
ommendation from a large-scale candidate set.

• MIND [22]: MIND is the industrial applicable recommen-
dation model that first used Capsule Network to cluster
users’ interactions and extract diverse interests.

• ComiRec [5]: ComiRec studied to capture user’s multiple
interest by Capsule Network and Self-Attention, respectively
and considered order information of user sequences.

For fair comparison, we consider embedding dimensions d
from {16, 32, 48, 64} and learning rate in {10−1, 10−2, 10−3, 10−4}

and the default settings according to the respective papers for all
methods except POP. For multi-interests methods, we set the in-
terest number to 4. We tune hyper-parameters on the validation
set using early stopping based on the Recall@50.

Due to the reproducibility problem caused by the lack of model
details, we can not compare with FAT [26]. But through compar-
ison with the baselines, we believe DemiRec has achieved com-
petitive performance improvements.

4.4 Implementation Details
We implement DemiRec with tensorflow [1] 1.14 in Python 3.7

and fine-tune hyperparameters on the validation set. We set the
average length of user sequences in each dataset as the max se-
quence length. We use two elapsed time-aware self-attention lay-
ers with the base of logarithm operation l = 0.5. We use Adam
optimizer [20] with learning rate lr = 0.0005. The rest of our pa-
rameter settings can be found in [5]. To obtain stable results, we
use the k-means++ [2] initialization method for dynamic routing
in the experiments.

4.5 Recommendation Performance
Table 3 presents the recommendation performance of all meth-

ods on the three datasets. Among the baselines, SASRec outper-
forms other baselines on the most criteria. On the other hand,
the best Capsule Network-based baseline can only achieve higher
performance on capturing multiple long-term interests from
Amazon Books users. By combining the advantages of capsule
network and sequence modelling, our model DemiRec achieved
significant improvement compare with Capsule Network-based
baselines and outperform the best baseline over Amazon Books
and Steam, which shows the effectiveness of leverage elapsed
time and sequence information on interest level. For the dense
MovieLens-1M, compared with SASRec, the clustering process
makes DemiRec unable to fully use the information in the se-
quences. But a little performance sacrifice leads to a significant
increase in diversity which is discussed in Section4.8.

Figure 3 shows the recall of DemiRec, the best baseline and
MIND (the base model which uses the raw interests) on Amazon
Books and MovieLens datasets. The test samples are sorted and
grouped according to the elapsed time. From the figures, we can
find that the baselines degrade seriously for the samples with long
elapsed time since they only model the historical information. On
the contrary, DemiRec can maintain relatively high performance

5ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-DBS-174 No.8
2021/12/27



Table 3: Recommendation performance on public datasets. The best performance result in each column is boldfaced, and the second-best performance result in
each column is underlined. Improvements over the best baseline are shown in the last row. All the numbers in the table are percentage numbers with ’%’ omitted.

Amazon Books Steam MovieLens-1M
Model Metrics@20 Metrics@50 Metrics@20 Metrics@50 Metrics@20 Metrics@50

Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG Recall NDCG

POP 1.361 0.533 2.315 0.722 13.134 5.234 20.407 6.670 4.903 1.639 10.675 2.771
GRU4Rec 3.779 1.692 6.210 2.172 22.585 13.386 32.966 15.435 9.424 3.723 18.736 5.600
SASRec 5.274 2.900 8.210 2.322 23.860 14.106 34.322 16.171 11.591 4.411 22.124 6.487
YoutubeDNN 4.472 2.041 7.032 2.546 21.956 10.415 33.300 12.657 9.263 3.538 17.654 5.186
MIND 4.627 2.131 7.289 2.649 20.662 11.181 30.166 13.017 6.598 2.518 14.041 3.978
ComiRec 5.602 2.192 8.412 2.749 21.614 12.169 31.487 14.121 7.499 2.552 15.707 4.165
DemiRec 6.232 2.957 9.392 3.581 25.581 14.454 36.738 16.660 10.702 4.085 21.159 6.139
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Fig. 3: Recall comparison between DemiRec, the best baseline and MIND on
Amazon Books and MovieLens datasets grouped by elapsed time.

Table 4: Ablation analysis on three datasets.

Books Steam MovieLens
Metrics@50 Recall NDCG Recall NDCG Recall NDCG

DemiRec/C 9.328 3.571 37.091 17.457 20.190 5.873
DemiRec/L 9.836 3.868 35.593 15.665 19.536 5.765
DemiRec/P 9.739 3.823 30.728 12.787 18.179 5.429
DemiRec/E 8.861 3.303 33.546 12.976 16.269 4.722
DemiRec 9.392 3.581 36.738 16.660 21.159 6.139

when users access the system after a long elapsed time.

4.6 Ablation Study
To study the effectiveness of considering sequence information

on user’s interests and the importance of elapsed time for squen-
tial recommendation, we analyze their impacts via an ablation
study. Table 4 shows the performance comparison between our
default method and following 4 variants on the three datasets:
• DemiRec/C & DemiRec/L: We unblind the links forbade in

self-attention layers of DemiRec/C. This modification makes
former interests influenced by future interests. To further
dissect the effectiveness of considering influences between
the user’s interests, we turn off all links between different in-
terests in the attention layers as DemiRec/L. The comparison
results between these modifications and the default setting
are different on each dataset. The result on Amazon Books
shows that much of uses’ interests are unaffected by other
interests. In the Steam dataset, users’ interests usually influ-
ence each other, whether old or new. The default setting gets
the best performance on MovieLens. This result shows that
some of the users’ interests are affected by causal relation-
ships, and it also benefits from dense information for each
user. Overall, the links between users’ interests should be
established according to the actual application scenarios.

• DemiRec/P: We remove the position embeddings used in
self-attention layers to trun off the sensitivity of the or-

Table 5: Effect of the interest number k in the dynamic routing.

Books Steam MovieLens
Metrics@50 Recall NDCG Recall NDCG Recall NDCG

DemiRec(k=2) 9.459 3.608 36.892 15.962 19.399 5.618
DemiRec(k=4) 9.392 3.581 36.738 16.660 21.159 6.139
DemiRec(k=6) 9.341 3.604 36.374 16.999 20.651 6.083
DemiRec(k=8) 9.248 3.528 33.771 15.752 20.224 5.833

der of users’ interest sequences. We denote this model as
DemiRec/P. The comparison results with the default setting
on the Steam and MovieLens datasets demonstrate the im-
portance of using the order information of users’ interests.
DemiRec/P’s result on Amazon Books outperforms the de-
fault setting, revealing that users’ habits in books are differ-
ent from those in games or movies, and users’ interests tend
to exist in parallel and long-term.

• DemiRec/E: In this modification, we remove the elapsed
time embeddings to obtain interest predictions based on a de-
fault elapsed time learned through training. No matter how
long it passed since the user’s last access, DemiRec/E will
give same recommendation. This simple prediction strategy
makes DemiRec/E underperform the default setting in every
dataset. This result verifies that the elapsed time is critical
for predicting users’ evolving interests.

4.7 Analysis of Hyperparameters
4.7.1 Number of Interests:

Table 5 shows the performance of DemiRec with the number
of interests k from 2 to 8. The optimal setting of the interest num-
ber depends on users’ habits under different application scenarios.
For the Amazon Books, DemiRec obtains the best performance
when k = 2. For the Steam, DemiRec achieves similar perfor-
mance when k is set to 2, 4 and 6. After verifying the recom-
mendation results of each interest embedding, we find that users
in Steam usually have 3 interests. When k is set to 6, DemiRec
learned two identical clusters for each interest, resulting in a sim-
ilar performance with k = 2 and k = 4. For the MovieLens,
DemiRec obtains the best performance when k = 4.
4.7.2 Base of Logarithm Operation:

Table 6 shows the performance of DemiRec with the base of
logarithm operation l in the elapsed time modeling from 2−2 to
22. The results demonstrate that the data sparsity of long elapsed
time may damage the performance although a smaller value of
l can give precise encoding for each timestamp. Conversely, a
larger value of l will cause rough encoding for short elapsed time.
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Table 6: Effect of the base of logarithm operation in the elapsed time model-
ing.

Books Steam MovieLens
Metrics@50 Recall NDCG Recall NDCG Recall NDCG

DemiRec(l=2−2) 9.411 3.576 36.621 16.593 20.085 5.729
DemiRec(l=2−1) 9.392 3.581 36.738 16.660 21.159 6.139
DemiRec(l=20) 9.507 3.628 36.497 16.607 20.073 5.637
DemiRec(l=21) 9.407 3.555 36.517 16.434 19.909 5.651
DemiRec(l=22) 9.358 3.537 36.438 16.150 20.081 5.912

Table 7: Accuracy and diversity performance for the controllable study.

Books MovieLens
Metrics@50 Recall Diversity Recall Diversity

DemiRec(λ = 0.0000) 9.392 68.299 21.159 40.207
DemiRec(λ = 0.0125) 9.344 70.485 21.039 44.232
DemiRec(λ = 0.0250) 9.293 71.994 20.767 46.441
DemiRec(λ = 0.0500) 9.157 74.334 20.118 49.128
DemiRec(λ = 0.1000) 8.941 77.557 19.601 51.750
DemiRec(λ = 0.2000) 8.644 80.151 18.905 54.037
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Fig. 4: Accuracy and diversity comparison between baselines and DemiRec
with different the factor λ settings.

Thus, we need to tune l to balance both sides. The best l is 2−1 for
Steam and MovieLens dataset, and 20 for Amazon Books, in our
experimentations. This difference further verifies the experimen-
tal results in Section 4.6 that the users’ interests in books tend to
be long-term compared with those in games and movies.

4.8 Recommendation Diversity
The majority of recommendation algorithms have focused

whole efforts on improving prediction accuracy. However, other
important aspects of recommendation quality, such as diversity of
recommendations, also play an important role to avoid monotony
and improve user experience, which drawn more research atten-
tion in recent years [4,28]. Our method represents each user with
multiple interests embeddings and expects more diverse results
than methods using a single vector in user modeling. Thus, we
analyze the diversity performance of our method with the follow-
ing definition of individual diversity based on item categories:

Diversity@N =

∑N
j=1

∑N
k= j+1 δ

(
CATE

(
îu, j

)
, CATE

(
îu,k

))
N × (N − 1)/2

,

(11)
where CATE(i) is the category of item i, îu, j denotes the j-th rec-
ommended item for the user u, and δ(·) is an indicator function.
4.8.1 Controllable Study:

To ensure the trade-off between accuracy and diversity in fi-
nal top-N recommend items, we use the aggregation method pro-
posed in ComiRec [5], which can control the balance of retriev-
ing with the most intense interest or with diverse interests. Table 7

Fig. 5: Top 4 retrieved items of interests generated by DemiRec after differ-
ent elapsed times.

shows the model performance of DemiRec on the Amazon Books
and MovieLens. By controlling the factor λ, we can balance the
recommendation accuracy and diversity. From the table, we can
see that within larger controllable factor λ, the recommendation
diversity increases substantially by retrieving with more diverse
user interests. Since we retrieve 50 items in this metric, high score
items can be retained in the final recommendation list, resulting
in a slight decrease in recall rate.
4.8.2 Diversity Comparison:

Figure 4 compares the accuracy and diversity between base-
lines and DemiRec with different factor λ settings. The number
of interests k is set to 4 for multi-interest models. The control fac-
tor λ is set to 0.05 for the aggregation method in ComiRec. From
the Figure 4, we can find that our model outperform most base-
lines on both accuracy and diversity. For the comparison with
SASRec on MovieLens-1M, a slight decrease in accuracy brings
a significant improvement in diversity.

4.9 Case Study
Figure 5 shows the top 4 retrieved items of a randomly selected

user after different elapsed times. We can find that our model
learns three different fine-grained interests for the user. When the
user accesses the system after different elapsed times, DemiRec
gives different recommendations. As the elapsed time gets longer,
interests are mixed together and novel items are recommended.

5. Conclusions
In this paper, we propose a dynamic evolutionary multi-interest

network for the sequential recommendation to give evolved rec-
ommendation after different elapsed times. Our model uses an
interest sequence extractor to generate users’ interest sequences
and models the sequential information and elapsed time on in-
terest level to give dynamic evolved recommendations. Exten-

7ⓒ 2021 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2021-DBS-174 No.8
2021/12/27



sive empirical results demonstrate that our model significantly
improves diversity with comparable accuracy performance, and
outperforms the state-of-the-art multi-interest baseline in terms
of both accuracy and diversity on three public benchmarks. We
also explore various features of this model.
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