
Detecting Malicious Websites Based on JavaScript
Content Analysis

Muhammad Fakhrur Rozi1,2,a) Tao Ban1 Sangwook Kim2 Seiichi Ozawa2,3

Takeshi Takahashi1 Daisuke Inoue1

Abstract: Analyzing JavaScript contents has been a promising way to detect malicious websites. However,
attackers often put malicious scripts in unreachable places and use complicated obfuscation tools to hinder
the detection. Therefore, finding malicious scripts exhaustively inside the website tend to be time-consuming
and ineffective in improving detection performance. To address these challenges, we introduce a novel ap-
proach to detecting malicious websites by analyzing the collective representation of the stack of JavaScripts
in a website. First, we build a collective graph representation of a website by aggregating abstract syntax
trees of all JavaScripts therein. Then, we use graph2vec to encode the graph into a vectorial representation.
Finally, machine learning based detection is performed for identifying potentially harmful websites. Results
showed that the proposed approach achieves high accuracy on a real-world dataset, outperforming prior ap-
proaches. We believe the result in this paper can open new opportunities for more effective malicious-website
detection.
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1. Introduction

The malicious website has been a severe threat to Internet

users. Cyber attackers spread their payload through mali-

cious URLs embedded in buttons, text, images, or icons.

Many types attacks of can be done when we accidentally

access malicious websites, such as cross-site scripting (XSS)

[31], drive-by-download [6], or injection attack [1]. They of-

ten use malicious JavaScript code or other suspicious code

that brings users to get viruses, worms, trojan, or for the

worst case their sensitive data.

There are still plenty of challenges regarding Internet

users’ protection from cyber threats. Attackers are improv-

ing their skill to evade the scanners by using some tech-

niques such as obfuscation. They also hide the payload in

unreachable places that can affect the performance of the

detection system. Therefore, we need to analyze the target

JavaScript’s content to find characteristics of a malicious

website instead of finding the actual payload which will be

more time-consuming and ineffective.

In this research, we proposed a novel approach that ana-

lyzes websites’ content based on the collection of JavaScript

files. We capture the semantic meaning of the files that rep-

resents all actions of websites. We use the abstract syntax
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tree (AST) feature to extract the JavaScript program as the

primary representation and encode them using a graph em-

bedding model. We choose graph2vec [19] as an embedding

model that can capture the structured and symbolic fea-

ture of the AST graph and yield a low-dimensional vectorial

representation.

In summary, our contributions in this paper are as follow:

• We present a novel approach to detect malicious web-

sites based on the collection of JavaScript files. The

aggregation of all JavaScript information can represent

the content of the websites so that we can get the signa-

ture of the malicious website for our detection system.

• We use AST as the feature of JavaScript files, which rep-

resent the structure of the program. We show that the

AST feature effectively avoids obfuscation techniques

that most attackers and normal programmers use to

protect the code from reverse engineering.

• We carry the graph2vec model to transform the

AST graph into an embedding vector representation.

The graph2vec model captures the structure and the

node feature of the AST graph as the characteristic

of JavaScript, yielding a good representation of the

JavaScript’s content.

2. Related Works

Malicious website detection. Many researchers

have researched malicious website detection with many ap-

proaches to get the best performance and fit into the current
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Fig. 1 The whole process of our proposed approach from a single website into prediction
label.

condition. From the simplest approach, blocklisting method

[25] is used by many anti-viruses scanners to store all recog-

nizable websites, and we can utilize it in a detection system.

This method still exists in many scanners as a conventional

solution to protect the system [10][21]. However, if there are

minor differences in the block list, the malicious data will

be undetected. Therefore, research on website content us-

ing machine learning has been developed. Lexical features

[13][15][16], host-based features [17][4][20], and content fea-

tures such as HTML [7][2] and JavaScript [5][23] as the input

of the learning models are used in these methods. The model

can also vary from simple (ex. decision tree, Naive Bayes)

to more complex (ex. deep learning, RNN, CNN) ones.

3. Methodology

3.1 Overview

Our goal is malicious websites detection. We define

W = {w1, w2, ..., wN} as a set of websites that satisfies

two conditions: accessible and containing JavaScript files.

Given a domain name, we collect JavaScript files inside that

website for every wi ∈ W in our dataset by crawling the

related URLs until a certain level. Formally we can de-

fine the collection of JavaScript files for each website as

wi = {J i
1, J

i
2, ..., J

i
j} where J i

j is the JavaScript file collected

from a website. The size of |wi| is the number of JavaScript

files that we can collect. We can parse each J i
j ∈ wi into an

AST graph representing how the program is written using

a AST parser. During a pre-trained phase, we encode the

AST graph into vectorial representation using the graph2vec

model. After we aggregate by using AVERAGE() function

for all representations to become a single representation,

a website will have a numerical representation written as

X = {x1, x2, ..., xN |xi ∈ RF } where F is the dimension of

the vector. Then, we use those representations as the input

of the machine learning model to build a detection system

for malicious websites. Figure 1 illustrates the whole process

from a single website into a prediction label.

3.2 Collecting JavaScript Content

JavaScript is a well-known programming language for

front-end development. That is one reason JavaScript is the

key to a website that controls any logical actions. Therefore,

the first step in our proposed approach is collecting as many

JavaScript contents from a website. We assume that all files

are well-represented that describes the collection of actions

of the website.

To get all possible JavaScript files from a website, we build

a web crawler to access all possible pages start from the

main page. We define level of crawling where the first land-

ing page is level-0 and the level is increased over the depth

of crawling. We collect all JavaScript files inside the pages

from level 0 until the maximum level that where we can

still collect JavaScript’s content. Figure 2 illustrates how

we collect JavaScript files for each website in our dataset.

We gather all JavaScript without any additional treatment

for JavaScript files at every level. We believe that all ac-

tions running by JavaScript are connected that represent

the whole action of the website. We also do not omit re-

dundant files on the website because the repetition action is

also suspicious or has a specific meaning.

3.3 Generating AST graph

In this research, we use the AST feature to represent the

abstraction of the JavaScript program. After collecting all

JavaScript files from the website using a crawler, we parse

the JavaScript into a structural representation in tree graph

form. The AST represents the abstract syntactic structure

of the source code that covers any logic and statements.

AST is widely used in compilers to represent the program

code. Besides that, parsing the source code into a tree rep-

resentation also can help the static analysis process, and we

can avoid the obfuscated techniques.

AST consists of 69 syntactic units/tokens, including all

statements and logical action in a JavaScript program. For

example, function expressions, array expressions, Do-While

statements, and many more [8]. Syntax tree format is de-

rived from the original version of Mozilla Parser API [18],

which is then formalized and expanded as the EStree [9]

specification. The AST graph consists of nodes and edges

where nodes represent the syntactic units and edges repre-

sent the hierarchical relationship between two units. Figure

3 depicts how we transform a simple JavaScript statement
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Fig. 2 Mechanism for collecting JavaScript files.

Fig. 3 Transforming a simple JavaScript statement into AST
representation.

into an AST graph. The output is a tree representation that

captures the structure of the JavaScript program. We do

this process for all JavaScript collected before aggregating

them into a single representation for each website.

3.4 JavaScript Content Representation

Given a set of graphs G = {G1, G2, ..., GN} after trans-

forming all JavaScript files into AST graph representation.

Our goal is to encode the AST structure to become a vec-

tor representation for each file that can represent well the

characteristics of the AST graph. We implement an unsu-

pervised learning model to create an embedding vector for

all AST graphs into a particular dimensional space. So, we

can have a vocabulary embedding vector that store all vector

representation that we can use to build a detection model.

There are some existing methods for graph embedding,

such as Node2vec [11], LINE [26], DeepWalk [3], or GL2vec

[27]. Some of them are node-based embedding models, and

others are for the whole graph embedding model. In this re-

search, we use a graph2vec model as an embedding method

[19]. The graph2vec complements previous graph kernel

methods that are lacking generalization. This model has

exactly a similar concept with the doc2vec model [14] in the

natural language processing field. The difference is just the

object of the input. If we work on doc2vec, we can con-

sider that a document is composed of multiple words that

become sentences and paragraphs. However, in graph em-

bedding cases, any graph is composed of atomic nodes con-

nected with a set of edges. Besides that, we can consider

the rooted graph as the atomic element of a graph. The

rooted graph is considered better than just a single node

because it encompasses higher-order neighborhoods, offer-

ing a richer representation of the graphs’ composition and

better captures the inherent non-linearity in the graphs.

Formally, let G = (N,E, f) where N is a set of node, E

is a set of edges, and f is a function to map each node

with label l, then a rooted subgraph can be written as

sg = (Nsg, Esg, fsg). In a given graph Gi, a rooted sub-

graph of degree D around node n ∈ N contains all the

reachable nodes in d hops from n. We follow the Weisfeiler-

Lehman (WL) relabeling process [24] to extract subgraphs

[32]. When d > 0, we get all the neighbors of n ∈ N using

the breadth-first algorithm. For each neighboring node n,

we get its degree d−1 subgraph and save it in the same list.

We will get the degree d− 1 subgraph around the root node

n and concatenate the same with a sorted list to obtain the

intended subgraph sg
(d)
n .

After we get all rooted subgraphs, we can start to train

the unsupervised model likes doc2vec to get the embedding

vector representation of each AST graph. Similarly, given

a set of AST graphs G = {G1, G2, ..., GN} and a sequence

of rooted subgraphs SG = {sg1, sg2, ..., sgN} sampled from

AST graph Gi ∈ G, graph2vec skip-gram learns a F dimen-

sional embeddings of the graph Gi ∈ G and each rooted

subgraph sgi sampled from SG. The model works by con-

sidering a rooted subgraph sgi ∈ SG to be occurring in

the context of graph Gi and tries to maximize the following

log-likelihood:∑
j=1

logPr(sgj |Gi), (1)

where the probability of Pr(sgj |G) is defined as,

exp(G · sgj)∑
sg∈V exp(G · sg) . (2)

Here V is the vocabulary of all the rooted subgraph across

all graph in G.

4. Experiments

4.1 Setup

Dataset. We evaluated our proposed approach to detect
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Table 1 The whole set of websites used for the experiment.

Data Set Total Files #Benign #Malicious
Training 4,272 2,129 2,143
Testing 1,069 533 536
Total 5,341 2,662 2,679

Table 2 Parameter setup.

Parameter Values
learning rate 0.025
dimension size 128
#epochs 10
Maximum Node 500
minimal graph features occurrences 5
aggregate function AVERAGE()

the maliciousness of websites by using a real-world dataset.

We used the WarpDrive project dataset [30], which is the

research project about the countermeasure of web-based at-

tacks. They collected URLs from users that browsed specific

websites through a mobile phone or PC. Due to our research

is using the JavaScript contents of a website, we filtered the

dataset based on whether we can still access the websites

or not and the collectability of JavaScript files. We omitted

websites that do not contain JavaScript information, which

is not in our research scope. The overall summary of the

number of malicious and benign websites we use in our ex-

periments is described in Table 1.

Label aggregation. We labeled our dataset using

VirusTotal [29], which analyzes each website as the ground

truth for our experiment. Since the result of VirusTotal is

the collection of multiple engine’s labels, we have to define

how we interpret the VirusTotal’s result so we can have a

single label based on the aggregation of all engine’s labels.

For this research, we considered a website with at least one

malicious/suspicious label from any engine a detection tar-

get. Even though the malicious label is from the not pop-

ular engine and most of the popular ones give a safe label,

there is still a probability of false-negative and the hazard

flip (flip its label and then change it back within a day) [33]

in the VirusTotal’s result. The flip in VirusTotal may hap-

pen because the engine is not up-to-date for a specific type

of malicious website that affects the result. For instance,

phishing websites are more difficult to be analyzed because

they can perform like an actual website.

Parameter setup. We implemented our proposed ap-

proach using some parameter setup to get the optimum

result. For the pre-trained phase, we used the graph2vec

model that is using the same way with doc2vec. So, we set

the parameter using default values based on the KarateClub

framework [12], such as learning rate is 0.025, the number of

epochs is 10, the dimension size is 128, or the minimal count

of graph features occurrences is 5. More details related to

graph2vec model parameter setup can be seen in Table 2.

Moreover, we set the optimum parameters for all machine

learning models by validating all combination possibilities

and get the best performance. We tried to use various ma-

chine learning models to investigate the suitable model that

can be used to get the best result. Our experiments con-

sidered some learning approaches, such as Naive Bayes, de-

Fig. 4 Websites that has similar content.

cision tree, XGBoost, logistic regression, simple neural net-

work (multilayer perceptron), and support vector machine.

Furthermore, to validate the performance for each model,

we used 5-fold cross-validation.

4.2 Performance Evaluation

Pre-trained results. Figure 5 shows the scatter plot of

the embedding vector for all websites in our dataset. The

original dimension size of the embedding vector is 128. How-

ever, to show the distribution of the dataset, we used a t-

distributed stochastic neighborhood (t-SNE) plot [28] to cre-

ate a 2-dimensional representation. Even though the plot is

inaccurate to represent the high dimension vector, we can

still find a rough difference between malicious and benign

samples. As we can see, that graph2vec model can extract

the semantic information of websites based on the AST fea-

ture of all JavaScript contents inside them. We can get the

content representation embedded in a low-dimensional vec-

tor by aggregating all representations into a single vector for

each website. The closer distance of two dots in that plot

indicates that two websites have similar contents in terms

of JavaScript files and may have a similar purpose.

Detection results. Table 3 reports the performance of

all machine learning models by using the result of the con-

tent representation of the website in the pre-trained phase.

Because we already have the more straightforward represen-

tation, we can easily use that vector representation as the

input of the learning model. However, building the model on

such representation is still challenging because many web-

sites are similar malicious and benign based on JavaScript

contents. The performance result shows that the linear ma-

chine learning models, such as Naive Bayes, decision tree,

XGboost, and logistic regression, have a lower detection per-

formance than SVM with radial basis function (RBF) and

a neural network.

5. Discussion

Content representation. Our approach exploits all

information related to JavaScript files, which is the web-

site’s core, to perform a malicious action. We utilized the

AST feature of JavaScript to get a vectorial representation

that can be used for other processes. We try to capture
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Fig. 5 t-SNE plot of embedding vector representation for all dataset.

Table 3 Performance of various models which were evaluated for this work

Model Precision (%) Recall (%) F1-score(%)

Naive Bayes 67.13 64.16 62.42

Decision Tree 77.77 77.78 77.77

Logistic Regression 90.66 90.60 90.61

XGBoost 90.90 90.94 90.90

SVM with RBF 93.96 93.89 93.92

the semantic meaning of AST and aggregate all information

into a single representation that explains the JavaScript’s

content. Our experiments show that graph2vec effectively

embed the AST information into a vectorial representation

that we can use to build a machine learning model. Figure 4

shows the labeled plot of websites that have close distance in

2-dimensional space. Some blogging websites are gathered

in a particular area, implying that each JavaScript file’s ag-

gregation of graph2vec representation can describe accurate

website content.

Phishing sites. In our dataset, there are three differ-

ent labels that VirusTotal use in their system: malignant,

phishing, malware. Malignant sites contain exploits or other

malignant artifacts, malware sites distribute malware, and

phishing sites try to steal users’ credentials. Among three

of them, the phishing site is the most challenging one in

that the content of a website is pretty similar to the tar-

get. Many malicious sites in our dataset look legitimate by

using the minor modification of the target’s name. Since

our approach is a content-based analysis, the phishing site

are more challenging to have a good representation so that

machine learning models can detect the malicious websites

with a good accuracy.

Limitations. Our method still has some limitations in

detecting malicious websites. First, our method uses the

graph2vec embedding method for representing JavaScript’s

AST. However, due to the similarity concept with doc2vec,

graph2vec has some limitations that we can also befound in

doc2vec. For example, doc2vec cannot handle unseen doc-

uments because it only has a fixed vocabulary embedding

matrix that cannot be extended to embed new documents.

That condition also applies to graph2vec. A new graph not

included in a dataset does not have a vectorial representa-

tion, causing false positive or negative on the new dataset.

To address this limitation, we can refer to [22] that they

introduced a new model inspired by graph embedding and

cross-lingual vector space representation technique to cover

unseen data. Alternatively, we can use a simple strategy

to find the most similar representation to define the unseen

data. It only works if the number of unseen data is pretty

small, otherwise it will influence the result significantly.

6. Conclusions

In this research, we present a novel approach to de-

tect malicious websites based on the website’s content us-

ing JavaScript feature information. Our approach tries to

use the collection of JavaScript files inside a website, and

we transform them to AST graph representations. We use

graph2vec to encode each AST graph to become embedding

vector representations. By aggregating all vectors within

the same website, we can build a machine learning model

for malicious website detection. Experimental results show
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that our proposed approach is practical to detect whether a

website is malicious or benign. For future works, we consider

the limitation of the graph2vec model that cannot handle

unseen data, and then we will find a layer-wise embedding

model that can be used for unseen data. Enriching a web-

site’s content feature is needed to improve the performance,

especially when handling phishing websites.
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