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Abstract: Malware targeting Android OS has been increasing for years and Android malware cyberattacks in particu-
lar are growing in number. To provide effective countermeasures against Android malware, we need to not only detect
the malware at a certain point in time but also analyze the time-series changes in the malware, given that the family
of Android malware will increase in number over time. In this paper, we propose a new method for automatically
creating a “family tree” of Android malware that can represent how the newly detected Android malware relates to
existing Android malware and its families and how they have changed over time. Our evaluation based on two actual
Android malware datasets shows that our proposed family tree can accurately represent time-series changes between
malware families.
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1. Introduction

The Android OS is an operating system that is used in a variety
of devices such as smartphones. The Android OS runs on more
than 2.5 billion devices and its worldwide market share will reach
85% in 2020 [2]. This makes Android an attractive target for at-
tackers as well with more than 350,000 new Android malware
variants discovered daily in 2018 [2]. Similar to PC malware, An-
droid malware continues to increase in number and type or family

over time. Thus, to develop sufficient countermeasures against
Android malware, it is important to consider not only whether an
Android Application Package (APK) can be detected as malware
at a certain point in time but also its changes in the time series
of their variations and evolving processes [3]. Furthermore, we
should fully understand the threats by correlating Android mal-
ware with the corresponding attack campaigns and trends [4].

There are a number of studies that use machine learning to
classify Android malware families. However, many of these
have some shortcomings against actual cybersecurity threats.
For example, the trends and properties of malware are ever-
changing [4], but in machine learning, there is a problem called
concept drift [3], where changes between training data and eval-
uation data cause a decrease in accuracy. For classifying such
ever-changing malware, in this paper, we propose a new method
for automatically creating a family tree of Android malware un-
der more realistic and practical problem settings. Our proposed
method creates an Android malware family tree via an unsuper-
vised or semi-supervised approach to accommodate new types of
software families. The created family tree is evaluated by features
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extracted by a method that closely considers time series changes.
This family tree represents the ancestral and descendant-like re-
lationships between multiple Android malware and the time se-
ries of their variations. This family tree enables us to under-
stand how newly detected Android malware relates to histori-
cal malware and families. Furthermore, we can quickly iden-
tify new mutation-like families that emerge after a certain point
in time. The information provided by our method is extremely
useful for detecting ever-changing Android malware attacks and
understanding their campaigns and attack trends.

The main contributions of our study are as follows:
• We developed a method for automatically creating a family

tree of Android malware APKs that can represent how newly
detected Android malware relates to existing Android mal-
ware and its families, and how they have changed over time.

• Our evaluation using two actual Android malware datasets
shows that the family tree created by our proposed method
accurately represents the relationships between Android
malware families and correctly detects the emergence of new
families.

2. Android Malware

2.1 Android Malware and Its Analysis
Typical Android malware includes adware, potentially un-

wanted program (PUP), ransomware, and trojan horses. The type
of malware is identified as a family and is given the name of the
family by anti-virus vendors. According to Zhang et al. [2], the
raw family names given by anti-virus vendors are known to be
inconsistent, with no standard naming rules.

Some Android malware includes certain schemes or program-

The preliminary version of this paper was published at Computer Secu-
rity Symposium 2020 (CSS2020)/anti Malware engineering WorkShop
2020 (MWS 2020), Oct 2020. The paper was recommended to be sub-
mitted to Journal of Information Processing (JIP) by the program chair
of MWS2020.
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ming to avoid being easily detected by anti-virus software. For
example, there are two known methods: obfuscating the code
and repackaging, which embeds malicious code in benign An-
droid applications and recompiles them [5].

Android malware analysis methods can be broadly divided into
dynamic and static analyses. Dynamic analysis actually executes
a malware program and monitors its behavior for analysis. For
example, there are techniques that either monitor CPU usage and
processes or capture malware network traffic. The dynamic anal-
ysis method is robust against obfuscation and can accurately re-
veal malware behavior. However, this method requires a compre-
hensive monitoring of malware behavior. For Android malware
in particular, there are cases in which the malware operation re-
quires on-screen user interaction which makes dynamic analysis
difficult to conduct. Static analysis uses information that can be
obtained without executing the malware. For example, methods
have been developed that focus on the permissions required by
Android applications and API calls provided by Java or Android
Software Development Kit (SDK). Static analysis is difficult to
apply to obfuscated code however we can conduct a fast and scal-
able analysis without the time and effort required to run Android
malware.

2.2 Android Malware Detection
Several machine learning-based detection methods have been

used for detecting Android malware in addition to signature-
based detection methods using known malware information.
Specifically, previous studies have used features obtained from
dynamic or static analysis (in Section 2.1) to apply a binary clas-
sification as to whether the APK is malware [6], [7], [8], and to
apply family classification within malware [2], [9].

When applying machine learning to a target such as Android
malware APKs, which continue to increase in number over time,
it is important to achieve robust detection performance that con-
siders not only the detection performance at a certain point in
time, but also the changes in the malware over time. With ma-
chine learning such a significant change in the nature of a target
is called concept drift [3]. For example, when predicting malware
family names, concept drift occurs at the time of the appearance
of a new family that is not present in the training data. Pendlebury
et al. [10] showed that several previous studies on detecting An-
droid malware did not sufficiently consider such conceptual drift,
and that detection accuracy was reduced when the detection algo-
rithm was tested under realistic time-series-based experimental
conditions.

3. Proposed Method

In this paper, we propose a new method for creating a fam-

ily tree of Android malware that takes into account changes in
the time-series which denote the trends of the attacks and appear-
ances of new families. Our family tree is defined as a timeline of
relationships among Android malware linking a similar malware
family with similar malicious behaviors and purposes. As shown
in the Fig. 1, our proposed method uses Android malware as the
input and goes through two steps (feature engineering and
family tree creation) and finally outputs a family tree.

Fig. 1 Overview of proposed method.

3.1 Step 1: Feature Engineering
We focused on the long-term and large numbers of Android

malware to create a family tree. To this end, we extracted the fea-
tures required for creating a family tree based on a fast and scal-
able static analysis method. Specifically, we used the MobSF [11]
to extract features from Android malware.
3.1.1 Step 1-1: Feature Extraction

We selected two feature sets (permissions and API calls) that
can capture the behavior and the family of the malware.
Permissions. In Android apps, the various privileges required
for the apps are managed by a mechanism called permissions.
Permission-based features have been used in various studies be-
cause they provide a clear indication of Android malware be-
havior. Arora et al. [12] showed that the use of permission-
based features is important for robust Android malware detection.
The required permissions of Android malware can be obtained
from the manifest file (AndroidManifest.xml). For example,
if an Android malware requires Internet access, the permission
android.permission.INTERNET is defined in the manifest file.
In this study, we extracted features from the permissions required
by each Android malware using the following procedures.
( 1 ) Each permission required by an Android malware is sepa-

rated by a period and tokenized.
( 2 ) A feature vector is created using one-hot encoding to see if

the Android malware contains a token. However, generic
tokens (android and permission) that do not indicate the
content of permission are excluded.

API Calls. Android apps can be decompiled or in other words,
the source code and its directory structure are readily available.
This study focuses on API calls that can be identified from the
source code. Aafer et al. [6] showed that there are some common
API calls for malicious Android malware activities. For exam-
ple, if getRuntime().exec() or getRuntime() of the class
java.lang.Runtime is called in the source code of an Android
app, then the app may fork a process or namely create a new pro-
cess and execute an arbitrary command. Utilizing the ideas of
Ref. [6], we selected 49 such API calls, reflecting the more recent
Android OS and malware landscape. Specifically, we used the
API call extraction rule [13] in MobSF [11] for practical imple-
mentation. Similar to the permissions, we used one-hot encoding
to characterize whether an API call is used by an Android mal-
ware APK.

For each Android malware APK, we represented the extracted
features based on the above permissions and API calls in the ma-
trix D. In the matrix D, each row corresponds to an Android mal-
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ware APK, and each column corresponds to one feature. Here-
after, each row of D is ordered by the malware appearance date.
Notably, in this study, we considered time-series changes in the
features, and we created features based on permissions and API
calls observed at a certain point in time, or namely we avoided
using future information as a leakage.
3.1.2 Step 1-2: Feature Embedding by Using UMAP

When features extracted from permissions and API calls are
used, data with the same label are not necessarily distributed close
to each other in the feature space. However, for well-known mal-
ware that has already been analyzed sufficiently, it may be pos-
sible to assign a label such as the exact family name. In this
study, we proposed a method to embed the extracted features into
a low-dimensional feature space using labels from a known fam-
ily name. For feature embedding, we used Uniform Manifold
Approximation and Projection (UMAP) [14]. The main idea of
UMAP is based on the theory of Riemannian manifolds and al-
gebraic topology. UMAP performs dimensional reduction so as
to preserve the local and global distance relations between data
points. Points that are close to each other in high-dimensional
data are trained to be close to each other when embedded in low-
dimensional data. In order to represent the closeness of data
points, UMAP uses an undirected weighted graph based on the
k-neighborhood method to represent the neighborhood relation
of high-dimensional data. This graph is called a fuzzy topolog-
ical set in the original UMAP paper. UMAP is trained to pre-
serve the neighborhood relation indicated by the weights of this
graph when embedded in a low-dimensional space. UMAP can
also perform supervised embedding. By embedding the features
using UMAP, the distance structure in the feature space appropri-
ately reflects the known label information. As a result, UMAP
and its features are expected to improve the accuracy of cluster-
ing, which is performed in Step 2-1.

It is also possible to embed new data without labels in the space
once it has been embedded in a supervised manner. Furthermore,
when data with properties different from known ones are input,
the features are embedded at a distance away from the known
labels. Owing to the aforedescribed properties, embedding new
data can be easily applied to the real-time creation of the family
tree proposed herein.

3.2 Step 2: Family Tree Creation
This step uses the features extracted in Step 1 mentioned above

to create a family tree for Android malware. As shown in Fig. 1,
we created a family tree through an iterative process composed of
the following three sub-steps: clustering, cluster matching, and
graph creation. The underlying concept of this family tree cre-
ation is to make associations for new and not yet fully analyzed
Android malware APKs available on a daily basis using historical
malware data. As explained in Section 2, new families of Android
malware continue to emerge over time and do not belong to the
known families. Therefore, we selected an approach based on
clustering that considers classification into pre-specified classes.
Step 2-1: Clustering. We use a clustering method to cluster mul-
tiple malware APKs obtained over time based on the extracted
features of each Android malware APK. Hereafter, we refer to

each row of data D (the feature vector of each malware APK) as
a sample. We split the data D into m partitions in a time-series
order and call each submatrix (D1,D2, · · · ,Dm) a batch. A batch
describes features of multiple malware in a matrix. In addition,
for D, we obtain the standard deviation of the norm for each sam-
ple and divided D by it to adjust the scale of the norm as a pre-
processing step.

We use the clustering method to cluster the samples contained
in each batch Di, (i ∈ {1, 2, · · · ,m}) to obtain ci clusters. We
define the centroid gi,l, (l ∈ {1, 2, · · · , ci}) of each ci cluster as
the average of the feature vectors of the samples belonging to
that cluster. We also define the set of centroids of a cluster as
Gi = {gi,1, gi,2, · · · , gi,ci } and their union as Gi =

⋃i
j=1 G j. The set

Gi contains all centroids of each cluster generated by clustering
of the batches D1,D2, · · · ,Di.

Moreover, various algorithms can be used for clustering. In
the evaluation of this study, we use the X-means method [15],
which can automatically determine the optimal number of clus-
ters. The X-means method is widely used with many implemen-
tations available and it is computationally fast.
Step 2-2: Cluster Matching. When we obtain a new batch Di+1,
we apply clustering to the new Di+1 and obtain ci+1 clusters and
a set of centroids Gi+1. We now search for past clustering results
that are close to the current clustering results. Specifically, for
each ci+1 centroid (gi+1,1, gi+1,2, · · · , gi+1,ci+1 ), which are elements
of sets of centroid Gi+1, we use the k-nearest neighbor method
to search k neighborhood centroids from elements of Gi. We
use a Euclidean distance as a distance measure in the k-nearest
neighbor method. For a certain centroid of cluster gi+1,l, (l ∈
{1, 2, · · · , ci+1}) in Di+1, we obtain (1) Neighbori+1,l, the set with
k neighborhoods explored from Gi, and (2) Distancei+1,l, the set
with the distances between those k neighborhoods and gi+1,l. We
set k to c1, which is the number of clusters in D1. We apply
this setting because when we match the second cluster to the first
batch D1, we cannot obtain more than the number of neighbors
compared to the first cluster.
Step 2-3: Graph Creation. We define the family tree P = (N, E)
as a directed acyclic graph (DAG), where N is a set of nodes cor-
responding one-to-one with the elements in the set of centroids of
the cluster Gi and E is a set of edges with information of distance
d. We create nodes ni+1,l, (l ∈ {1, 2, · · · , ci+1}) corresponding to
the centroid gi+1,l of the each cluster obtained from Di+1. We con-
nect the created nodes to the nodes corresponding to the past cen-
troid which is an element of Neighbori+1,l. However, we do not
connect a node if the distance between nodes exceeds its thresh-
old θ. By setting this threshold, we obtain a relationship between
clusters in which the nodes of the closer clusters are connected
and maintain a time-series relationship that is useful as a family
tree.

4. Evaluation

4.1 Dataset
We evaluated the effectiveness of our method by using two ac-

tual Android malware datasets as shown in Table 1. A dataset
by ArgusLab [16] contains 24,650 Android malware APKs and
their ground truth family name labels. The malware family names
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Table 1 Overview of the Android malware dataset used in the experiments.

Dataset
# of Malware Observation # of Malware

APKs Periods Families
ArgusLab [16] 24,474 2009/10/14∼2016/5/14 71
AndroZoo [17] 25,740 2010/09/10∼2020/9/16 471

Table 2 Malware families included in the ArgasLab dataset.

Family # of Malware APKs
Airpush 7,843
Dowgin 3,356
FakeInst 2,168
Mecor 1,817
Youmi 1,300
Fusob 1,275
Kuguo 1,199
other families 5,516
Total 24,474

Table 3 Malware families included in the AndroZoo dataset.

Family # of Malware APKs
Dowgin 4,082
Kuguo 2,869
SMSreg 1,910
gappusin 1,801
airpush 1,744
adwo 1,557
other families 11,777
Total 25,740

were given based on the detection results by VirusTotal [18], and
were labeled based on the content of the detection results by more
than 50% of anti-viruses. Table 2 shows the number of APKs and
malware families contained in the ArgusLab dataset.

We also used the AndroZoo [17] dataset for evaluation which
includes more recent data and a larger number of families of mal-
ware APKs. In this study, we used a random sampling of 27,851
malware APKs detected by more than 10 antiviruses on Virus-
Total from the AndroZoo dataset, which contains approximately
14 million malware APKs. This dataset does not contain ground
truth family name labels. Therefore, based on the detection re-
sults of VirusTotal, AVClass2 [19] was used to assign the correct
ground truth label. Table 3 shows the number of APKs and mal-
ware families contained in the AndroZoo dataset.

The information for “the date and time when the malware was
created” and “the date and time when the malware was observed”
are not included in either dataset; thus, it is not possible to follow
the time-series changes that we focus on in this study. Therefore,
we additionally used the API provided by VirusTotal to obtain all
dates on which all APK files in the dataset were first observed.
As a result, we found that the malware APKs in the ArgasLab
dataset were observed from October 14, 2009, to May 14, 2016,
and those in the AndroZoo dataset were observed from Septem-
ber 10, 2010, to September 16, 2020, as shown in the “Observa-
tion Periods” in Table 1. The time evolution of the seven fami-
lies of malware (with more than 1,000 samples) in each dataset
shown in Tables 2 and 3 are shown in Figs. 2 and 3. We can see
two aspects from these figures. First, the family and percentage
of malware vary depending on the timespan of the dataset. Sec-
ond, there is a new family of malware that appears after a certain
point in time and the concept-drift occurs at that point.

Fig. 2 The appearance of malware families in ArgusLab dataset.

Fig. 3 The appearance of malware families in AndroZoo dataset.

Fig. 4 Example of created Android malware family tree.

4.2 Creating An Android Malware Family Tree
We apply the method shown in Section 3 to our datasets (Ar-

gasLab and AndroZoo) to generate a family tree. To improve
the computational efficiency, we use permissions that commonly
appear in two or more malware. The dimension of the space
in which the features were embedded in the UMAP was set to
50. In this study, we randomly sampled 50% of the malware
in each dataset (12,237 malware APKs in the ArgasLab dataset,
and 12,870 malware APKs in the AndroZoo dataset) and trained
UMAP using 50% of the malware APKs, to show that the ac-
curacy of the family tree can be improved by using the family
information of a part of the dataset. The remaining 50% of the
malware was not used for UMAP learning but was used for cre-
ating a family tree.
Result Thereafter, we split the malware APKs into batches of
1,000 APKs in order of their first-seen dates (see Step 2-1). Fig-
ure 4 shows a part of the family tree created when the distance
threshold in our method is θ = 0.1. In this figure, the date pro-
gresses from top to bottom, and the color of the node indicates the
most frequent family in the cluster corresponding to that node.
Discussion This automatically generated family tree shows that
related families are joined together as the same family, and by fol-
lowing the graph backwards, it is easy to correlate an APK with
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Table 4 Clustering metric results.

Dataset Used Feature Evaluation Metric Average Score±Standard Deviation

ArgasLab

Original Extracted Feature Average percentage of the most frequent family 0.930±0.004
(Unsupervised) homogeneity score 0.854±0.009
UMAP Embedded Feature Average percentage of the most frequent family 0.931±0.015
(Supervised) homogeneity score 0.984±0.001

AndroZoo

Original Extracted Feature Average percentage of the most frequent family 0.651±0.015
(Unsupervised) homogeneity score 0.506±0.009
UMAP Embedded Feature Average percentage of the most frequent family 0.904±0.004
(Supervised) homogeneity score 0.833±0.010

historical malware and its family. Since the family tree is created
based on the features extracted from API calls and permissions,
it is even possible to link different malware families with simi-
lar behavior. The accuracy of the family tree in such a case is
evaluated in Section 4.4.

4.3 Evaluation of Clustering
Here we aim to evaluate the clustering results and validity of

the family tree. To this end, we validated the accuracy of the fam-
ily classification for each cluster before connecting the edges of
the family tree (Step 2-1). To evaluate the accuracy, we used the
ground truth labels contained in the dataset. Specifically, we use
the following two metrics to evaluate the clustering accuracy.
Average Percentage of the Most Frequent Family. This metric
averages the percentage of the most family within each cluster.
Although this metric is intuitive and straightforward, it has the
disadvantage of not being able to consider the size of each cluster
or the number of mixed families.
Homogeneity score. To compensate for the disadvantage of the
above metric, we also used the homogeneity score [20] to eval-
uate the clustering results. The homogeneity score h is defined
as follows when dividing the N data with n different class labels
K = {k1, k2, · · · , kn} into m clusters C = {c1, c2, · · · , cm}:

h =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, H(K|C) = 0

1 − H(K|C)
H(K) , otherwise

where H is the entropy. In addition, H is defined as follows if the
number of data points in class k and cluster c is ak,c:

H(K|C) = −
|C|∑

c=1

|K|∑

k=1

ak,c

N
log

ak,c∑|K|
k=1 ak,c

H(K) = −
|K|∑

k=1

∑|C|
c=1 ak,c

N
log

∑|C|
c=1 ak,c

N
.

We considered each of the family names as the class labels K.
Thus, the homogeneity score increases to nearly 1 when each
cluster contains only one family.
Result Table 4 shows the means and standard deviations of the
two metrics mentioned above for 10 rounds of clustering for each
dataset. We also show a comparison between the results obtained
by completely unsupervised clustering on the extracted features
as they are without UMAP, and the results obtained by clustering
on vectors embedded with features in a supervised manner using
UMAP.
Discussion It can be seen from the table that both completely
unsupervised clustering and clustering with UMAP recorded high

scores on the ArgusLab dataset. In particular, when UMAP is ap-
plied, the homogeneity score is very high at 0.93, indicating that
not only is one cluster occupied by a single family, but it is also
less likely to be misclassified across multiple clusters. Mean-
while, the accuracy of the unsupervised clustering for the Andro-
Zoo dataset is low. This is likely because the AndroZoo dataset
contains more recent malware samples as well as malware from
longer periods of time and more varieties of families. However,
when UMAP is applied and the family tree is created in a super-
vised manner, the accuracy improves significantly. These results
indicate that the clustering necessary to create a family tree can be
performed with stable accuracy. It can also be seen that if even a
part of the malware family data can be obtained, then supervised
learning with UMAP can be used for more accurate clustering.

4.4 Evaluation of Family Tree
To make the family tree useful for estimating malware families

and behavior, each connected set of nodes in the created family
tree should be occupied by the same family. Now, we evaluate
whether each connected set of nodes in the family tree has these
characteristics.

To carry out this evaluation, we consider a tree structure in the
family tree that considers whether nodes are connected to each
other, regardless of the direction of the graph. Hereafter, this tree
structure or subgraph is referred to as the family line. In Fig. 4,
we present an example of a family line in our family tree. To in-
dicate the validity of the family tree, we consider the family line

to which the nodes are connected as one large cluster and use the
ground truth family name labels to evaluate the accuracy of the
large clusters.
Result As shown in Fig. 4, the same family does not necessarily
belong to the one family line. When we investigate the malware
traffic in each family, we found that the combination of domain
names connected by each malware in each family tree differs
greatly. These results show that communication behavior is dif-
ferent even for malware which has the same given family name.
Results also show that the family tree created by our method cor-
rectly captures these characteristics.

Figure 5 shows the change in average accuracy depending on
the threshold of the distance to cut the edges. The horizontal axis
shows the threshold for cutting the edges in the family tree, and
the vertical axis shows the homogeneity score. The line colors
indicate the difference in the datasets, where the crosses indicate
the results of unsupervised family tree creations and the circles
indicate the results of the supervised family tree creation using
UMAP. The vertical axis shows the homogeneity score, which is
the stricter of the two scores described in Section 4.3. The homo-
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Fig. 5 Evaluation of family tree.

geneity score was calculated by considering each family line as a
cluster C = {c1, c2, · · · , cm}.
Discussion In this evaluation experiment, we compared the ho-
mogeneity score by considering each cluster connected in the
family tree as a “family line” and the family line as a new cluster.
Therefore, if unrelated clusters are connected to each other as a
family line using the method proposed in this study, the homo-
geneity score will be reduced compared to the accuracy of sim-
ple clustering. However, if the distance threshold θ is set to 0.1,
we cannot observe a significant difference from the homogene-
ity score of clustering shown in Table 4. Thus, the clusters con-
nected in the family tree are valid connections in terms of family
classification, and it is possible to estimate the malware family
that belongs to a new family.

We now discuss the tradeoff between the distances connecting
the edges of the graph. The smaller the distance threshold used
to cut the edges, the closer the connection of the clusters to the
family tree and the more concise their association with previous
malware samples. In contrast, the greater the distance threshold
used to cut the edges, the greater the number of connected clus-
ters and the larger the number of nodes that can be referenced by
the previous malware samples. In addition, we can obtain many
suggestions for neighborhood malware samples. In the following
experiments, we set a distance threshold of 0.1.

4.5 Evaluation of Concept-drift
4.5.1 Evaluation of Concept-drift Robustness

We evaluate the robustness of our proposed method when new
malware families appear in the dataset or when concept-drift oc-
curs. Our method creates feature vectors based on permissions
and API calls as described in Step 1. When the SDK, Android
APIs, and libraries are updated, the permissions and API calls
used by Android malware may change, requiring feature redesign
and model recalculation. To account for this change, we gener-
ated one-hot vectors using tokens that appeared before half of
the malware in the dataset appeared and set limits on the number
of features used. Supervised learning with UMAP was also per-
formed in the same way or namely only data until emergence of
half of the malware APKs in the entire dataset was used.
Result We performed the same experiment as in Section 4.2,
except for the feature extraction. As in Section 4.2, Figs. 6 and 7

Fig. 6 Evaluation of Concept-drift robustness of family tree (ArgasLab
Dataset).

Fig. 7 Evaluation of Concept-drift robustness of family tree (AndroZoo
Dataset).

show the change in the accuracy of the family tree depending on
the threshold in each dataset.

The accuracy when the extraction of features is not limited is
shown by the dark-colored line in the graph. The accuracy when
feature extraction is limited is shown by the light-colored line in
the graph.
Discussion Comparing both lines, it was found that although a
slight decrease in accuracy was observed, the restriction on fea-
ture extraction based on temporal information had little impact
on accuracy. In addition, the decrease in accuracy when UMAP
was used on the AndroZoo dataset was slightly larger than the
decrease in accuracy on the ArgasLab dataset. This difference
may be due to the fact that there is a six-year gap between the
appearance of half of the data used for training and the end of the
dataset. However, we can say that it maintains sufficient accuracy
compared to clustering with completely unsupervised learning.
4.5.2 Evaluation of Concept-drift Detection

Next, we show that our method can be used to detect concept-
drift and contribute to preventing a decrease in the accuracy of
general machine learning models that classify malware families.
To carry out this evaluation, we implement a new multiclass clas-
sification that predicts which family a given Android malware be-
longs to and evaluated its accuracy. We used all families of mal-
ware shown in Table 1 and their family trees for the dataset, ex-
tracting the same features as our method, and training the multi-
class Random Forest model. We trained and evaluated the Ran-
dom Forest model by shifting the testing samples by 1,000 and

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

using all the samples preceding each testing sample as a training
sample. Thus, refering to Table 1, this means that the Random
Forest model was evaluated 24 times (24,474 samples for the Ar-
gasLab Dataset) and 25 times (25,740 samples for the AndroZoo
Dataset), respectively. To evaluate the model fairly, we conducted
the above evaluations 10 times to minimize the influence of the
initial seed and parameters. In other words, we evaluated 10 sets
of 24 or 25 total trainings. For training the RandomForest model,
we used the same features based on the one-hot vector as in the
proposed method, and for generating the family tree we used the
features embedded in UMAP. As in Section 4.5.1, the features
used to create the family tree were based only on the data that
appeared until exactly half of the malware in the each dataset ap-
peared. Embedding by UMAP was applied in the same manner.
The family tree is only used to detect concept drift based on the
number of malware in a new family line that is not connected to
any parent node in the family tree.

In Section 4.5.2, the Random Forest model used for validation
is referred to simply as the model. Our method of concept-drift
detection is based on the criterion of whether a new node appears
that is not connected to any of the past nodes while generating
the family tree in each batch. These new nodes can be consid-
ered to have weak relationships with past malware families and
it is very probable for new malware families. We consider that
a concept-drift occurs when even one of the new nodes appears
or when the number of malware APKs belonging to a new node
exceeds a certain number and we retrain the model. In this eval-
uation, we set this retraining threshold to 150 (for the ArgusLab
dataset) or to 400 (for the AndroZoo dataset). To compare with
state-of-the-art concept drift detection algorithms, we chose the
D3 [21] algorithm that detects concept drift in an unsupervised
manner. We evaluated the properties of such concept-drift detec-
tion in five different models, as given below.
• Retraining it every time (All Train Model)
• Retraining only when the number of malware APKs belong-

ing to a new node exceeds 150 or 400 (#150 Train Model or
#400 Train Model)

• Retraining once every two times (Half Train Model)
• Retraining only when the D3 algorithm detects concept drift

(D3 Train Model)
• Retraining it the first time only (First Train Model)

Result Tables 5 and 6 show the average accuracy of each model
over 10 sets of evaluations, and the total number of times the
retraining of the model was skipped as a result of concept-drift
detection. Figures 8 and 9 show the variation in accuracy. We
call indexes of dataset that sub-divided into 24 segments (for the
ArgasLab Dataset) or 25 segments (for the AndroZoo dataset) a
batch. The horizontal axis of the graph shows the batch, and the
vertical axis shows the average accuracy.
Discussion From the tables and figures we can conclude the fol-
lowing three facts. First, we can see that the accuracy of the
model decreases when the number of retraining periods is sig-
nificantly reduced. In particular, if the model is not retrained
for a long period of time (e.g., First Train Model), it is not pos-
sible to classify a family of new malware, and the accuracy is
significantly reduced. Second, our method for retraining when

Table 5 Accuracy evaluation of retrained models (ArgasLab Dataset).

Model Avg. Accuracy # of Skipped Retraining Times
All Train Model 0.895 0
#150 Train Model 0.883 5
D3Train Model 0.883 6
Half Train Model 0.853 12
First Train Model 0.438 24

Table 6 Accuracy evaluation of retrained models (AndroZoo Dataset).

Model Avg. Accuracy # of Skipped Retraining Times
All Train Model 0.607 0
#400 Train Model 0.601 3
D3 Train Model 0.446 12
Half Train Model 0.567 24
First Train Model 0.178 20

Fig. 8 Accuracy change of retrained models (ArgasLab Dataset).

Fig. 9 Accuracy change of retrained models (AndroZoo Dataset).

a concept-drift is detected (#150 Train Model and #400 Train

Model) requires less training and is comparable in accuracy to the
model based on retraining every time (All Train Model). Third,
the detection of concept-drift by our method is comparable to the
state-of-the-art concept-drift detection algorithm. In short, our re-
sults show that the concept-drift detection of our method and the
retraining based on it can be performed at the appropriate time.

4.6 Repackaging Malware
We evaluated the accuracy of the clustering with a particular

focus on malware generated by repackaging. We identified 24
families in the ArgasLab dataset that are known to be generated
by repackaging legitimate apps based on a historical analysis and
evaluated our method using a sub-dataset of 1,963 malware be-
longing to these families. Table 7 shows the clustering scores
calculated through the same procedure shown in Section 4.4.

The malware generated by repackaging contains features and
source code from authentic and benign Android apps and is gen-
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Table 7 Clustering evaluation for repackaging malware.

Used Feature Evaluation Metric Avg. Score±SD
Original Extracted Feature Avg. percentage of the most frequent family 0.870± 0.024
(unsupervised) homogeneity score 0.704± 0.026
UMAP Embedded Feature Avg. percentage of the most frequent family 0.933± 0.006
(Supervised) homogeneity score 0.898± 0.006

erally difficult to detect and classify. Table 7 shows that the pro-
posed method can classify repackaged malware although the ac-
curacy is slightly reduced.

4.7 Observing New Malware Families
We show that the appearance of a new malware family can be

observed by creating a family tree. In the unsupervised learning
method, as shown in Fig. 2 which indicates the number transition
of detections based on the malware family, we can see in par-
ticular that the “Fusob” family appeared in large numbers within
a short period of time after 2015. In our family tree, shown in
Fig. 4, the pink nodes at the bottom correspond to the Fusob fam-
ily. These pink nodes emerge suddenly from one batch to form
a family tree, which is consistent with the actual ground truth
results in our dataset. Thus, our family tree allows us to know
that a new malware family, with less relation to existing malware
families, has emerged at some point in time. When using the
UMAP method, we confirmed that the emergence of this Fusob
family was detected as a concept-drift by the automatically gener-
ated family tree and that the model was subsequently retrained to
maintain the accuracy of the model, in the experiments described
in Section 4.5.2.

4.8 Benign Apps
Although our proposed method was designed to create a family

tree for malware APKs, we evaluated it to show that it can also be
applied to the creation of a family tree for benign APKs. We also
used the version information of the benign application to discuss
the implications of the family tree.

In this evaluation, we first evaluate whether a benign applica-
tion A with some multiple versions can be connected as a family
tree using the same features as malware. Next, we generate fea-
tures and create a family tree with multiple versions of the benign
application B, and we examine what information is reflected in
the family tree. The benign applications used in this evaluation
were obtained from the Google Play Store retroactively from the
latest version, referring to the method proposed by Yasumatsu et
al. [22].
4.8.1 Connections Inside Families

The family tree generated by the proposed method should con-
nect clusters of the same malware family to each other and rep-
resent them as a single family line. In this experiment, instead
of using the same malware family, we used benign APK files of
multiple versions of a benign application A to evaluate whether
the families were connected. For a single benign application A,
we extracted the features of each version and embedded them us-
ing a trained UMAP model, and then we created a family tree.
We used 122 multiple versions of the benign application A, from
version 2.0.0, to version 6.40.1. Since the AndroZoo dataset con-
tains newer and more variant malware families, the same features

Fig. 10 Example of benign APK connection.

Fig. 11 Family tree of single benign application.

as the AndroZoo dataset were extracted, and then the extracted
features were embedded using the UMAP model trained on the
AndroZoo dataset.
Result Figure 10 shows an example of a generated family tree
with the threshold θ = 0.1, which was determined to be appropti-
ate in this study. The label of each node shows the version infor-
mation contained in each cluster of the family tree. This version
information is extracted from AndroidManifest.xml.
Discussion We found that all the clusters except for the clus-
ters before version 2.1.2 were connected, and the family lines
were connected to each other within the same family. In addition,
there was more than three times the difference in the size of the
APK file between version 2.1.2 and version 3.1.0 or later, where
the family tree is broken. The internal structure of the applica-
tion, such as the libraries used was also found to be significantly
different. We also performed a dynamic analysis to confirm the
difference between version 2.1.2 and version 3.1.0 or later. As a
result, we were able to confirm that the GUI and functions of the
applications differed greatly.
4.8.2 Family Tree of Single Benign Applications
Result We generated features for all 83 versions of a certain
benign application B (from version 1.0 to version 7.4.2) and gave
them the same labels in UMAP to create a family tree. Figure 11
shows the example of a generated family tree with the threshold
θ = 0.1.
Discussion From the figure, we can see that the family tree re-
flects the version information and is connected in the order of
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each version. However, there are places where the family tree is
disconnected, even though it is a single application. First, there
is a family tree whose major version is 1.0, and a family tree
whose version information is defined as “@string/app version”.
For those versions whose version information is defined as
“@string/app version”, referring to the string definition from the
actual file, we found that the major version is assigned between
2.0 and 4.0. As represented by the version definition, we can see
that the family tree is disconnected where the structure of the ap-
plication has changed significantly. There is also a family line
starting with major version 6.0. When we performed dynamic
analysis and compared version 5.2.7 and version 6.0.0, we found
that the application GUI was very different. We also found that
the version of the Android SDK used has increased from 19 to
22.

This result shows that a family tree can also reflect the char-
acteristics of a family line and suggests the “evolution” such as
changes in the structure of the application.

5. Limitations

We will now discuss three limitations of our method. First,
there are certain cases in which we cannot accurately obtain the
permission information. For example, if the permission infor-
mation is defined by the runtime permission, and is not written
in AndroidManifest.xml, then our method cannot extract the
permission-based features. Second, there are cases in which the
API call information cannot be obtained. Specifically, in the case
of an app that uses the API dynamically through reflection, the
current implementation of our method does not allow us to obtain
the API. Third, because our method does not analyze the code
implemented in the native code, this case is outside the scope
of our study. Fourth, in the case of repackaging malware, our
method has slightly lower classification accuracy as discussed in
Section 4.6. Our method mainly targets only Android malware
having malicious code.

6. Related Work

We summarize related work from four perspectives: visualiza-
tion of relationships among malware, detection of Android mal-
ware, family classification of Android malware, and concept drift
detection for Android malware detection.

6.1 Visualization of Relationships among Malware
Oyen et al. [23] proposed a method for creating a family tree

for Windows malware. Their method uses a Bayesian network to
generate a family tree based on a directed acyclic graph (DAG)
and generates a local family tree specific to each malware fam-
ily. Whereas this method manually determines the parent-child
relationship between nodes and generates a family tree focusing
on individual families, our method simply feeds the dataset to a
time series and automatically generates a global family tree that
includes multiple families.

Erd’elyi et al. [24] and Ardimento et al. [25] proposed methods
to visualize the similarity of malware in dendrograms using hi-
erarchical clustering. These studies provide a phylogenetic tree
using a dendrogram, although the hierarchy is based on the sim-

ilarity of samples and does not reflect time-series information as
in our approach.

Jang et al. [26] proposed a system of software lineage infer-
ence system for Windows malware and goodware binaries. Haq
et al. [27] proposed a method for creating a lineage by entering a
set of Windows malware for each family. Although the concept
of lineage is similar to that of our family tree, our method does
not create a series limited to a certain family or software, as these
methods do.

In summary, our method differs from theirs in three major
points: (1) we create a global family tree that includes multiple
malware families, (2) we also classify families within the tree,
and (3) we target Android malware.

6.2 Detection of Android Malware
We outline some typical studies that detect Android malware.

Aafer et al. [6] proposed DroidAPIMiner, an Android malware
detection system based on the features of API information which
performs binary classification of malware and non-malware using
the k-nearest neighbor method. Arp et al. [7] proposed a system
called Drebin that detects malware by performing binary classi-
fication using a support vector machine (SVM) based on static
features extracted from API calls and manifest files. Mariconti et
al. [8] proposed a system called MaMaDroid that uses a Markov
chain based on abstracted method calls to detect the behavior of
Android malware. Suarez-Tangil et al. [28] proposed DroidSieve,
a fast Android malware detection system that employs static fea-
tures that are especially resistant to obfuscated Android malware.
McLaughlin et al. [29] proposed a method to detect Android mal-
ware by applying deep convolutional neural network (CNN) to a
sequence of opcodes disassembled from Android APKs. Kim et
al. [30] proposed an Android malware detection framework that
applies multimodal deep learning using various features that can
be extracted from Android APKs.

In summary, all of the above studies are complementary to our
method. In other words, by inputting the Android malware iden-
tified in these studies into our proposed method, we can produce
a family tree of their relationships.

6.3 Family Classification of Android Malware
So far, the previous studies have mainly focused on binary clas-

sification of Android malware. In this section, we summarize the
studies on classification and clustering focusing on malware fam-
ilies that further break down Android malware. Yang et al. [31]
proposed DroidMiner, which can capture the behavioral patterns
of Android malware using behavioral graph representation from
known Android malware and diagnose which malware family it
belongs to. Cai et al. [32] proposed DroidCat, which uses features
obtained by running Android APKs to determine whether the in-
put APK is malware and if so, which malware family it should be
classified into. Mirzaei et al. [9] proposed AndrEnsemble, a sys-
tem to identify Android malware families by ensembling sensi-
tive API calls extracted by aggregating the call graphs of Android
malware belonging to different families. Very recently, Zhang et
al. [2] proposed a classification method based on the clustering
results. This method estimates the ground truth label based on
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the detection results of VirusTotal and uses the similarity of the
malware source codes and manifest information such as permis-
sions in addition to the detection results of VirusTotal, to generate
vectors using deep learning and apply clustering.

In summary, unlike our method, these methods cannot detect
changes in malware over time or trace the detection results back
in time and cannot create a global family tree containing multiple
Android malware families.

6.4 Concept Drift Detection for Android Malware Detection
Pendlebury et al. [10] and Jordaney et al. [33] focused on

concept-drift in machine learning-based Android malware detec-
tion. Especially, Pendlebury et al. showed that several previous
studies on detecting Android malware did not sufficiently con-
sider such conceptual drift, and the detection accuracy was re-
duced when the detection algorithm was tested under realistic
time-series-based experimental conditions.

In our study, concept-drift detection was a secondary effect of
our proposed family tree. Thus, the aim of these studies is signif-
icantly different from ours, which creates a family tree based on
a time-series malware dataset.

7. Conclusion

We propose a new method for creating a family tree that is
based on the time-series changes in Android malware. Our eval-
uation using two actual Android malware datasets shows the va-
lidity and effectiveness of our family tree. By creating a family
tree using our method, we can obtain a significant amount of in-
formation regarding new malware and its trends. We hope that
our method can be applied for a more efficient analysis of ever-
increasing Android malware APKs and as a useful threat intelli-
gence approach linked to historical information.
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Editor’s Recommendation
In this paper, the authors propose a new method for automati-

cally creating a “family tree” of Android malware that can repre-
sent how the newly detected Android malware is related to exist-
ing Android malware and its families and how they have changed
over time. In recent years, Android malware continues to increase
in number and type or family over time. This paper gives a great
impact to readers in this research field and thus is selected as a
recommended paper.

(Program Chair of anti Malware engineering WorkShop 2020,
Masatsugu Ichino)
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