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Abstract: In Asiacrypt 2001, Courtois proposed the first three-pass zero-knowledge identification (ID)
scheme based on the MinRank problem. However, in Courtois’ basic ID scheme, the cheating probabil-
ity, i.e., the success probability of cheating prover, is 2/3, which is larger than half. Although Courtois
also proposed a variant scheme which is claimed to have half cheating probability, the security of the variant
scheme is not formally proven and it requires another hardness assumption on a specific one-way function and
also an additional assumption that verifier always generates challenges according to a specific distribution.
In this paper, we propose the first three-pass zero-knowledge ID scheme based on the MinRank problem with
the cheating probability of exactly half even with only two-bit challenge space, without any additional as-
sumption. Our proposed ID scheme reduces the necessary number of rounds in order to achieve the targeted
security level against impersonation.
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1. Introduction

In 1997, P. Shor [18] showed polynomial-time quantum

algorithms to break factoring and discrete logarithm based

cryptosystems. Therefore, we need to develop cryptosys-

tems having a resistance to quantum computer attacks. The

research area to study such cryptosystems is called post

quantum cryptography (PQC) [2]. The most promising can-

didates for PQC are computational problems based on lat-

tice, isogeny, coding theory, and multivariate polynomials.

In particular, one of computational problems based on

multivariate polynomials is multivariate quadratic (MQ)

problem, which finds a solution to a system of quadratic

equations over a finite field. In general, MQ problem is the

foundation for constructing multivariate public key cryp-

tosystems (MPKC). There have been a lot of multivariate

schemes, HFE [15], UOV [11], Rainbow [6], and so on.

Among them, Rainbow gets a lot of attention since it was

chosen as a third round candidate [5] in NIST PQC stan-
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dardization project [14].

On the other hand, many cryptanalysis against multivari-

ate schemes such HFE and Rainbow are not only based on

MQ problem, but also another computational problem called

MinRank problem. MinRank problem is the problem of find-

ing a linear combination
∑m−1

i=1 αiMi−M0 with a specified

rank r from a given set of matrices {M0, . . . ,Mm−1}. Min-

Rank problem is proven to be NP-complete [3]. Therefore,

we can consider cryptographic schemes based on the Min-

Rank problem.

In fact, in Asiacrypt 2001, Courtois [4] proposed the first

three-pass zero-knowledge identification (ID) scheme based

on the MinRank problem. In Courtois’ basic ID scheme, the

cheating probability, i.e., the success probability of cheating

prover, is 2/3, which is larger than half. As a result, in order

to achieve the desired security level against impersonation,

Courtois’ basic ID scheme needs to be repeated in larger

number of rounds compared to the common ID scheme with

half cheating probability such as Feige-Fiat-Shamir [9,10] or

Schnorr [16,17] ID schemes. This makes the total communi-

cation cost of Courtois’ basic ID scheme quite high in prac-

tice. In the same paper, Courtois also proposed a variant

of the basic ID scheme. Courtois claimed that the variant

of the basic scheme has cheating probability half (1/2) by

employing several additional assumptions: (1) the verifier

sends challenge according a certain fixed distribution and

(2) a certain special function satisfies one-wayness. How-

ever, Courtois did not provide any formal proof that the

variant scheme is secure. Moreover, it is not clear how the

variant scheme will maintain privacy against an adversary
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which acts as a malicious verifier where it sends challenge

according to arbitrary distribution.

In this paper, we propose a new three-pass ID scheme

based on MinRank problem. By assuming the hardness

of decisional MinRank problem and the existence of per-

fectly hiding and computational binding commitment, with-

out using any additional assumption, we can prove that the

probability that an adversary not possessing the valid secret

key being accepted by the adversary is at most half (1/2).

Hence, the number of rounds which are needed for our pro-

posed scheme to achieve the desired security level is less than

Courtois’ ID scheme. As a practical result, our estimation

on the total communication cost for 128-bit security, 192-bit

security and 256-bit security shows that the total commu-

nication cost of our proposed scheme is less than Courtois’

first ID scheme.

This paper is organized as follows. In Section 2 we pro-

vide the definitions of notations and review the definitions

of MinRank problem. In Section 3 we describe our proposed

scheme and its security properties. In Section 4 we provide

the proof of the theorems related to the properties of our

scheme. In Section 5 we discuss the selection of practical

parameters. Finally, we close our paper with conclusion in

Section 6.

2. Preliminaries

In this section, we will show the definition of notations

and notions used throughout the paper.

Notations and Consensus.

Unless noted otherwise, let any algorithm in this paper be

a probabilistic polynomial time Turing Machine.

Definition 1 (Search Minrank Problem) The

search minrank problem is defined as follows. Given

a positive integer r ∈ N and m random n-square ma-

trices over a finite field F: M0,M1, . . . ,Mm−1, find

α = (α1, . . . , αm−1) ∈ Fm−1 such that rank(M) = r,

where M =
∑m−1

i=1 αiMi −M0.

Decisional Minrank Problem

In this paper, we use the hardness of the decisional version

of the minrank problem as the basic assumption of the secu-

rity since it is much simpler to prove the security based on

the decisional version compared to the search version above.

Informally, the decisional minrank problem is as follows:

given a positive integer r ∈ N and m n-square matrices over

a finite field F: M0,M1, . . . ,Mm−1, decide whether there

exists α = (α1, . . . , αm−1) ∈ Fm−1 such that rank(M) = r,

where M =
∑m−1

i=1 αiMi −M0.

Remark 1 Although solving the decisional minrank prob-

lem seems easier than solving the search minrank problem,

Courtois [4] has proven that the decisional minrank problem

is NP-hard.

The formal definition of decisional minrank problem is as

follows.

Definition 2 (Decisional Minrank Problem) An

algorithm D is said to (t, ε)-solve the decisional minrank

problem associated with the finite field F and r,m, n ∈ N if

D runs in t units of time and the following holds.

∣∣∣Pr [DIGen(F, r,m, n) = 1
]
−

Pr
[
DLossyGen(F, r,m, n) = 1

]∣∣∣ ≧ ε,

where:

• DIGen denotes that D receives the input from the oracle

IGen which generates an instance of minrank problem that

has at least one solution, i.e., m n-square matrices over a

finite field F: M0,M1, . . . ,Mm−1, such that there exists

α = (α1, . . . , αm−1) ∈ Fm−1 satisfying the following:

rank

(
m−1∑
i=1

αiMi −M0

)
= r, (1)

• DLossyGen denotes that D receives the input from the oracle

LossyGen which generates m arbitrarily random n-square

matrices over a finite field F, i.e., M0,M1, . . . ,Mm−1 which

do not necessarily have α = (α1, . . . , αm−1) ∈ Fm−1 sat-

isfying Eq. (1).

The decisional minrank problem associated with the finite

field F and r,m, n ∈ N is said to be (t, ε)-hard if there is no

algorithm D which (t, ε)-solves the problem.

3. Proposed Scheme

In this section, first we describe our proposed identifica-

tion scheme. Then we show that our proposed scheme sat-

isfies the standard properties such as completeness, sound-

ness, and zero-knowledgeness.

3.1 Construction

Key Generation

Given the security parameter as input, the key generator

generates the public pk and the secret key sk which satisfy

the following properties. The public key pk consists of a

positive integer r ∈ N and random m matrices over a finite

field F: M0,M1, . . . ,Mm−1. The secret key sk consists of

α = (α1, . . . , αm−1) ∈ Fm−1 such that rank(M) = r, where

M =
∑m−1

i=1 αiMi −M0.

Remark 2 Here, we do not describe the concrete imple-

mentation of the key generator. We will describe it in the

later section when we discuss about the concrete implemen-

tation of the scheme.

Interactive Protocol

A single elementary round of interactive protocol between

a prover P (pk, sk) and a verivier V (pk) is described as fol-

lows. Similar to Courtois’ ID scheme [4], we also employ the

hash function H which acts as a commitment with perfectly

hiding and computational binding properties.

Step 1: P generates random non-singular matri-

ces S0, S1, T0, T1 over F and random matrices

X0, X1 over F. Then P randomly generates

β0,1 and β1,1: β0 = (β0,1, . . . , β0,m−1) ∈ Fm−1,

β1 = (β1,1, . . . , β1,m−1) ∈ Fm−1 and computes the
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followings:

N0 =

m−1∑
i=1

β0,iMi (2)

U0,0 = T0N0S0 +X0 (3)

U0,1 = T0MS0 + U0,0 (4)

R0 = (S0, T0, X0) (5)

N1 =

m−1∑
i=1

β1,iMi (6)

U1,0 = T1N1S1 +X1 (7)

U1,1 = T1MS1 + U1,0 (8)

R1 = (S1, T1, X1) (9)

Finally, P sends Y = (Y0, Y1) to V where the followings

hold.

Y0 = (H(U0,0), H(U0,1), H(R0)) (10)

Y1 = (H(U1,0), H(U1,1), H(R1)). (11)

Step 2: V parses Y0 and Y1 as Y0 = (Y0,0, Y0,1, Y0,2)

and Y1 = (Y1,0, Y1,1, Y1,2). Then, V chooses randomly

c ∈ {0, 1, 2, 3, 4} and sends c to P .

Step 3: P computes Z0,0, Z0,1, Z1,0, Z1,1 according to the

value of c as follows.

Case c = 0: Z0,0 = U0,0, Z1,0 = R1,

Z0,1 = U0,1, Z1,1 = β1.

Case c = 1: Z0,0 = R0, Z1,0 = R1,

Z0,1 = β0, Z1,1 = β1 + α.

Case c = 2: Z0,0 = R0, Z1,0 = R1,

Z0,1 = β0 + α Z1,1 = β1

Case c = 3: Z0,0 = R0, Z1,0 = U1,0,

Z0,1 = β0, Z1,1 = U1,1.

Step 4: V parses Z = (Z0, Z1) into Z0,0, Z0,1, Z1,0, Z1,1.

And then V performs verification procedure according

to the value of c as follows.

Case c = 0: Z1,0 is parsed as Z1,0 = (S̃, T̃ , X̃) and

Z1,1 is parsed as Z1,1 = (γ̃1, . . . , γ̃m−1).

H(Z0,0)
?
= Y0,0, H(Z0,1)

?
= Y0,1,

rank(Z0,1 − Z0,0)
?
= r,

H(Z1,0)
?
= Y1,2, H(Ũ)

?
= Y1,0, where

Ũ = T̃

(
m−1∑
i=1

γ̃iMi

)
S̃ + X̃.

S̃
?
∈ GL, T̃

?
∈ GL.

Case c = 1: Z0,0 is parsed as Z0,0 = (Ŝ, T̂ , X̂) and

Z0,1 is parsed as Z0,1 = (γ̂1, . . . γ̂m−1). Z1,0 is

parsed as Z1,0 = (S̃, T̃ , X̃) and Z1,1 is parsed as

Z1,1 = (µ̃1, . . . µ̃m−1).

H(Z0,0)
?
= Y0,2, H(Û)

?
= Y0,0, where

Û = T̂

(
m−1∑
i=1

γ̂iMi

)
Ŝ + X̂. (12)

Ŝ
?
∈ GL, T̂

?
∈ GL.

H(Z1,0)
?
= Y1,2, H(W̃−T̃M0S̃)

?
= Y1,1, where

W̃ = T̃

(
m−1∑
i=1

µ̃iMi

)
S̃ + X̃. (13)

S̃
?
∈ GL, T̃

?
∈ GL.

Case c = 2: Z0,0 is parsed as Z0,0 = (Ŝ, T̂ , X̂) and

Z0,1 is parsed as Z0,1 = (µ̂1, . . . µ̂m−1). Z1,0 is

parsed as Z1,0 = (S̃, T̃ , X̃) and Z1,1 is parsed as

Z1,1 = (γ̃1, . . . γ̃m−1).

H(Z0,0)
?
= Y0,2, H(Ŵ − T̂M0Ŝ)

?
= Y0,1,

where

Ŵ = T̂

(
m−1∑
i=1

µ̂iMi

)
Ŝ + X̂. (14)

Ŝ
?
∈ GL, T̂

?
∈ GL.

H(Z1,0)
?
= Y1,2, H(Ũ)

?
= Y1,0, where

Ũ = T̃

(
m−1∑
i=1

γ̃iMi

)
S̃ + X̃. (15)

S̃
?
∈ GL, T̃

?
∈ GL.

Case c = 3: Z0,0 is parsed as Z0,0 = (Ŝ, T̂ , X̂) and

Z0,1 is parsed as Z0,1 = (γ̂, . . . γ̂m−1).

H(Z0,0)
?
= Y0,2, H(Û)

?
= Y0,0, where

Û = T̂

(
m−1∑
i=1

γ̂iMi

)
Ŝ + X̂.

Ŝ
?
∈ GL, T̂

?
∈ GL.

H(Z1,0)
?
= Y1,0, H(Z1,1)

?
= Y1,1, rank(Z1,1 −

Z1,0)
?
= r,

If all corresponding checking equations hold, V outputs

1 (accept), otherwise V outputs 0 (reject).

Remark 3 We said that the response Z is a valid response

w.r.t. challenge c if all checking equations in the verifier side

corresponding to the value of c hold.

Remark 4 A full identification scheme consists of ℓ repe-

titions of the single elementary round of interactive protocol

and the verifier will accept the prover if and only if V out-

puts 1 in all ℓ rounds.

Remark 5 Here we assume that the length of the input

into the hash function H is larger than that of the out-

put, that is why we can assume that H acts as a perfectly

hiding commitment. We also assume that H is collision re-

sistant, i.e., for any i polynomial algorithm, it is hard to find

two distinct inputs with the same output. That is why we

can assume that H acts a computational binding commit-

ment. Any common standard hash functions such as SHA-

128, SHA-256, SHA-512 is assumed to have these properties.

3.2 Completeness

Here we show that any prover who possesses the secret key

and follows the procedure of the honest prover will always

be accepted by the verifier.

Theorem 1 (Completeness) Let P be a prover who
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possesses the secret key sk corresponding the the public key

pk of our proposed identification scheme. Let P generate Y

in Step 1 according to the described procedure and send it to

the verifier. Then for any received challenge c ∈ {0, 1, 2, 3}
from the verifier, if P computes Z according to described

procedure, Z is a valid response w.r.t. challenge c.

In order to prove the above theorem, it is sufficient to

show that for each challenge c ∈ {0, 1, 2, 3}, Z which is gen-

erated accordingly in the procedure of the prover will satisfy

all the corresponding checking equations on the verifier side.

See Section 4.1 for the detailed proof.

3.3 Soundness

In order to prove the soundness of our proposed scheme,

we will use the following proposition.

Proposition 1 Let Y denote the value sent by the prover

in the Step 1 to the verifier and let Z(c) denote the valid re-

sponse w.r.t. challenge c for any c ∈ {0, 1, 2, 3}. Then,

from Y and any three combinations of elements from the

set {Z(0), Z(1), Z(2), Z(3)} we can efficiently compute the

solution of search minrank problem represented by the pub-

lic key.

We describe the detailed proof of above proposition in

Section 4.2. Based on above proposition, we can easily see

that the following corollary holds.

Corollary 1 If the public key does not have any corre-

sponding secret key, the success probability of any prover to

be accepted by the verifier in all ℓ rounds of a full identifi-

cation at most 1/2ℓ.

The security of our scheme against key-only imperson-

ation attack, i.e., soundness, is based on the hardness of

decisional minrank problem, as stated by the following the-

orem.

Theorem 2 Let A be an algorithm such that given the

public key pk, it is accepted in all ℓ rounds of the full identi-

fication protocol with probability εA ≧ 1
2ℓ , where the proba-

bility is taken over the random coins of A, the key generator,

and the verifier. Then, we can construct an algorithm which

(t, ε)-solves the decisional minrank problem associated with

the finite field F and r,m, n ∈ N such that the following

holds.

ε = εA − 1

2ℓ
, t = tA,

where tA is the maximum total time of A interacting in one

full identification protocol.

Corollary 2 If decisional minrank problem is (t, ε)-hard,

then the success probability of any adversary attempting to

impersonate a prover without secret key within t time units

is upper-bounded by ε+ 1/2ℓ.

3.4 Zero-Knowledgeness

The following theorem is to guarantee that no knowledge

on the secret leaked by communication with the prover.

Theorem 3 (Zero-Knowledgenes) For any verifier V ,

there exists an algorithm M which given input the public

key pk, perfectly simulates the view of verifier with the same

distribution as the view of V engaging with the prover pos-

sessing pk and the secret key sk.

4. Proofs of Main Theorems

4.1 Proof of Theorem 1

It is sufficient to show that for each challenge c ∈
{0, 1, 2, 3}, Z which is generated accordingly in the proce-

dure of the prover will satisfy all the corresponding checking

equations on the verifier side. Let us check for each case of

challenge.

Case c = 0: Since Z0,0 = U0,0 and Y0,0 = H(U0,0), it is

obvious that H(Z0,0) = H(U0,0) = Y0,0 holds. Sim-

ilarly, since Z0,1 = U0,1 and Y0,1 = H(U0,1) holds,

it is obvious that H(Z0,1) = H(U0,1) = Y0,1. Since

Z0,0 = U0,0 and Z0,1 = U0,1, the followings hold.

rank (Z0,1 − Z0,0) = rank (U0,1 − U0,0)

= rank (T0MS0)

(a)
= rank(M) = r.

Eq. (a) holds since T0 and S0 are invertible matrices.

Since Z1,0 = R1 and Y1,2 = H(R1), it is obvious that

H(Z1,0) = H(R1) = Y1,2 holds. Also, we can easily see

that (S̃, T̃ , X̃) = (S1, T1, X1). Since S1, T1 are invert-

ible matrices, so are S̃, T̃ . Since Z1,1 = β1, it is ob-

vious that (γ̃1, . . . , γ̃m−1) = (β1,1, . . . , β1,m−1.) Thus,

the followings hold.

Ũ = T̃

(
m−1∑
i=1

γ̃iMi

)
S̃ + X̃

= T1

(
m−1∑
i=1

β1,iMi

)
S1 +X1

= T1N1S1 +X1 = U1,0.

Hence, since Y1,0 = H(U1,0), H(Ũ) = H(U1,0) = Y1,0

holds.

Case c = 1: Since Z0,0 = R0 and Y0,2 = H(R0), it is ob-

vious that H(Z0,0) = Y0,2 holds. Hence, one can see

that (Ŝ, T̂ , X̂) = (S0, T0, X0) holds. Since Z0,1 = β0,

it is obvious that (γ̂1, . . . , γ̂m−1) = (β0,1, . . . , β0,m−1)

holds. Thus, the following holds.

Û = T̂

(
m−1∑
i=1

γ̂iMi

)
Ŝ + X̂

= T0

(
m−1∑
i=1

β0,iMi

)
S0 +X0

= T0N0S0 +X0 = U0,0.

Hence, since Y0,0 = H(U0,0), automatically H(Û) =

H(U0,0) = Y0,0 holds. Next, since Z1,0 = R1 and

Y1,2 = H(R1), it is obvious that H(Z1,0) = Y1,2 holds.

Hence, one can see that (S̃, T̃ , X̃) = (S1, T1, X1) holds.

Since Z1,1 = β1+α, it is obvious that (µ̃1, . . . , µ̃m−1) =

－850－



(β1,1 + α1, . . . , β1,m−1 + αm−1) holds. Thus, the fol-

lowing holds.

W̃ − T̃M0S̃ = T̃

(
m−1∑
i=1

µ̃iMi

)
S̃ + X̃ − T̃M0S̃

= T1

(
m−1∑
i=1

(β1,i + αi)Mi

)
S1 +X1

− T1M0S1

= T1N1S1 + T1MS1 + T1M0S1 +X1

− T1M0S1

= T1N1S1 +X1 = U1,0

Hence, since Y1,0 = H(U1,0), automatically H(W̃ −
T̃M0S̃) = H(U1,0) = Y1,0 holds.

Case c = 2: This case is similar to the case c = 1 with

additional notes as follows:

• any variable in the form of ∗̂ notation switches with

the resembling variable in the form of ∗̃ notation,

• any variable in the form of ∗0 notation switches with

the resembling variable in the form of ∗1 notation,

• for any numeric j, any variable in the form of ∗0,j
notation switches with the resembling variable in the

form of ∗1,j notation.

Case c = 3: This case is similar to the case c = 0 with the

same additional notes as in the case c = 2.

4.2 Proof of Proposition 1

It is sufficient to show that from Y and any

combination of three elements from the set of the

valid responses {Z(0), Z(1), Z(2), Z(3)}, we can com-

pute α = (α1, . . . , αm−1) ∈ Fm−1 such that

rank
(∑m−1

i=1 αiMi −M0

)
= r holds, where r and

M0, . . . ,Mm−1 are generated by the key generation

algorithm as elements of the public key.

Remark 6 Note that in our proposed scheme, we as-

sume that H has computational binding property. Hence,

we can assume that for any polynomial time algorithm, if

H(a) = H(b), then a = b must hold except with negligible

probability.

Case 1: Y and (Z(0), Z(1), Z(2)).

Let Z
(1)
0,0 be parsed as Z

(1)
0,0 = (Ŝ(1), T̂ (1), X̂(1)) and Z

(1)
0,1

be parsed as Z
(1)
0,1 = (γ̂1, . . . γ̂m−1). Also let Z

(2)
0,0 be

parsed as Z
(2)
0,0 = (Ŝ(2), T̂ (2), X̂(2)) and Z

(2)
0,1 be parsed as

Z
(2)
0,1 = (µ̂1, . . . µ̂m−1). Since the following holds:

H
(
Ŝ(1), T̂ (1), X̂(1)

)
= H

(
Ŝ(2), T̂ (2), X̂(2)

)
= Y0,2,

we can define as follows: (Ŝ, T̂ , X̂) := (Ŝ(1), T̂ (1), X̂(1)) =

(Ŝ(2), T̂ (2), X̂(2)). From H(Z
(0)
0,0) = Y0,0 and Eq. (12), we

obtain as follows.

Y0,0 = H(Z
(0)
0,0) = H

(
T̂

(
m−1∑
i=1

γ̂iMi

)
Ŝ + X̂

)
(16)

⇒ Z
(0)
0,0 = T̂

(
m−1∑
i=1

γ̂iMi

)
Ŝ + X̂,

Similarly, from H(Z
(0)
0,1) = Y0,1 and Eq. (14), we also have

the followings hold.

Y0,1 = H(Z
(0)
0,1)

= H

(
T̂

(
m−1∑
i=1

µ̂iMi

)
Ŝ + X̂ − T̂M0Ŝ

)
(17)

⇒ Z
(0)
0,1 = T̂

(
m−1∑
i=1

µ̂iMi

)
Ŝ + X̂ − T̂M0Ŝ

Finally, we have the followings hold.

rank(Z
(0)
0,1 − Z

(0)
0,0) = rank

(
T̂

(
m−1∑
i=1

(µ̂i − γ̂i)Mi −M0

)
Ŝ

)
(a)
= rank

(
m−1∑
i=1

(µ̂i − γ̂i)Mi −M0

)
,

where Eq. (a) holds since Ŝ, T̂ are non-singular. There-

fore, we can set αi = µ̂i − γ̂i for i ∈ [1,m − 1], since

rank(Z
(0)
0,1 − Z

(0)
0,0) = r holds.

Case 2: Y and (Z(0), Z(2), Z(3)).

Similar to Case 1. The only diffference is that all relations

and components of Z(1) in Case 1 are substituted by those

of Z(3).

Case 3: Y and (Z(1), Z(2), Z(3)).

Let Z
(2)
1,0 be parsed as Z

(2)
1,0 = (S̃(2), T̃ (2), X̃(2)) and Z

(2)
1,1

be parsed as Z
(2)
1,1 = (γ̃1, . . . γ̃m−1). Also let Z

(1)
1,0 be

parsed as Z
(1)
1,0 = (S̃(1), T̃ (1), X̃(1)) and Z

(1)
1,1 be parsed as

Z
(1)
1,1 = (µ̃1, . . . µ̃m−1). Since the following holds:

H
(
S̃(1), T̃ (1), X̃(1)

)
= H

(
S̃(2), T̃ (2), X̃(2)

)
= Y1,2,

we can define as follows: (S̃, T̃ , X̃) := (S̃(1), T̃ (1), X̃(1)) =

(S̃(2), T̃ (2), X̃(2)). From H(Z
(3)
1,0) = Y1,0 and Eq. (15), we

obtain as follows.

Y1,0 = H(Z
(3)
1,0) = H

(
T̃

(
m−1∑
i=1

γ̃iMi

)
S̃ + X̃

)
(18)

⇒ Z
(3)
1,0 = T̃

(
m−1∑
i=1

γ̃iMi

)
S̃ + X̃,

Similarly, from H(Z
(3)
1,1) = Y1,1 and Eq. (13), we also have

the followings hold.

Y1,1 = H(Z
(3)
1,1)

= H

(
T̃

(
m−1∑
i=1

µ̃iMi

)
S̃ + X̃ − T̃M0S̃

)
(19)

⇒ Z
(3)
1,1 = T̃

(
m−1∑
i=1

µ̃iMi

)
S̃ + X̃ − T̃M0S̃
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Finally, we have the followings hold.

rank(Z
(3)
1,1 − Z

(3)
1,0) = rank

(
T̃

(
m−1∑
i=1

(µ̃i − γ̃i)Mi −M0

)
S̃

)
(a)
= rank

(
m−1∑
i=1

(µ̃i − γ̃i)Mi −M0

)
,

where Eq. (a) holds since S̃, T̃ are non-singular. There-

fore, we can set αi = µ̃i − γ̃i for i ∈ [1,m − 1], since

rank(Z
(3)
1,1 − Z

(3)
1,0) = r holds.

Case 4: Y and (Z(0), Z(1), Z(3)).

Similar to Case 3. The only diffference is that all relations

and components of Z(2) in Case 1 are substituted by those

of Z(0).

4.3 Proof Sketch of Corollary 1

Recall that based on Proposition 1, we know that in any

single round, if the prover can answer correctly three out of

four possible challenges from the verifier, it means that the

prover knows the secret key corresponding public key. Thus,

in the case that the public key has no corresponding valid

secret key, even a prover with unbounded resources must

not be able to answer correctly more than two out of four

possible challenges in any single round. Otherwise, it will

contradict with the assumption that the public key that the

public key has no corresponding secret key.

4.4 Proof Sketch of Theorem 2

Let define algorithm DInputGen(F, r,m, n) as follows. First,

D retrieves inputs from the oracle InputGen in the form of

m n-square matrices over the finite field F: M0, . . . ,Mm−1.

Then, D simulates the key generation algorithm of the iden-

tification scheme by setting the public key pk as r and

M0, . . . ,Mm−1. Next, D inputs pk to A and runs A as the

prover and D acts as the honest verifier. If A successfully

gives valid responses in all ℓ rounds of the full identifica-

tion protocol, D outputs 1, otherwise, D outputs 0. Note

that if InputGen is IGen, the probability of D outputs 1 is

exactly εA. Meanwhile, when InputGen is LossyGen, based

on Corollary 1, the probability of D outputs 1 is at most

1/2ℓ. Thus, denoting the system parameters (F, r,m, n) as

par, we obtain as follows.∣∣∣Pr[DIGen(par) = 1]− Pr[DLossyGen(par) = 1]
∣∣∣ ≧ εA − 1

2ℓ
.

This proves the Theorem 2.

4.5 Proof Idea of Theorem 3

It is sufficient to prove that given any c ∈ {0, 1, 2, 3}, we
can create valid response Z0,0, Z0,1, Z1,0, Z1,1 and the com-

mitment Y0, Y1 without using secret key such that their dis-

tribution is the same as the distribution of the response and

commitment generated by a honest prover who possesses

valid secret key. Note that we can put the responses and

commitment into two independent groups: (Y0, Z0,0, Z0,1)

and (Y1, Z1,0, Z1,1), such that each group is corresponding

to the set of responses and commitment in Courtois’ basic

ID scheme [4]. Hence, it is easy to see that we can apply the

proof of zero-knowledge for Courtois’ basic ID scheme into

our proposed scheme.

5. Parameter Selections

5.1 Complexity of MinRank Problem

In this subsection, we review known attacks against Min-

Rank Problem to select some practical parameters.

There are two types of attack. First one is to mainly

use linear algebra and second one is to reduce the MinRank

problem into an MP problem. Set F = Fq.

Linear algebra type

There exist 4 attacks in this type. Our review for this

type mainly follows the Subsection 4.2 in [4].

(i) Exhaustive search attack: This attack is to find

M :=
∑m−1

i=1 αiMi − M0 or a matrix with rank ≤ r from

the linear combinations of M0, . . . ,Mm−1. The complexity

to find M from M0, . . . ,Mm−1 is given by

qm−1(r + 1)ω,

where 2 < ω ≤ 3 is a linear algebra constant.

Next, consider the complexity to find a matrix with rank

≤ r. The probability that a square matrix with size n is of

rank ℓ is given by

P (n, ℓ) :=
(qn − 1)2(qn − q)2 · · · (qn − qℓ−1)2

(qℓ − 1) · · · (qℓ − qℓ−1) · qn2 .

We assume that the probability that a linear combination of

M0, · · · ,Mm−1 is of rank ℓ is P (n, ℓ). Then the complexity

to find a matrix with rank ≤ r from the linear combinations

of M0, . . . ,Mm−1 is given by(
r∑

ℓ=1

P (n, ℓ)

)−1

(r + 1)ω.

(ii) Kernel attack: This attack is to find an element of

the kernel of M . The complexity is given by

Min
(
q⌈

m
n
⌉r, q⌊

m
n
⌋r+(m mod n))

)
mω.

(iii) “Big m” attack: This attack is valid for m ≫ n. The

complexity is given by

qMax(0,n(n−r)−m) · (n(n− r))ω.

(iv) Syndrome attack: This attack is valid for m ≫ n.

The complexity is given by

qMax(n2−m−1
2

,nr−m− r2

4
) · O(n2r).

There is another attack using submatrices that works un-

der r ≪ n (see also [4]). However, in our setting, we will

choose the rank r to be about n/2. Therefore, we skip such

an attack.

－852－



MP type

The MinRank problem can be reduced to the problem

that solves a system of polynomial equations (namely, MP

problem). There exist three attacks in this type: (v) Kipnis-

Shamir attack, (vi) Minors modeling attack, and (vii) Sup-

port minors modeling attack.

(v) Kipnis-Shamir attack [12]: Let c be an integer such

that ⌈m/(n − r)⌉ ≤ c ≤ n − r. By considering α1, . . . , αm

and kernel basis vectors {y1, . . . ,yc} of
∑m

i=1 αiMi−M0 as

variables, Kipnis-Shamir attack solves the quadratic system

consisting of yi ·
(∑m

i=1 αiMi −M0

)
= 0. The complexity

estimations of this attack are given as Table 1. Here, for each

estimation, we take c giving the minimum value in Table 1.

Table 1 Complexity estimations for the Kipnis-Shamir attack

Faugere et al. [8] Verbel et al. [19] Nakamura et al. [13]

log2(q)
(n
r

)ω(n−r)
(
m
(cr+DKS−1

DKS

))ω (m+cr+Dmgd

Dmgd

)ω
Here, DKS is defined as follows.　Let dKS = min1≤d≤r{d :(
r
d

)
n >

(
r

d+1

)
m}. Then DKS = dKS + 2. Moreover, Dmgd

is defined as follows. Set∑
(e0,e1,...,ec)∈Zc+1

a(e0,e1,...,ec)t
e0
0 te1

1 · · · tec
c

:=

∏c
i=1(1− t0ti)

n

(1− t0)m(1− t1)r · · · (1− tc)r
.

Then define Dmgd = min

{
c∑

i=1

ei : a(e0,e1,...,ec) < 0

}
.

(vi) Minors modeling attack [7]: This attack solves the

system consisting of the (r+1)-minors of
∑m

i=1 αiMi−M0,

whose variables are α1, . . . , αm. The complexity is esti-

mated by
(
m+r

r

)ω
.

(vii) Support Minors modeling attack [1]: This attack

solves a quadratic system whose variables are α1, . . . , αm

and r-minors, and its complexity is estimated by

3

(
m+DSpp

DSpp

)2(
n

r

)2

(r + 1)m.

Here, DSpp is defined as follows. For b ≥ 1, set

Rm,n,r(b) =
∑b

i=1(−1)i+1
(

n
r+i

)(
n+i−1

i

)(
m+b−i−1

b−i

)
and

M(b, 1) =
(
m+b

b

)(
n
r

)
. Then define DSpp = min{b |

Rm,n,r(b) > M(b, 1)− 1}.

5.2 Communication Costs

We will estimate the communication costs based on the as-

sumption that we use random seed and pseudorandom gen-

erator to generates S0, S1, T0, T1, X0, X1, β0, β1. Let Z(c)

denote the valid response of the prover w.r.t. challenge c for

any c ∈ {0, 1, 2, 3}. For simplicity, here we assume that all

matrices are n-square matrices, and F = Zp for some prime

p. Thus, we have as follows.

|Z(0)| = |Z(3)| ≈ 2n2 log2 p+ |seedSTX |+ |seedβ |,

|Z(1)| = |Z(2)| ≈ 2|seedSTX |+ |seedβ |+ (m− 1) log2 p,

where seedSTX is the seed for generating (S0, T0, X0) or

(S1, T1, X1) and seedβ is the seed for generating β0 or β1.

Estimation for 128-bit security

For achieving 128-bit security, we need to have 128 rep-

etitions of the elementary round. Let #Z1/2 denote the

average of the total cost of sending all responses in our pro-

posed identification scheme. Thus, we can estimate #Z1/2

as follows.

#Z1/2 =
128

4
(|Z(0)|+ |Z(1)|+ |Z(2)|+ |Z(3)|)

=
128

4
(2|Z(0)|+ 2|Z(1)|) = 64(|Z(0)|+ |Z(1)|)

≈ 64(2n2 log2 p+ |seedSTX |+ |seedβ |

+ 2|seedSTX |+ |seedβ |+ (m− 1) log2 p)

In Courtois’ identification scheme [4], for achieving 128-

bit security, we need to have 219 repetitions of the elemen-

tary round since the cheating probability for each elemen-

tary round is 2/3.*1 In Courtois’ identification scheme, we

have c ∈ {0, 1, 2}. Based on the same assumption as above

on the matrices, the field, and the random seeds, we have as

follows.

|Z(0)| ≈ 2n2, |Z(1)| ≈ |seedSTX |+ |seedβ |,

|Z(2)| ≈ |seedSTX |+ (m− 1) log2 p.

Let #Z2/3 denote the average of the total cost of sending

all responses in Courtois’ identification scheme. Thus, we

can estimate #Z2/3 as follows.

#Z2/3 =
219

3
(|Z(0)|+ |Z(1)|+ |Z(2)|)

= 73(|Z(0)|+ |Z(1)|+ |Z(2)|)

≈ 73(2n2 log2 p+ |seedSTX |+ |seedβ |

+ |seedSTX |+ (m− 1) log2 p)

For 128-bit security, it is common to assume that all ran-

dom seeds have 128 bit length. Thus, we can finalize our

estimation as follows.

#Z1/2 ≈ 128

(
n2 +

1

2
(m− 1)

)
log2 p+ 64× 5× 128

= 128

(
n2 +

1

2
(m− 1)

)
log2 p+ 40960,

#Z2/3 ≈ 146

(
n2 +

1

2
(m− 1)

)
log2 p+ 73× 3× 128

= 146

(
n2 +

1

2
(m− 1)

)
log2 p+ 28032.

*1 This number 219 is based on the fact that ℓ = 219 is the least
integer such that (2/3)ℓ ≦ 2−128 holds.
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Estimation for General Case

Assuming that the seeds for ℓ-bit security are ℓ bits, we

can have the following general equations for estimating the

total communication costs for ℓ-bit security.

#Z1/2 ≈ ℓ×
((

n2 + (m− 1)
)
log2 p+

ℓ

2
× 5

)
(20)

#Z2/3 ≈ 2

3

⌈
ℓ

log2 3− 1

⌉
×
((

n2 + (m− 1)
)
log2 p+

ℓ

2
× 3

)
(21)

5.3 Security Parameters

Following the known attacks in Subsection 5.1, we pick

three parameters for 128, 192 and 256-bit security as fol-

lows.

(i) 128-bit security parameter: n = 26, m = 209, r = 13,

p = 2.

#Z1/2 ≈ 19264 bytes,

#Z2/3 ≈ 19637 bytes.

(ii) 192-bit security parameter: n = 33, m = 331, r = 17,

p = 2.

#Z1/2 ≈ 45576 bytes,

#Z2/3 ≈ 46800 bytes.

(iii) 256-bit security parameter: n = 39, m = 469, r = 20,

p = 2.

#Z1/2 ≈ 84128 bytes,

#Z2/3 ≈ 86614 bytes.

6. Conclusion

Courtois [4] proposed the first three-pass ID scheme based

on the MinRank problem, which is an NP-complete problem.

However, the cheating probability in Courtois’ scheme is

2/3, which is larger than half. In this paper, we have shown a

construction of a new three-pass ID scheme with half cheat-

ing probability. In practice, our scheme requires less number

of repetitions to achieve the desired security level, and thus

reduce the total communication costs. As a future work, we

aim to construct a digital signature based on our proposed

ID scheme and prove its security against quantum adver-

saries.
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