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Abstract: As IoT has increasingly evolved in recent years, it has become more important to ensure security
on IoT devices. Many of such devices are under the threat of side-channel attacks. To protect from the
threat, the cryptographic implementation which offers security against side-channel attacks is important.
However, such cryptographic implementations require a large number of clock cycles to execute and can only
be resistant to certain types of side-channel attacks. In this paper, we aim to provide secure cryptographic
implementation against side-channel attacks using space-hard ciphers which are secure in the white-box set-
ting. Specifically, we first show that using a space-hard cipher is secure against side-channel attacks. After
that, we propose a new family of space-hard ciphers dubbed Cubicle. This cipher has opted for the imple-
mentation on processors of ARM Cortex-M which are widely used for IoT devices. We show that Cubicle
is secure against various attacks including side-channel attacks and the performance is about 4 to 5 times
higher than one of the existing space-hard cipher, SPACE in devices powered by the Cortex-M processor.
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1. Introduction

During the past decade, we have witnessed a dawn of a

new era of the Internet of Things (IoT). Generally speaking,

the IoT describes a network of physical devices equipped

with various sensors, software, and other technology which

allows these devices to gather, process, and modify informa-

tion to provide new services over the internet. These devices

are able to recognize events and changes in the surroundings

and act and react mainly without any human interaction.

However, such huge deployments of IoT devices, wearable,

sensory, etc., will definitely pose various security, privacy,

and trust threats which put these devices at high risk and

thus harming the end-users.

With an increase in security concerns and awareness,

proper countermeasures are implemented in some devices to

avoid easy access to the attacker via attack surfaces like SPI,

I2C, UART, and JTAG. Unfortunately, even these counter-

measures against hardware attacks cannot assure a secure

system, especially the famous hardware attack called the

Side-Channel Attacks (SCA).

Side-channel attacks are easy to implement while being

extremely powerful against cryptographic implementations.

These attacks exploit the information leakages in the sys-

tem, and these leakages are known as side-channels. Instead

of targeting the standard cryptographic algorithms, these
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attacks target their implementation on the physical devices

to recover the secret parameters by measuring and analyzing

the leaked information like power analysis, timing analysis,

electromagnetic analysis, etc.

In this work, we aim to provide a secure cryptographic

implementation in the grey-box setting, which is a secu-

rity model that allows attackers to execute side-channel

attacks from the perspective of space-hardness. Space-

hardness is the security requirement to evaluate the difficulty

of code lifting attacks, which is introduced by Bogdanov and

Isobe [1] in ACM CCS 2015. Since space-hard ciphers which

are secure against code lifting attacks in terms of the space-

hardness are secure against key extraction in the white-box

setting, the attackers can not extract the secret key in also

the grey-box setting.

Implementation of existing space-hard ciphers such as

SPACE and SPNbox [2] basically requires SIMD instruc-

tions for parallel table-lookup, polynomial multiplication,

and shuffle operation. However, not all processors of IoT

devices have these instructions to perform such complex op-

erations. One of a family of ARM processors, Cortex-M does

not support such complex instructions though it is widely

used for IoT devices. Thus, if we were to implement these

space-hard ciphers without such instructions, it would take

a large number of clock cycles to execute. In addition, space-

hard ciphers with their large size of the input to the table are

difficult to implement on IoT devices from the perspective

of the flash size.

To solve these problems, we first show the security of

space-hard ciphers in environments where occurs leakage of

the table information. After that, we propose a new family

of space-hard cipher opted for such environments. In detail,
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our contributions are summarized as follows.

Proof of the bound for the table-leakage To prove

the security of space-hard ciphers in the grey-box, we

show the bound of the table-leakage caused by code lift-

ing attacks of grey-box attackers. Based on that bound,

we can estimate the number of times the table of space-

hard ciphers needs to be accessed to provide enough

leakage to recover the quarter of the total entries. This

enables us to estimate how often the table should be

updated when the space-hard cipher is practically used

on IoT devices.

Proposal of a new family of space-hard ciphers

We propose a new family of space-hard ciphers dubbed

Cubicle opted for the implementation in processors of

the ARM Cortex-M. Cubicle is a 4-line target-heavy

Feistel cipher, where each input is consists of 4 32-bit

words. We show that Cubicle can provide sufficient

security against various types of well-known black-box

attacks, key extraction, and code-lifting in the white-

box. In addition to these evaluations, we also evaluate

the security of Cubicle in the grey-box based on the

table leakage bound that we derived. For the practical

application of Cubicle, we show the frequency of nonce

update when Cubicle is used as a key derivation func-

tion. Besides, we evaluate the performance of Cubicle

and SPACE in some development boards powered by

the Cortex-M3 or the Cortex-M4 processor. The result

shows that the performance of Cubicle is much higher

than that of SPACE.

2. Space-hard Ciphers

2.1 Space hardness

While protecting the confidentiality of secret keys in the

white-box environment is the major goal of white-box cryp-

tography, the main goal of a white-box attacker is to extract

the secret key given the full control over the execution envi-

ronment of a cipher. Thus the typical security requirements

in this setting are follows: key extraction security and code

lifting security. Key extraction security implies that the ex-

traction of the secret key should be computationally hard.

Code lifting is a threat in which the attacker can isolate the

program code from the implementation environment and can

use it as a larger effective key. The success of a code lifting

attacks has the almost same advantage as key extraction, i.e.

the attacker can encrypt/decrypt any plaintext/ciphertext.

To evaluate the difficulty of code lifting attacks, Bogdanov

and Isobe [1] introduced a new security notion called (M,Z)-

space hardness. Space hardness measures the difficulty of

compressing a white-box implementation of any cipher and

quantifies security against code lifting by the amount of code

that needs to be extracted from the implementation by a

white-box adversary to maintain its functionality. This no-

tion of security assesses the difficulty of isolating the code

form the execution environments by the amount of data re-

quired to do so and thus, it covers a wide class of attackers.

Fig. 1: One round of SPACE
(na ∈ {8, 16, 24, 32}, ℓ = 128/na)

Definition 1 ( (M,Z)-space hardness [1]). The implemen-

tation of a block cipher EK is (M,Z)-space hard if it is

infeasible to encrypt (decrypt) any randomly drawn plain-

text (ciphertext) with probability of more than 2−Z given

any code (table) of size less than M .

(M,Z)-space hardness estimates the code size M to be

isolated from white-box environments to encrypt (decrypt)

any plaintext (ciphertext) with a success probability larger

than 2−Z . For instance, if the white-box implementation

of a block cipher EK requires a look-up table of total size

T , then (T/4, 128)-space hardness implies that if an adver-

sary has obtained information equivalent to one fourth of

T , it is infeasible to encrypt (decrypt) any randomly drawn

plaintext (ciphertext) with probability higher than 2−128.

2.2 SPACE

SPACE is a family of space-hard ciphers proposed by Bog-

danov and Isobe [1] at ACM CCS 2015. SPACE employ a

target-heavy generalized Feistel structure as the underlying

construction and the internal F -function contains AES-128

encryption. The overview of SPACE is shown in Table 1.

In the white-box implementation, the AES-128 encryp-

tion of F -function is implemented as the keyed lookup ta-

ble. Therefore, the security against the key extraction in the

white-box setting reduces to the well-studied problem of the

security against the key recovery in the standard black-box

setting. Besides, for the code lifting attacks, SPACE has a

(T/4, 128)-space hardness.

3. Security Model

3.1 Grey-box/side-channel attack

The main assumption of computer systems is that pro-

cessed secrets are inaccessible for an attacker due to security

measures in software and hardware. However, side-channel

attacks allow an attacker to still deduce the secrets by ob-

serving certain side effects of a computation. A side-channel

is where information leaks accidentally via some medium

that was not designed or intended for communication. These

attacks can be broadly classified into two axes:
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Invasive vs Non-invasive: Invasive attacks require

opening the device under attack. This usually refers to

the chip level, where depackaging of the chip might be

needed. Invasive attacks can be further divided into

semi-invasive and fully-invasive attacks. The difference

is that with semi-invasive attacks the passivation layer

of the chip stays intact whereas with fully invasive

attacks, the chip is further deprocessed depending on

the requirements of the particular attack.

Active vs Passive: While passive attacks restrict them-

selves to only observe the device’s behavior, an active

attack also manipulates the device’s operation e.g. by

injecting various types of faults (electrical, optical, etc.)

or by employing glitching attacks.

In the light of these attacks, attempts are made to imple-

ment the cryptographic algorithms in such a way that the

cost of retrieving the key for an adversary is too high to

interest him/her. Many side-channel attacks have been de-

vised and equally many countermeasures have been pub-

lished. These countermeasures against side-channel attacks

can be categorized into the following two families. The first

one, called masking, modifies the algorithm in order to make

the sensitive variables manipulated independently from the

secret key. The second one, called hiding, covers the pro-

cessing of the algorithm by noise in order to make the ex-

ploitation of the observed signal too difficult.

However, the countermeasures are theoretically very ef-

ficient but are very hard to implement in practice. These

countermeasures may guarantee the security of implementa-

tion against a specific attack, for example, first-order power

analysis, but it might leave the implementation very weak

against other attacks which were not covered by the coun-

termeasure. Also, the overhead of performance required by

these countermeasures is not negligible. For example, most

of the countermeasures make use of randomness. Hiding

countermeasures might require randomness to shuffle exe-

cutions, and insert unpredictable delays. Masking counter-

measures require randomness to share variables such that

the manipulations are uncorrelated to the secret. Moreover,

operations manipulating masked values induce an overhead

in terms of needed randoms during the transcoding part.

The production of these random bits is complex and costly.

3.2 Space-hard ciphers in Grey-box settings (Ta-

ble Leakage)

In this section, we discuss the security of space-hard ci-

phers in the grey-box setting. Space-hard ciphers are con-

structed to make code lifting attacks difficult in the white-

box setting. They are table-based ciphers whose tables, T ,

are composed of some pairs of input to an underlying block

cipher such as AES and the corresponding output. This

table is used by the ciphers as a large secret key. The ul-

timate goal of an adversary in the grey-box setting is to

deduce some values of the secret table T from a series of

information leaked from the table.

Side-channel attacks such as differential fault attack

(DFA) is not feasible in space hard ciphers. The tables in

these ciphers are composed of an underlying block cipher

such as AES, and the internals of the underlying block ci-

pher are not accessible to the adversary. Thus, any fault

injection attack reduces to a differential attack on a small

block cipher in the black-box setting. Since the underlying

cipher is considered secure against a differential attack in

the black-box setting space-hard ciphers are secure against

differential fault attacks.

However, the side-channel attacks against key-dependent

table look-ups can be mounted on these ciphers. Information

may leak whenever bits of data are accessed and computed

upon. The leaking information actually depends on the par-

ticular operation performed, and, more generally, on the

configuration of the currently active part of the computer.

Some of the operations which are commonly susceptible to

side-channel leakage are: Data access to/from registers, ro-

tations, and shifts, data-dependent offsets, bitwise boolean

operations. The specific information leaked depends on the

actual measurement made. Different measurements can be

chosen (adaptively and adversarially) at each step of the

computation. These measurements can then be analyzed to

retrieve any sensitive information of the table.

3.3 Bound of table leakage

A general construction of space-hard cipher C can be de-

fined as: an n-bit block cipher that encrypts/decrypts using

key dependent tables T . Let us consider that the input size

of the table be na and the output size be nb. The num-

ber of entries in the table T will be 2na . Let the number

of rounds be R and each round uses the identical table T .

Let us consider that this space-hard cipher C is running on

a leaking device. A side-channel attack will try to exploit

the leakage resulting from an intermediate computations in

order to recover (a part of) of the entries of the table. Space

hard ciphers makes use of the tables T as a secret key and

recovery of entries of the table would mean recovery of the

secret key. Thus we call the leakage in this case as table leak-

age. Some information of the entries of the table are leaked

whenever the table is accessed. We now try to estimate the

number of table access needed to gather the amount of leak-

age needed to recover a sufficient part of the complete table.

An information theoretic bound of table leakage is

#Table leakage ≤ Used Entries in execution (1)

Let f(p) be a function that incorporates a lookup table T

and some further transformations of the value read from the

table. The parameter p represents plaintext input and may

be extended to a sequence of parameters without significant

change in the method of attacks. Let

r = f(p)

The problem that has to be solved by an adversary is to

find the content of the unknown or modified lookup table T

just by observing the side-channel information. The value
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of parameter p is known to the attacker, while the result r is

unknown, since it is further modified during algorithm exe-

cution. While encrypting the plaintext p, the cipher needs

to access the table and during each access few entries of the

table is computed on. Let us assume that the adversary

can retrieve one table entry every time the table is accessed

while encrypting p. This is the best-case scenario for the

adversary and the worst case for the cipher in terms of grey-

box security. If we can secure the device in this scenario we

can say that the device is side-channel resistant, no matter

which side-channel attack is used. We now try to estimate

the number of access to the table needed to provide enough

leakage to recover T/4 entries of the table, i.e. 2na−2 entries.

We have the following lemma.

Lemma 2. For every q access to the table T , the number

of entries used can be estimated as 2na(1− (1− 1
2na )

q).

Proof. For q table accesses, an ith entry of of the table is

used with a probability of (1− (1− 1
2na )

q). Since there are

2na entries the table, we obtain 2na(1− (1− 1
2na )

q).

From Lemma 2 and Eqn. 1, we have the following:

#Table Leakage ≤ 2na(1− (1− 1

2na
)q)

We can now estimate the number of times the table needs to

be accessed to provide enough leakage to recover T/4 entries

of the table, i.e. 2na−2 entries. From Lemma 2 replacing q

by 2na−2 gives the estimate of table access required to re-

trieve T/4 entries of the table. Let us use the cipher SPACE

as an example here. The number of table entries in SPACE-8

and SPACE-16 is 28 and 216 respectively. Now from Lemma

2, the number of table access required to retrieve T/4 en-

tries will be ≈ 26 for SPACE-8 and ≈ 214 for SPACE-16. To

provide a perspective, consider that the IoT devices which

use SPACE-16 perform 28 executions per day then, the table

needs to be updated after 26 days. Thus if the look-up tables

are updated after 26 or 214 table access, the adversary will

have to go through all the hard work to obtain the entries

of a new table rendering all the previously obtained results

useless. Hence we can assume that this strategy of updat-

ing the table makes the cipher implementation side-channel

resistant.

3.4 Open problem of using existing space-hard ci-

phers in the grey-box

In 3.3, we showed the bounds of table leakage and con-

cluded that using space-hard ciphers is an effective counter-

measure against side-channel attacks. However, there sev-

eral problems with using space-hard ciphers on IoT devices.

Existing Space-hard ciphers such as SPACE and SPNbox are

designed for software implementations on high-performance

processors which support various types of SIMD instruc-

tions. Therefore, their shuffle operations can be imple-

mented effectively by such instructions. In particular, the

implementation of SPNbox requires many SIMD instructions

for their table-lookup operations and matrix multiplications.

Fig. 2: One round of Cubicle

The implementation of SPACE-8, -16, -24 which are the vari-

ants of SPACE also requires SIMD instructions for their

shuffle operation. However, there exist many IoT devices

with processors that do not have such instructions. If we

implement existing space-hard ciphers on such devices, the

encryption/decryption may take a lot of time. Also, the ta-

ble size of SPACE-8 and SPACE-16 is 3.84KB and 917.5KB

respectively. For some IoT devices, these sizes of the table

might turn out to be too expensive to be updated regularly.

This leaves an area of improvement in designing space hard

ciphers which have significantly reduced table sizes. In the

next section, we propose a new family of space-hard ciphers

with a SPACE-like construction dubbed Cubicle to deal with

these problems when we implement space-hard ciphers in

such environments.

4. Specification of Cubicle

Cubicle is a family of space-hard ciphers: Cubicle-8,

Cubicle-16. Both variants accept a 128-bit block input and

employ a 4-line target-heavy generalized Feistel structure.

The overview of Cubicle is shown in Figure 2.

The function Rt : {0, 1}32 → {0, 1}96 (t ∈ {8, 16}) con-

tains more than once application of expanding function.

We denote the 128-bit input state of the rth-round by

Xr = {xr
0, x

r
1, x

r
2, x

r
3}, xr

i ∈ {0, 1}32, (i = 0, · · · , 3). Cu-

bicle updates the state in each round as following:

Xr+1 = (Rt(x0 ⊕RC)⊕ (xr
1||xr

2||xr
3))||xr

0.

where || denotes the concatenation and RC is the round

constant. We define the round constant to be RC = r for

Cubicle-8 and RC =(RC+ 0x00020002)%0xf000f000 where

the initial value of RC is 1 for Cubicle-16. The specification

of Rt is different for t = 8 and t = 16. The overview of

R8 and R16 are shown in Fig. 3. R8 is used for Cubicle-

8 and R16 is used for Cubicle-16. For the 32-bit input

u = (u0, u1, u2, u3), ui ∈ {0, 1}8 (i = 0, · · · , 3), R8 is de-

fined as follows:

R8(u) = F8(z0)||F8(z1)||(F8(z2)⊕ F8(z3))).

where zi are defined as
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(a) R8 (b) R16

Fig. 3: The overview of Rt for t ∈ {8, 16}

MR8
· uT = (z0 z1 z2 z3)

T . (2)

F8(·) is the expanding function F8 : {0, 1}8 → {0, 1}32.
MR8

is a almost MDS defined as

MR8
=


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

 .

This matrix is the same as used in midori. On the other

hand, for the 32-bit input v = (v0, v1) vi ∈ {0, 1}16 (i =

0, 1), R16 is defined as follows:

R16(v) = msb32(F16(v0))||F16(v1)

F16(·) is the expanding function F16 : {0, 1}16 → {0, 1}64.
Here msb32(·) denotes the most significant 32 bits of the

input.

F8 and F16 are restricted to be implemented by the table-

lookup operation. For the 8-bit input x and 16-bit input y,

the functions F8(x) and F16(y) are defined as follows:

F8(x) = msb32(AESk(C0||x)),

F16(y) = msb64(AESk(C0||y)).

where AESk is AES-128 that takes k ∈ F128
2 as the secret

key and C0 is a all zero vector to pad the input for AESk.

5. Design Rationale

5.1 Designing a space-hard cipher for ARM

Cortex-M processors

Cubicle is designed to be implemented in the IoT device

powered by a processor of the Cortex-. The Cortex-M is

a family of 32-bit RISC processors licensed by ARM in-

tended for controlling microcontrollers. They are designed

to be low-cost and energy-efficient while remaining high per-

formance in applications for automotive, industrial control,

IoT, or other resource-constrained devices. In this paper,

we specifically focus on the implementation on processors of

the Cortex-M3 and the Cortex-M4. The goal of designing

Cubicle is to realize the high performance and sufficient se-

curity against various attacks in processors of the Cortex-.

To achieve this goal, we consider the following features of

the Cortex-M and design requirements.

32-bit registers Processors of the Cortex-M3 and the

Cortex-M4 have 16 32-bit registers. They support the

ARMv7-M architecture and the Thumb-2 instructions.

Although processors of the Cortex-M4 also support

ARMv7E-M architecture and SIMD instructions, there

is no complex shuffle instruction in this architecture.

Therefore, we have to eliminate the transfer of data be-

tween different registers so that we do not need addi-

tional instructions for such operations. In order to im-

plement the space-hard cipher without any additional

instructions except for table-lookup, bitwise and arith-

metic operations, we employ word-wise operations for

the design. A word is a 32-bit data in processors of the

Cortex-M.

Pipelining load instructions Bitwise and arithmetic

operations take 1 cycle on this architecture while a load

operation (ldr) usually takes 2 cycles. However, once

ldr is executed, the consecutive execution referencing

the same table as the first execution takes only 1 cy-

cle when the target data has no dependency with the

result of previous operations. Since the table-lookup op-

eration can be executed by ldr, consecutive table-lookup

operations can take advantage of this feature. There-

fore, we aim to use one or more table-lookup operations

in one round.

Utilizing barrel-shifting registers A distinguishing

feature of the AR architecture is the availability of

barrel-shifting registers. This means that we can exe-

cute rotation or shift operations without any additional

cost. We consider making the most of this feature for

improving the security of Cubicle.

Small table size The size of flash and RA of devices

powered by processors of the Cortex-M is not enough

to store the table of space-hard ciphers which requires

a large number of table entries like SPACE-24 and -32

or SPNbox-24 and -32. Thus, we have to restrict the

input size of the table to 8-bit or 16-bit. The number of

entries of the 8-bit input table is 28. This can be stored

in the RAM of such devices. In contrast, the number of

entries of the 16-bit input table is 216. This is too large

to be stored in the RAM of such devices, but there exist
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some devices which can store the 16-bit input table in

their flash.

AES-based construction The table of space-hard ci-

phers is ensuring their security under the assumption

that the underlying block cipher used for the table gen-

eration is sufficiently secure. To ensure sufficient secu-

rity against various cryptanalysis, we employ AES as

the underlying block cipher of Cubicle since no efficient

key recovery of AES has been published so far even

though a lot of effort has been put into the cryptanaly-

sis over a long period.

5.2 General construction

5.2.1 Feistel structure

We employ a 4-line target-heavy Feistel structure where

the one line is a word for Cubicle. Since each word is stored

in one register and there is no transfer of data between dif-

ferent registers, the shuffle operation can be implemented

without any additional instructions.

5.2.2 Reducing the table size

Hence our target devices often have limited flash and RA

sizes as we mentioned in 5.1, we have to restrict the input

size of the table to 28 for Cubicle-8 and 216 for Cubicle-16.

In order to combine this transformation by 8-bit or 16-bit

input table-lookups with 4-line target-heavy Feistel struc-

ture into the construction of Cubicle, we split one word into

t-bit to utilize as inputs of F8 for t = 8 or F16 for t = 16. F8

and F16 are generate the 32-bit output and the 64-bit out-

put, respectively. Thereby, we succeed to restrict the table

size 32 × 28 bit (≈ 1KB) for F8 of Cubicle-8 and 64 × 216

bit (≈ 524.3KB) for F16 of Cubicle-16 while the table size

of SPACE-32, whose the construction resembles Cubicle is

96 × 232 bit (≈ 51.5GB). In addition, we can also say that

the table sizes of Cubicle-8 and Cubicle-16 are smaller than

the table sizes of SPACE-8 (120×28 = 3.84KB) and SPACE-

16 (112× 216 ≈ 917.5KB), respectively.

5.3 Round function

5.3.1 Consecutive table-lookups

As described in 5.1, processors of Cortex- have the fea-

ture that pipelining load instructions (ldr) can reduce the

latency per ldr instruction from 2 to 1 if we use the same ta-

ble consecutively. We designed Cubicle so that one or more

than table-lookup operations can be executed in one round

to take advantage of this feature while SPACE can not uti-

lize this feature because of the data dependency between

different rounds. Specifically, we use four consecutive table-

lookups by 4 8-bit inputs for Cubicle-8 and two consecutive

table-lookups by 2 16-bit inputs for Cubicle-16.

5.3.2 Matrix multiplication

The matrix multiplication used in Cubicle-8 to improve

the security against differential/linear cryptanalysis which

ensure the minimum branch number is 4 can be implemented

by utilizing barrel-shifting registers. From the equation (2),

the following can be obtained:


0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0



u0

u1

u2

u3

 =


u1 ⊕ u2 ⊕ u3

u2 ⊕ u3 ⊕ u0

u3 ⊕ u0 ⊕ u1

u0 ⊕ u1 ⊕ u2

 (3)

In software implementation of Cubicle, a single register

stores one value each for u0, u1, u2 and u3. Thus, the

result of (3) can be expressed by the XORing three right-

rotated registers. Namely, this matrix multiplication can

be expressed by the XORing the following three registers:

the 24 bits right-rotated register, the 16 bits right-rotated

register, and the 8 bits right-rotated register. Therefore,

this operation can be implemented by 2 XORs and 3 rotate

right. By using barrel-shifting registers, we can implement

this operation by only 2 XORs without additional isolated

instructions to execute the rotate right.

6. Security Analysis

6.1 Security in the white-box

Key extraction

In the white-box model, attackers can fully access the in-

ternal values in any round of the algorithm. Extracting the

secret key K from the keyed table of F8 or F16 is equivalent

to performing key recovery attacks on the underlying block

cipher EK used to generate those tables. As we mentioned

in 5.1, we assume that AES is used as the EK , and no ef-

fective key recovery attack in the black-box setting has yet

been proposed against it. Therefore, even in the white-box

setting, extracting the key from F8 or F16 where AES is

used as EK to generate the entries, is as computationally

difficult as recovering the key in the black-box setting.

Code lifting

Code lifting security is an important property in environ-

ments where attackers can cause a table leakage. Let the

number of extracted entries by an attacker be i, j where

i ≤ 28 and j ≤ 216. The probability that the lookup of

extracted entries with random input will succeed is i/28

for Cubicle-8 and j/216 for Cubicle-16. In Cubicle-8 and

Cubicle-16, table-lookup operation execute four times and

two times in a round, respectively. Therefore, the probabil-

ity that the attacker will succeed to encrypt/decrypt ran-

domly chosen plaintext/ciphertext are (i/28)4R for Cubicle-

8 and (j/216)2R for Cubicle-16 where R is the number of

rounds. Fig. 4 shows the relation between M and Z in

terms of space hardness for Cubicle. This results shows

Cubicle-8 and Cubicle-16 achieves (T/4, 128)-space hardness

with R = 16 and R = 32, respectively.

6.2 Security in the black-box

The result of the evaluation of the security against black-

box attacks by the bit-based MILP method is summarized in

Table 1. We evaluated the security against differential, lin-

ear, impossible-differential, and integral cryptanalysis. The

entries of the table imply the number of rounds that re-

quires to satisfy sufficient security against the corresponding
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(a) Cubicle-8
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64
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R = 64

R = 96

R = 128

R = 256

(b) Cubicle-16

Fig. 4: The evaluation of compression attack in terms of (M,Z)-space hardness

Table 1: Summary of the result of security anal-
ysis in the black-box

Variant
Method

Differential Linear Impossible Integral

Cubicle-8 40 52 10 11

Cubicle-16 36 40 12 11

attacks.

6.3 Security in the grey-box

Key extraction

Since Cubicle is secure against key extraction in the white-

box setting, it is also secure against that in the grey-box set-

ting, which is the weaker setting than the white-box setting.

Therefore, we can say that the key extraction by various

side-channel attacks such as cache attacks [3], [4], [5], differ-

ential fault attacks [6], [7], [8], and differential computation

attacks [9] for Cubicle is computationally infeasible.

Table recovery attack

As described above we find that the side-channel attacks

are computationally infeasible in the case of Cubicle, how-

ever using Lemma 2 we compute the bound on number of

table accesses before updating the table to make Cubicle

side-channel resistance.

The number of table entries in Cubicle-8 and Cubicle-16

are 28 and 216 respectively. Using Lemma 2, the number

of table access required to retrieve T/4 entries will be ≈ 26

for Cubicle-8 and ≈ 214 for Cubicle-16. Thus if the lookup

tables are updated after every 26 or 214 table accesses then

Cubicle can be assumed to be side-channel resistant.

While this values is same as that of SPACE-8 and SPACE-

16, the significant difference is the size of the table that

needs to be updated, 1KB for Cubicle-8 instead of 3.84KB

for SPACE-8 and 524.8KB for Cubicle-16 instead of 917.5KB

for SPACE-16.

6.4 Recommended number of rounds

We summarize the rounds that are secure against the cor-

responding attacks based on our security analysis in Table

1. In our implementation, we choose the number of rounds

Fig. 5: Key derivation function

for Cubicle to 64 in both variants in terms of the result of

security analysis and performance.

7. Practical Application

The strategy of updating the lookup table as described

in Section 3.3 can be applied to construct a key derivation

function as shown in the Figure 5. Consider that a cipher

Ek, say AES for example, takes the key k as input to en-

crypt the plaintext M to ciphertext C. To prevent certain

vulnerabilities of Ek against the certain adversary, say to

protect AES-128 against differential fault attack, it becomes

necessary to update the secret key k at certain intervals. Up-

dating the secret key may not be always easy. In these cases

the key derivation function defined in Figure 5 can come in

handy.

From the result of the evaluation of Cubicle in the previ-

ous section, the number of table access required to retrieve

T/4 entries will be ≈ 26 for Cubicle-8 and ≈ 214 for Cubicle-

16. Thus, If Cubicle-8 is used as a key derivation function,

and the key k needs to be updated after:

- every encryption, then update the nonce after 26 en-

cryptions

- every hour, then update the nonce after 21.4 days

- daily, then update the nonce after 26 days

On the other hand, if Cubicle-16 is used as a key derivation

function, and the key k needs to be updated after:

- every encryption, then update the nonce after 214 en-

cryptions

- every minute, then update the nonce after 23.5 days
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Table 2: Specification of boards

Board CPU SRAM Flash

F103RB Cortex-M3 20KB 128KB

F411RE Cortex-M4 128KB 512KB

F207ZG Cortex-M3 128KB 1MB

F429ZI Cortex-M4 260KB 2MB

Table 3: Performance evaluation (cycles)

Board

Algorithm

(table size)

SPACE-8

(3.48KB)

SPACE-16

(917.5KB)

Cubicle-8

(1KB)

Cubicle-16

(525.3KB)

F103RB 14165 - 2614 -

F411RE 12654 - 2614 -

F207ZG 14760 10186 3196 2429

F429ZI 14760 10058 3196 2429

- every hour, then update the nonce after 29 days

- daily, then update the nonce after 214 days

8. Performance Evaluation

In our performance evaluation, we compare the perfor-

mance of Cubicle to white-box implementations of SPACE-8

and SPACE-16. We use four STM32 Nucleo boards: Nucleo-

F103RB, -F411RE, -F207ZG, -F429ZI which are powered by

the Cortex-M3 or the Cortex-M4 Processor for performance

evaluation. The specification of these boards and the results

of our evaluation are shown in Table 2 and Table 3, respec-

tively. From the table, we can observe that the performance

of Cubicle is about 4 to 5 times higher than that of SPACE.

We set the number of rounds for SPACE-8 and SPACE-16 to

300 and 128, respectively, as recommended by the designers.

9. Conclusion

In this work, we show the bound of the table leakage and

concluded that the implementation of space-hard ciphers on

IoT devices is secure against various attacks in the grey-box

setting. In addition, we propose a new family of space-hard

ciphers dubbed Cubicle, which can be implemented easily

and executed faster than existing space-hard ciphers on de-

vices powered by ARM Cortex-M processors, which one of

widely used processors for IoT devices. For practical appli-

cation of Cubicle, we show the frequency of nonce update

when we use Cubicle as a key derivation function. We hope

that the results of this work would be a contribution to the

practical use of space-hard ciphers on IoT devices to protect

against various side-channel attacks.
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