
Electronic Preprint for Journal of Information Processing Vol.29

Recommended Paper

Timing Attack on Random Forests:
Experimental Evaluation and Detailed Analysis

Yuichiro Dan1 Toshiki Shibahara2,a) Junko Takahashi2

Received: January 29, 2021, Accepted: September 9, 2021

Abstract: This paper proposes a novel implementation attack on machine learning. The threat of such attacks has
recently become an problem in machine learning. These attacks include side-channel attacks that use information
acquired from implemented devices and fault attacks that inject faults into implemented devices using external tools
such as lasers. Thus far, these attacks have targeted mainly deep neural networks; however, other common methods
such as random forests can also be targets. In this paper, we investigate the threat of implementation attacks to random
forests. Specifically, we propose a novel timing attack that generates adversarial examples. Additionally, we experi-
mentally evaluate and analyze its attack success rate. The proposed attack exploits a fundamental property of random
forests: the response time from the input to the output depends on the number of conditional branches invoked during
prediction. More precisely, we generate adversarial examples by optimizing the response time. This optimization
affects predictions because changes in the response time indicate changes in the results of the conditional branches.
For the optimization, we use an evolution strategy that tolerates measurement error in the response time. Experiments
are conducted in a black-box setting where attackers can use only prediction labels and response times. Experimental
results show that the proposed attack generates adversarial examples with higher probability than a state-of-the-art at-
tack that uses only predicted labels. Detailed analysis of these results indicates an unfortunate trade-off that restricting
tree depth of random forests may mitigate this attack but decrease prediction accuracy.
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1. Introduction

Attacks on machine learning have been a critical problem since
the work by Szegedy et al. [1] in 2013. The most representative of
these attacks is evasion, hereinafter referred to as an adversarial
example [1], [2], [3], [4], [5], [6], [7]. In an adversarial exam-
ple, the attacker deceives the prediction model by adding small
perturbations to the input data. Another representative attack is
model extraction, which extracts or learns prediction models in
machine-learning-based systems and constructs substitute mod-
els using input and output data of the systems [8].

Until recently, researchers have investigated attacks exploiting
weaknesses in algorithms such as the fact that gradients of loss
functions indicate directions for misclassification, and the fact
that a good approximation of a prediction model can be gen-
erated using a set of its input and output data (algorithm at-
tacks) [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12].
Since around 2017, researchers have indicated attacks that use
weaknesses in devices that use prediction models (implementa-
tion attacks) [13], [14], [15], [16], [17], [18], [19]. For example,
an attack was proposed that generates faults through laser injec-
tion causing misclassification [14]. Additionally, several attacks
have been discovered that extract prediction models by measur-
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ing physical quantities such as timing and electromagnetic radi-
ation [13], [15], [16], [19]. These implementation attacks pose
significant threats especially when attackers can easily access pre-
diction models as edge artificial intelligences (AIs).

The target of these implementation attacks has been limited to
deep neural networks. In other words, implementation attacks
on tree-based methods have not been reported even though such
methods include practical machine learning methods [20] such as
XGBoost [21] and random forests [22]. Thus, in this paper, we
address the threat of implementation attacks to random forests.
In particular, we propose a novel attack exploiting the response
time from the input to the output (timing) for generating adversar-
ial examples, and evaluate its attack success rate experimentally.
We focus on the attack using the timing among implementation
attacks (timing attacks) because measuring the timing does not
require expensive equipment or advanced skills. Consequently,
timing attacks are easy to execute, and more tractable for many
attackers than other implementation attacks.

There are two challenges in generating adversarial examples
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using the timing: building a strategy required to cause misclas-
sification using the timing, and mitigating the measurement error
of the timing. In regard to the former challenge, drastic changes
in the timing can cause misclassification for the following rea-
son. Because the timing correlates with the number of conditional
branches invoked in a random forest during prediction, drastic
changes in the timing indicate drastic changes in the results of the
invoked branches. These changes in the results of the branches
can ruin prediction results. The latter challenge requires a noise-
tolerant optimization method to change the timing appropriately
even if measurement errors exist. Such optimization methods in-
clude evolution strategies. When updating an optimum once, evo-
lution strategies evaluate multiple candidates close to the current
optimum and obtain a new optimum using a weighted average of
the candidates. In this way, evolution strategies can robustly find
a good optimum even if each of the evaluation results of candi-
dates contains measurement errors. For this reason, we use the
covariance matrix adaptation evolution strategy (CMA-ES), one
of the most common evolution strategies.

We evaluate the threat of the proposed attack in a black-box
setting where attackers can use only prediction labels and the tim-
ing. Note that we assume a victim system that conceals parame-
ters of the prediction model and confidence values of predictions
in this setting. The evaluation results show that the proposed at-
tack generates adversarial examples with higher probability than
a low frequency boundary attack (LFBA) [5], a state-of-the-art
algorithm attack.

Detailed analysis of the evaluation results shows the proposed
attack is less successful for images that require fewer conditional
branches for prediction. This indicates restricting tree depth of
random forests may mitigate the proposed attack. However, we
also reveal that such restriction decreases prediction accuracy of
random forests. This clarifies demand for more sophisticated mit-
igation measures.

The remainder of this paper is structured as follows. Section 2
introduces related work regarding implementation attacks and al-
gorithm attacks on machine learning. Section 3 reviews random
forests, CMA-ES, and LFBA as research background. Section 4
describes the assumption of the threat in this paper. In Section 5,
we propose the novel timing attack. Section 6 describes the set-
ting and the results of the experiments along with their interpre-
tations. In Section 7, we discuss risky situations involving timing
attacks, and possible directions for countermeasures against the
attacks. Section 8 presents our conclusions.

2. Related Work

This section describes representative attacks on algorithms and
implementations of machine learning.

2.1 Implementation Attacks on Machine Learning
Implementation attacks on machine learning have received in-

terest since 2017 [17]. Thus far researchers have described at-
tacks such as fault attacks [14], [17] and side-channel attacks [13],
[15], [16], [18], [19]. A fault attack injects faults into imple-
mented devices using external tools such as lasers. A side-
channel attack uses information acquired from implemented de-

vices.
For example, Liu et al. [17] conceptually advocated a fault at-

tack causing misclassification. Although their research avoided
referring to practical methods that cause faults, another study [14]
specified a method that causes faults by injecting a laser into de-
vices that run prediction models. As for side-channel attacks,
there are a few attacks that extract prediction models using infor-
mation on timing [15], cache hits [16], [19], or electromagnetic
waves [13]. Additionally, Wei et al. [18] proposed an attack using
information on power consumption for extracting input data.

As mentioned above, several studies have already addressed
implementation attacks on machine learning. However, these
studies mainly target deep neural networks. Regarding other
common methods such as random forests [22], revealing the
threat of implementation attacks to such methods requires further
investigation.

2.2 Algorithm Attacks on Machine Learning
Unlike implementation attacks, algorithm attacks on machine

learning have attracted attention since 2013 [1]. There are many
attacks such as poisoning [10], evasion [1], [2], [3], [4], [5], [6],
[7], model extraction [8], model inversion [9], membership infer-
ence [11], and hyperparameter stealing [12]. A poisoning attack
forces a prediction model to learn inappropriately by mixing tam-
pered data into the training dataset. An evasion attack deceives a
trained prediction model by adding small perturbations to the in-
put data. A model extraction attack extracts a prediction model
from the input and output data of the model. An inversion attack
restores the training data of a prediction model. A membership
inference attack judges if given data belong to the training dataset
of a prediction model. A hyperparameter stealing attack extracts
hyperparameters that tune the training algorithm of a prediction
model.

The most well-known attacks in machine learning include eva-
sion attacks, also known as adversarial examples, which were
first proposed in 2013 [1]. This triggered a series of studies on
attacks on machine learning as mentioned above. Evasion at-
tacks are broadly divided into white-box [1], [4], [7] and black-
box attacks [2], [3], [5], [6] depending on the information used
for the attacks. White-box attacks use information on prediction
models such as the architecture, parameters, and output data of
the models. Black-box attacks use only the output data. Black-
box attacks are further divided into score-based [3], [6] and label-
based [2], [5] attacks. Score-based attacks use prediction labels
and confidence values, whereas label-based attacks use only pre-
diction labels.

To evaluate the threat posed by these attacks, three metrics
are generally used: the misclassification rate, perturbation size,
and number of queries. The misclassification rate is the percent-
age of original input data that successfully cause misclassification
through perturbation addition by attackers. The perturbation size
is the magnitude of the perturbation generally calculated using
mean squared errors (MSEs) of perturbed data to original data.
The number of queries is the number of trials conducted by an
attacker to obtain the output of the prediction model. In terms
of these metrics, attacks with a high misclassification rate, small
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perturbation size, or low number of queries pose a severe risk
because they represent a high probability for misclassification to
occur, difficulty to notice perturbations with the human eye, or
low cost and high stealthiness, respectively.

These metrics generally have a trade-off relationship. Miti-
gating this trade-off is a focus of adversarial example genera-
tion methods. For example, in the case of label-based attacks,
LFBA [5], a state-of-the-art algorithm attack, limits the perturba-
tion search to the region consisting only of low frequency com-
ponents in the frequency space of the input images, and generates
adversarial examples with smaller perturbation and fewer queries
than previous methods do.

3. Background

This section briefly reviews random forests [22], CMA-
ES [23], and LFBA [5].

3.1 Random Forests
Random forests represent a supervised machine learning al-

gorithm consisting of multiple decision trees. A decision tree
is a prediction model that has a tree structure. It receives input
data at the root node, invokes conditional branches at intermedi-
ate nodes depending on the value of each element of the data, and
outputs prediction results corresponding to a leaf node to which
the data finally reach. Accurate prediction requires appropriate
branch conditions at the root and intermediate nodes. For each
node, training algorithms search for the best condition that di-
vides the training data subset reaching the node into two subsets
whose label homogeneity improves the most. To measure this ho-
mogeneity, these algorithms usually use metrics such as entropy
and Gini index.

In a random forest, decision trees are trained separately but
work together as one prediction model. This makes the prediction
accuracy higher than that of a single decision tree. Data input to
a random forest are received by each decision tree, and the output
value from each decision tree is aggregated as a prediction result.
This aggregation involves a majority vote using the output values
for classification cases, and average calculation using these val-
ues for regression cases. This paper focuses on the classification
cases below.

3.2 CMA-ES
CMA-ES is an evolution strategy. Evolution strategies uti-

lize a biological evolution mechanism to optimize objective func-
tions defined on real vector spaces. Generally speaking, evolution
strategies are tolerant of noisy objective functions. These meth-
ods update tentative optima on the basis of objective function val-
ues of multiple candidates for optima. This reduces susceptibility
of tentative optima to noise in objective function values. In this
category, CMA-ES [23] is a representative method that efficiently
solves optimization problems with a low number of iterations.
Here, we review (μ/μw, λ)-CMA-ES, a typical variation of CMA-
ES.

CMA-ES optimizes a function by iterating the next three steps
(a generation). In this subsection, we explain these steps by con-
sidering minimizing the objective function f (x), where x is a

multidimensional real vector (e.g., an input image to prediction
models).
Step 1 A normal distribution with mean m (centroid) and co-

variance matrix C generates λ candidates for the optimum
(individuals).

Step 2 The value of f (x) of each individual is calculated, and
μ individuals are selected in ascending order with respect to
the function values.

Step 3 A weighted average of the μ individuals is obtained, and
the centroid m and covariance matrix C are updated on the
basis of this result.

This method generally requires tuning the initial values of m
and C, and designing the objective function. Moreover, designing
a conversion function often facilitates the optimization. The con-
version function maps the space where individuals are expressed
to the space where objects (i.e., inputs to the objective function)
are expressed. This function is useful because spaces suitable
for individuals are often different from spaces suitable for ob-
jects. For example, when objects are gray scale images, a suit-
able space for objects is the two-dimensional real space, but the
frequency space transformed from the real space with a discrete
cosine transform can be suitable for individuals. This is true if
the low frequency components dominate changes in the objective
function value. Other parameters such as λ and μ have default val-
ues depending on the dimensions of individuals as recommended
by Hansen and Ostermeier [23].

3.3 LFBA
LFBA [5] is a state-of-the-art label-based algorithm attack that

generates adversarial examples. This attack is derived from the
Boundary Attack [2]. Below, we review the Boundary Attack be-
fore LFBA, considering the generation of an adversarial example
of the original image xO with d × d pixels.

The Boundary Attack begins by initializing a tentative image
xA, which already causes misclassification. An attacker chooses
an initial image, or simply generates random noise. Then, the at-
tacker iterates the update of xA by adding small perturbations. An
iteration comprises four steps.
Step 1 The attacker generates a perturbation η from a normal

distribution over the real space of the image, and rescales it
to a small perturbation.

Step 2 The perturbation η undergoes projection onto the sphere
around xO with radius ||xA − xO||2.

Step 3 The adversarial example candidate x̃ is obtained as
xA + η, and this candidate subsequently approaches slightly
closer directly toward xO.

Step 4 If x̃ causes misclassification, it takes the place of the cur-
rent xA; otherwise xA remains unchanged.

LFBA improves the efficiency of the above attack by restrict-
ing the search space to the low frequency region. In particular, in
Step 1 above, it generates a perturbation only with low frequency
components. To generate such a perturbation, LFBA uses a nor-
mal distribution over the low frequency subspace in the frequency
space of the image. An inverse discrete cosine transform is used
to convert the perturbation into a perturbation in the real space.
This restriction to the low frequency region effectively reduces
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the dimensions of the search space. Thus, LFBA requires fewer
queries than the Boundary Attack.

4. Threat Model

In this section, we describe the threat model assumed in this
paper in terms of the victim and attacker. First, in regard to the
victim, we assume a service provider that receives query x from
a user and responds with a corresponding prediction label, l. The
prediction is carried out by a prediction model F(x;w), where pa-
rameter w is trained with a labeled training dataset D = {(x, l)}.
As a countermeasure to algorithm attacks, the victim conceals
model F(x;w), dataset D, and the confidence values of the pre-
dictions. This is because disclosure of such information makes
generating adversarial examples more effective [4], [6]. On the
other hand, the victim does not know of the threat of the tim-
ing attacks, and no countermeasures for such attacks are applied.
Thus, the victim unintentionally leaks information regarding the
internal processing in the prediction model through the response
time for query.

Second, the assumption of the attack is as follows. As de-
scribed in Section 2.2, adversarial example attacks are broadly
divided into white-box and black-box attacks. In this paper, we
focus on label-based attacks among the black-box attacks. This
is because it is difficult to directly use the prediction model and
confidence values, which are both concealed by the victim. In-
stead, the attacker attempts to generate adversarial examples by
efficiently exploiting the response time (i.e., timing).

5. Timing Attack on Random Forests

In this section, we describe how the proposed attack generates
adversarial examples using the timing. There are two challenges
in generating adversarial examples: building a strategy required
to cause misclassification using the timing, and mitigating the
measurement error of the timing. In regard to the former chal-
lenge, an appropriate change in the timing can cause misclassi-
fication, considering the internal processing in a random forest.
This is because changes in the timing indicate changes in the sum
of the distance from the root node to the leaf node to which in-
put data reach through conditional branches in each decision tree
(depth). To change the timing appropriately, we should know the
relationship between the timing and the possibility of misclassifi-
cation. In this paper, this relationship is discussed in Section 5.2,
and experimentally confirmed in Section 6.1. Note that this is not
a part of the attack, but simply a preliminary experiment to design
the proposed attack.

The latter challenge requires a noise-tolerant optimization
method. This is because the timing must be changed along the
appropriate direction even if measurement error in the timing ex-
ists. To confront this problem, we use CMA-ES [23] in this paper.
CMA-ES is a common method in evolution strategy, which is a
category of optimization methods using noise tolerance.

The reminder of this section overviews the proposed attack, the
objective function, and the conversion function. We originally
designed the last two functions for the application of CMA-ES
to the proposed attack. Hereinafter, we consider attacking gray
scale images expressed in [0, 1]d×d for simplicity.

5.1 Notation and Flow of Proposed Attack
In this subsection, we describe the notation and flow in the

algorithm of the proposed attack. The notation is defined as
follows: xO is the original non-adversarial image before the at-
tack; lO is its label; Γ is the distribution that generates individu-
als of CMA-ES; mO is the initial value of the centroid of Γ; CO

is the initial value of the covariance matrix of Γ; λ is the num-
ber of individuals generated per generation; genmax is the upper
limit of the generation; f (x; xO, lO) is the objective function of x
when xO and lO are given; φ̃ is the tentative minimum value of
f (x; xO, lO); z̃ is the tentative optimum individual corresponding
to φ̃; g(z; xC , zC) is the conversion function that outputs the im-
age corresponding to individual z when the central image xC and
individual offset zC are given; LFBA(x,N; xO, lO) is the result of
LFBA after N iterations starting from initial image x to generate
an adversarial example of xO; and xA is the generated adversarial
example.

Algorithm 1 shows the flow of the proposed attack. First, we
initialize Γ with mO and CO in line 1. We also initialize xC with
xO, zC with mO, φ̃with∞, z̃ with mO in line 2. Next, CMA-ES re-
peats the optimization at most genmax times in the following flow.

Algorithm 1 Proposed timing attack for generating adversarial
examples
Require:

xO: original image

lO: original label

Γ: distribution that generates individuals of CMA-ES

mO: initial centroid of Γ

CO: initial covariance matrix of Γ

f (x; xO, lO): objective function of generated image x when xO and lO are

given

φ̃: tentative minimum value of f (x; xO, lO)

z̃: tentative optimum individual corresponding to φ̃

g(z; xC , zC): transformer of individual z when xC and zC are given

LFBA(x,N; xO, lO): the result of LFBA with N iterations starting from

initial image x to generate an adversarial example of pair (xO, lO)

Ensure:

xA: an adversarial example of xO

1: Initialize Γ with mO and CO

2: xC ← xO, zC ← mO, φ̃← ∞, z̃← mO

3: for gen = 1 to genmax do

4: Generate λ individuals zi (i = 1, · · · , λ) with Γ

5: for i = 1 to λ do

6: φi ← f (g(zi; xC , zC); xO, lO)

7: end for

8: Update Γ by zi and φi (i = 1, · · · , λ)
9: if φι < φ̃ for ι = argminiφi then

10: φ̃← φι, z̃← zι
11: xA ← g( z̃; xC , zC)

12: xC ← g(m; xC , zC), zC ← m (m is the centroid of Γ)

13: end if

14: if xA is misclassified then

15: Break this loop

16: end if

17: end for

18: xA ← LFBA(xA, genmax − gen; xO, lO)

19: return xA
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To begin with, Γ generates λ individuals z1, z2, · · · , zλ in line 4.
Then, we evaluate value φi of the objective function of each indi-
vidual in line 6. Subsequently, we update Γ on the basis of zi and
φi in accordance with the procedure of CMA-ES in line 8. At this
point, if φι < φ̃ for ι = argminiφi, φι and zι respectively replace φ̃
and z̃ in line 10. Additionally, we substitute g( z̃; xC , zC) for xA in
line 11. Simultaneously, in line 12, we replace xC with the image
converted from the post-update centroid of Γ when pre-update xC

and zC are given. In this line, we also replace zC with the updated
centroid of Γ. Then, if xA causes misclassification, the timing at-
tack with CMA-ES halts and LFBA assumes the attack in line 18;
otherwise, the timing attack continues returning to line 3. This is
because after misclassification, we only have to optimize a noise-
less quantity, that is, the distance between xA and xO. Such a task
is more suitable for LFBA. Finally, we obtain xA as the output of
this attack in line 19.

In the above attack, we need to design the objective function
f (x; xO, lO) and the conversion function g(z; xC , zC) for apply-
ing CMA-ES to the timing attack. Additionally, changing the
arguments of the conversion function (line 12) is an original con-
trivance. The reminder of this section describes the details of their
designs and intensions.

5.2 Design of Objective Function
The objective function for CMA-ES used in this paper is:

f (x; xO, lO) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

S (t(x)) (l(x) = lO)

MSE(x, xO) − 1 (l(x) � lO)
. (1)

Here, l(x) is the prediction label obtained by inputting x to the
prediction model, t(x) is the time spent from the query of x to the
response of l(x), S (t) is a function that estimates the possibility
of misclassification from t, and MSE(x, xO) is the mean squared
error of x to xO (i.e., the perturbation size). In this expression,
it may seem that the case where l(x) � lO is unnecessary, when
the attack is assumed by LFBA. However, we consider this case
to select the best solution even when multiple individuals cause
misclassification at the same time.

In Eq. (1), S (t) adheres to the two conditions below.
Condition 1 The possibility of misclassification increases as

S (t) decreases.
Condition 2 S (t) is always positive.
Condition 1 is to cause misclassification by maximizing the pos-
sibility of its occurrence. Condition 2 always makes the func-
tion value in cases where l(x) � lO smaller than that in cases
where l(x) = lO. This ensures that misclassified images become
the optimum solutions. Indeed, under the assumption that each
pixel value is in [0, 1], MSE(x, xO) is less than 1. Therefore, it is
true under Condition 2 that the function value becomes smaller in
cases of misclassification than otherwise.

Strictly speaking, the above conditions are not sufficient to
specify S (t). In this paper, we infer that S (t) = t. The reason
for this inference is twofold. First, from Condition 1, the sim-
plest and most plausible forms of S (t) are ±t. This is because if
we change t monotonically to a drastic extent, the internal pro-
cessing also drastically changes. Second, maximizing t is likely

to be more difficult than minimizing it. This difficulty can be de-
rived from the fact that each conditional branch divides the space
expressing images into two portions. This division shrinks the
volume of subspaces consisting of images of deep depth, making
such subspaces difficult to find. Indeed, we experimentally ob-
served the difficulty as described in Section 6.1. Here, note that
S (t) = t meets Condition 2.

5.3 Design of Conversion Function
The conversion function for CMA-ES used in this paper is

g(z; xC , zC) = clip(xC + ε tanh(IDCTr(z − zC))). (2)

Here, z is an individual, xC is the central image to add perturba-
tion, zC is an offset of the individual, clip(x) is a function to clip
x within [0, 1]d×d, ε � 1 is a constant to limit the perturbation
size, and IDCTr(z) is an inverse discrete cosine transform from
the low frequency region of the frequency space to the real space.
In Eq. (2), the clip function takes two terms. The first term xC

is the current optimal image, and the second term is a small per-
turbation. In the second term, we use an inverse discrete cosine
transform to efficiently optimize adversarial examples by reduc-
ing the search space to a low frequency region, which is known
to be effective for adversarial examples [5]. In other words, we
omit a high frequency region to search. Furthermore, we limit
the norm of the second term using a small constant ε and tanh.
Based on Eq. (2), we can effectively search for better adversar-
ial examples in the vicinity of the current optimal one. Below,
we describe the roles of zC and xC , as well as the definition and
reason for adopting IDCTr(z) in detail.

First, the definition of IDCTr(z) is

IDCTr(z) = IDCT(η),

where IDCT is the inverse discrete cosine transform for the verti-
cal and horizontal axes, and

ηi, j =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

zi, j (1 ≤ i, j ≤ rd)

0 otherwise
.

Here, r is a constant corresponding to the reduction rate of the
dimension. We introduce this transformation to improve the effi-
ciency of the optimization by the dimension reduction, which is
based on an idea from previous research [5].

Finally, the roles of zC and xC are described with the reasons
for their introduction and validity in line 12 in Algorithm 1. Equa-
tion (2) means that at most ±ε perturbations are added to image
xC . On the other hand, as shown in line 2 of Algorithm 1, because
xC is initialized by xO, the proposed attack initially searches for
adversarial examples in the vicinity of xO. Therefore, if we fix xC

to xO, this limits the search for adversarial examples to a narrow
region around xO. Thus, we intended to expand the search area
by replacing xC with the image generated with the centroid of Γ
when z̃ changes in line 10. This is what line 12 in Algorithm 1
represents. More precisely, for CMA-ES to operate properly, the
image transformed from individual z under post-update xC must
be at least approximately the same as the image transformed from
the same individual z under pre-update xC . Therefore, in line 12,
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zC simultaneously shifts to the centroid of Γ as xC changes. In-
deed, suppose the old xC is xold, the new xC is xnew, the old zC is
zold, and the new zC is znew, then the following equation holds if
the effect of clipping and terms O(||znew − zold||2) are ignored:

g(z; xnew, znew) � g(z; xold, zold).

6. Experiments

To prove the threat of the timing attack to random forests, we
conducted two experiments described in the following subsec-
tions. More specifically, we first verify the difficulty in finding
images of deep depth to support presumption S (t) = t. Then,
we evaluate the threat of the proposed attack by comparing the
proposed attack to LFBA [5].

The victim environment prepared for these experiments com-
prises a machine, an operating system (OS), a machine learning
framework, a prediction model, and a dataset. The machine is
an HP ProDesk 600 G2 SFF with an Intel Core i5 -6500 CPU
and 16.0 GB memory. The OS is Windows 7 Professional. The
machine learning framework is scikit-learn [24].

The prediction model is RandomForestClassifier with 100
decision trees, and other parameters are set to default values. The
number of trees was determined based on the preliminary exper-
iment. We trained models with 10, 100, and 1,000 trees. The
prediction accuracy of the model with 10 trees was low, and the
accuracies of the models with 100 and 1,000 trees were high and
similar. Since the computational cost of random forests with
many trees is high, we selected the most cost-effective model
that achieved high prediction accuracy with less computational
cost, i.e., the model with 100 trees. Such selection is reason-
able for machine-learning-based systems. Note that this setting
also avoids the condition where attackers are too advantageous.
Specifically, the more trees the model has, the more easily the
proposed attack succeeds. Changes in the timing increase in pro-
portion to the number of trees because a model with many trees
has many branches. The large change in the timing facilitates the
proposed attack because it relatively makes measurement errors
small.

The dataset is the Modified National Institute of Standards
and Technology (MNIST) database. The MNIST training dataset
is used to train the prediction model, whereas the MNIST test
dataset is used in the following experiments. The proposed attack
is expected to be effective without depending on datasets because
the proposed attack does not exploit characteristics of datasets but
exploit those of random forests. We select MNIST in this paper
because MNIST has been frequently used in the experiments of
adversarial examples and because reproductive experiments are
easy to conduct.

By combining these components, we prepared the victim envi-
ronment in which depths are leaked from the timing. The corre-
lation coefficient between the timing and the depth is 0.89.

As for the proposed attack, parameters ε = 0.05, r = 1/4,
zO = 0, CO = 25.0Ird are set on the basis of preliminary experi-
ments, where Ird is an rd × rd identity matrix. The other parame-
ters of CMA-ES are set to the default values as recommended by
Hansen and Ostermeier [23].

Fig. 1 Boxplot of variations in depth caused by adding perturbations to in-
put images to a random forest. The original depth of the images with-
out perturbations is represented on the horizontal axis. The variation
in depth caused by adding perturbations to the images is represented
on the vertical axis. Regardless of the original depth, the variations
in depth tend to be negative.

6.1 Verification of Difficulty in Finding Images of Deep
Depth

This subsection describes the experiment to verify the diffi-
culty in finding images of deep depth. This difficulty supports
presumption S (t) = t as mentioned in Section 5.2. In this experi-
ment, we examined the distribution of depth variations caused by
adding random small perturbations to original images. We con-
duct this experiment to show that perturbations shorten the depths
for almost all original images regardless of the original depths of
the images without perturbations. Below, we describe the proce-
dures and the results of this experiment.

The experiment procedure is as follows. First, to each of the
10,000 images in the test dataset, 10,000 random perturbations
are generated and added. Each perturbation has a value of ±0.01
per pixel with the probability of 50% for each sign. Next, depths
of the images with and without perturbations are recorded. Then,
variations in depth are calculated and aggregated to each bin with
the width of 100 by depth of the images without perturbations.
Finally, the distributions are expressed as a boxplot.

Figure 1 shows the results of this experiment. The original
depth is represented on the horizontal axis, and the variation in
depth when perturbations are added is represented on the vertical
axis. Regardless of the original depths, the variations in depth
tend to be negative. This shows the difficulty in finding perturba-
tions that make depths deep. The cause of this difficulty can be the
smallness of the subspaces that comprises images of deep depth
in the space expressing images, as is explained in Section 5.2.
Hereinafter, considering this difficulty, S (t) = t is assumed be-
cause the optimization in this direction is easier than that in the
opposite direction.

6.2 Threat Evaluation of Proposed Attack
This section describes the experiment to evaluate the threat of

the proposed attack. In this experiment, we compare the pro-
posed attack to LFBA [5], a state-of-the-art algorithm attack, to
show the superiority of the proposed attack to algorithm attacks.
Additionally, we compare the proposed attack to an invalid tim-
ing attack. We define an invalid timing attack as an attack that
uses the same algorithm as the proposed attack but substitutes a
constant value of 1 for t in Eq. (1) instead of the valid timing.
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Fig. 2 Comparison of three attacks: the proposed attack, invalid timing attack and LFBA.

This invalidates the optimization of the timing. The comparison
of these two attacks is expected to indicate that the valid timing
critically contributes to the superiority of the proposed attack.

In this experiment, we measure four metrics: the misclassi-
fication rate, average perturbation size, attack success rate, and
Simpson coefficient between two sets of original images success-
fully attacked by the proposed attack and by LFBA. The defi-
nitions and the meanings of the first two metrics are mentioned
in Section 2.2. The attack success rate is defined as the ratio
of misclassified images with MSEs less than 0.001. This per-
turbation size is sufficiently small for human eyes to overlook
according to the literature [5]. The Simpson coefficient is an indi-
cator measuring the overlap of two sets, say A and B, defined as
|A∩B|/min(|A|, |B|). We use this indicator to quantitatively evalu-
ate differences in characteristics between the proposed attack and
LFBA.

Among these metrics, we mainly compare the attack success
rate. In particular, if the proposed attack has a higher success rate
than the invalid timing attack and LFBA, we judge that the timing
attack is a threat at least to the victim environment we prepared.
In such a case, using the timing weakens the effect of the counter-
measure that conceals the prediction models and the confidence
values. We use the remaining metrics to analyze the results in
detail.

The procedure for this experiment is described below. First,
we extract 1,000 original images correctly classified without at-
tacks from the test MNIST dataset, which constitutes a victim
dataset to be attacked. Second, we record the results of the three
attacks for each image in the victim dataset. The procedure in
each attack is as follows. To begin with, for each image, we
execute the attack program that repeats queries. After a certain
number of queries, the attack program updates the solution once
considering the responses. At this time, three values are recorded:
the Boolean value if a misclassification occurred, the perturbation
size, and the number of queries so far. The attack program iter-
ates this procedure comprising a certain number of queries and an
update. When the attack completes, we aggregate these records
per query and calculate three metrics for each query: the misclas-
sification rate, the average perturbation size of the misclassified
images, and the attack success rate. Note that we aggregate the

records every 15 queries. This query interval is the largest num-
ber of queries required for an iteration of all the attacks. Third,
the Simpson coefficient is similarly calculated depending on these
records of the proposed attack and LFBA.

The remainder of this subsection describes the results and the
interpretation of the data in the order of the attack success rate,
misclassification rate, perturbation size, and Simpson coefficient.
First, Fig. 2 (a) shows the attack success rate. The number of
queries and the attack success rate are represented on the hori-
zontal and vertical axes, respectively. The proposed attack ex-
hibits higher success rates than those for the invalid timing attack
and LFBA. This means that by using the timing, the proposed
attack decreases the effectiveness of the countermeasure, which
conceals the prediction model and the confidence values.

Second, Fig. 2 (b) shows the misclassification rate. The num-
ber of queries and the misclassification rate are represented on the
horizontal and vertical axes, respectively. LFBA, the proposed at-
tack, and the invalid timing attack exhibit high misclassification
rates in this order. Particularly, the misclassification rate is higher
for the proposed attack than for the invalid timing attack. This
indicates that optimizing the timing increases the probability of
misclassification and contributes to high attack success rates.

Third, Fig. 2 (c) shows the average perturbation size. The num-
ber of queries and the average perturbation size of the misclassi-
fied images are represented on the horizontal and vertical axes,
respectively. The perturbation size remains much order of mag-
nitude smaller in the proposed attack and the invalid timing at-
tack than in LFBA. The difference between the proposed attack
and the invalid timing attack increased as the number of queries
increased, and the perturbation size of the former became larger
than that for the latter. This means that optimizing the timing neg-
atively affects the perturbation size. However, this causes only a
slight deterioration in the success rate, and the increase in mis-
classification rate compensates for the negative effect. This effect
results from the design of the objective function. Before mis-
classification, the function forces the optimization to reduce only
the timing and to ignore the perturbation size in accordance with
Eq. (1).

Fourth, Fig. 3 shows the Simpson coefficient. The number of
queries is represented on the horizontal axis. The Simpson coeffi-
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cient, which indicates the degree of overlap of the sets of images
successfully attacked by the proposed attack and LFBA, is repre-
sented on the vertical axis. The coefficient is 1 if and only if (iff)
one set includes the other; 0 iff the two sets are exclusive; and in
the middle if they partially overlap. Overall, as the figure shows,
the Simpson coefficient remains at nearly 1 during the attacks. In
conjunction with the fact that the success rate is higher in the pro-
posed attack than in LFBA, this means that the set successfully
attacked by the proposed attack includes almost all of the set that
can be attacked by LFBA. This suggests that there are only a
few incorrigible images that can be attacked by LFBA but not the
proposed attack.

6.3 Detailed Analysis of the Proposed Attack
This subsection describes the analysis to investigate more prop-

erties of the proposed attack in more detail. In this analysis, we
investigate dependence of the attack success rate on the depth of
images. The result of this analysis will show characteristics of
the proposed attack and LFBA. Additionally, we investigate de-
pendence of the misclassification rate and perturbation size on
the depth. Analyzing these quantites will clarify what causes the
depth dependence of the attack success rate.

Fig. 3 Simpson coefficient, which indicates the degree of overlap of image
sets successfully attacked by the proposed attack and LFBA. The
number of queries and Simpson coefficient are represented on the
horizontal and vertical axes. Overall, the Simpson coefficient re-
mained at almost 1 during the attacks. In addition to the results in
Fig. 2, this means that the set of the proposed attack includes the set
of LFBA.

Fig. 4 Attack success rate per depth. The number of queries and the attack success rate are represented
on the horizontal and vertical axes. The blue, orange, and green curves represent the success rates
for the shallow, middle, and deep depths. Both the proposed attack and LFBA exhibit the lowest
success rates for the shallow depth and highest rates for the deep depth.

In this analysis, we measure three metrics per depth: the mis-
classification rate, average perturbation size, and attack success
rate. The definitions and meanings of these metrics are the same
as in Section 6.2. To investigate the depth dependence of these
metrics, we divide depths in three ranges: shallow, middle and
deep. These ranges divide [dmin, dmax] into three equal parts,
where dmin = 1,102 is the minimum depth for the original im-
ages used in Section 6.2, whereas dmax = 2,993 is the maximum
one. To measure these metrics, we use the experimental results
of the proposed attack and LFBA in Section 6.2.

The remainder of this subsection describes the results and the
interpretation of the analysis. First, Fig. 4 shows the attack suc-
cess rate per depth for the proposed attack and LFBA. The num-
ber of queries and the attack success rate are represented on the
horizontal and vertical axes. The blue, orange, and green curves
represent the success rates for the shallow, middle, and deep
depths, respectively. Both the proposed attack and LFBA exhibit
the lowest success rates for the shallow depth and highest rates
for the deep depth. This result shows that depth shallowness de-
creases the success rate.

To clarify the cause of the depth dependence of the success
rate, we analyze the misclassification rate and perturbation size
per depth. Figure 5 shows the values of these metrics for the
proposed attack and Fig. 5 (a) shows the misclassification rate
per depth. The number of queries and the misclassification rate
are represented on the horizontal and vertical axes, respectively.
The blue, orange, and green curves represent the results for the
shallow, middle, and deep depths, respectively. These curves
show that the misclassification rate decreases when the depths
of images are shallow. Additionally, the misclassification rate de-
creases by a comparable amount to the success rate.

Figure 5 (b) shows the average perturbation size per depth for
the proposed attack. The number of queries and the misclassi-
fication rate are represented on the horizontal and vertical axes,
respectively. The blue, orange, and green curves represent the re-
sults for the shallow, middle, and deep depths, respectively. These
curves show that the average perturbation size increases when the
depths of images are shallow. However, even the perturbation
sizes for the shallow depth are much less than 0.001. This means
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Fig. 5 Misclassification rate and perturbation size per depth in the proposed attack case.

Fig. 6 Misclassification rate and perturbation size per depth in LFBA case.

that the perturbation size increase hardly affects the success rate
for the proposed attack.

From the above results in Fig. 5, we can conclude that the pro-
posed attack achieves a low success rate for images of shallow
depth mainly due to the misclassification rate decrease for such
images. This conclusion is reasonable considering the large vol-
ume of subspaces that comprise images of shallow depth in the
image-expressing space. Due to this largeness, the original im-
ages of shallow depth are probablistically far away from their
classification boundaries. This can prevent misclassification from
occurring and then decrease the success rate.

For LFBA, Fig. 6 shows the misclassification rate and pertur-
bation size per depth. Figure 6 (a) shows the misclassification
rate per depth. The number of queries and the misclassification
rate are represented on the horizontal and vertical axes, respec-
tively. The blue, orange, and green curves represent the results
for the shallow, middle, and deep depths, respectively. These
curves show that the misclassification rates are 100% indepen-

dent of the depth. This result is reasonable because LFBA begins
attacks with images far away from the original images. This ap-
proach guarantees the misclassification will occur at the cost of
the perturbation size.

Figure 6 (b) shows the average perturbation size per depth for
LFBA. The number of queries and the misclassification rate are
represented on the horizontal and vertical axes. The blue, orange,
and green curves represent the results for the shallow, middle,
and deep depths, respectively. These curves show that the av-
erage perturbation size increases when the depths of images are
shallow. Additionally, the value of this metric for shallow depth
drastically exceeds 0.001. This means the perturbation size in-
crease affects the success rate in LFBA case unlike in the pro-
posed attack case.

From the above results in Fig. 6, we can conclude that the
LFBA exhibits a low success rate for images of shallow depth
mainly due to the perturbation size increase for such images. This
conclusion is reasonable considering the large area of classifica-
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tion boundaries around images of shallow depth in the image-
expressing space. On such large classification boundaries, the
perturbation size becomes difficult to minimize. This can increase
the average perturbation size, and then decrease the success rate.

7. Discussion

In this section, we discuss risky situations involved with the
timing attack, limitations of the proposed attack, and possible di-
rections for countermeasures.

7.1 Risky Situations and Limitations of Timing Attack
In this subsection, we discuss situations where the risk of the

timing attack increases, along with limitations of the proposed at-
tack. This discussion considers two viewpoints: the viewpoint of
the manner for mutual communication between the victim and the
attacker, and that of the victim environment. First, the manner of
communications includes local or remote communications. Here,
remote communications means the case where the victim envi-
ronment and the attacker program are on different machines and
communicate through a network. Local communications means
the case where they are on the same machine and communicate
locally. Between these cases, local communications can be more
risky due to the absence of measurement errors resulting from
communications delay. For example, local communications are
actualized when the attacker has the prediction model readily
available in the case of an edge AI.

Second, the victim environment comprises a machine, an OS,
a framework, a prediction model, and a dataset. Among these, a
case in which the machine or OS cause fewer interruptions can
increase the risk due to a decrease in measurement errors of the
timing. Such a situation can occur when the machine has many
CPU cores and the OS executes few processes simultaneously.
This also means the proposed attack is invalidated when the vic-
tim environment is busy. However, the attacker may efficiently
circumvent this difficulty by outlier detection in the timing be-
cause interruptions can cause jumps in the timing.

Regarding the framework, the programming language used in
the framework can affect the risk. For example, a framework
based on C++ may be easier to attack than a framework based
on Python due to the absence of interpreters, which can generate
superfluous measurement errors in the timing. This also means
that the proposed attack may fail more often when the victim en-
vironment uses a framework based on a language executed on
a complex software stack. This limitation can be critical unlike
the interruptions mentioned above because measurement errors
in the timing will be continuous in this case. Thus, the attacker
must iterate the timing measurement over and over for the same
perturbed image. This increases the number of queries.

As for the prediction model, a large number of decision trees
can increase the risk because this amplifies depth variations of the
random forest, making variations in the timing more prominent.
Additionally, in regard to the dataset, the diversity of the dataset
can be relevant because a high degree of diversity will require
a large number of conditional branches for accurate prediction.
This also makes variations in the timing more salient.

7.2 Possible Directions for Countermeasures
There are two possible directions for countermeasures for the

timing attack in principle: taking measures subsequent to or prior
to training. The first direction includes two strategies that are
common in the context of timing attacks on cryptographic sys-
tems: making the processing time constant, and limiting the at-
tacker ability to control queries. For example, in the former case,
there is a method that waits to respond until a predetermined fixed
time elapses. In the latter case, there is a method that adds ran-
dom perturbation to input data. The former example can prevent
timing attacks because attackers always observe the fixed time as
processing time and cannot optimize adversarial examples based
on the timing. This example prevents the attacks without dete-
riorating the prediction accuracy but increases the average pro-
cessing time because the fixed time must be longer than the pro-
cessing time required for the maximum depth. The long process-
ing time is inconvenient for users of machine-learning-based sys-
tems. In the latter case, the average processing time does not
deteriorate, but the prediction accuracy decreases due to the per-
turbation.

The second direction can lead to a method that restricts the
depth of random forests. This method is reasonable because
the analysis in Section 6.3 reveals that the shallow depth of im-
ages decreases the attack success rate of the proposed attack and
LFBA. This result indicates that the depth restriction can reduce
the attack success rate of timing attacks at no cost of that rate of
other adversarial example attacks. This indication comes from
the fact that the proposed attack and LFBA uses opposite strate-
gies for each other: the proposed attack begins with perturbed
images near original images and then moves the images further
away from the original ones; LFBA begins with perturbed images
far from original images and then moves the images closer to the
original ones. To the best of our knowledge, either of these strate-
gies are adopted by exiting adversarial example attacks. Thus, the
results in Section 6.3 indicate that restricting the depth of random
forests is effective for every adversarial example attack.

We can readily implement the depth restriction for the present
prediction model RandomForestClassifier because this pre-
diction model has a parameter for such restriction, max depth.
This parameter restricts the depth of each tree in random forests
to the parameter value. Thus, when the number of decision trees
in a random forest is n estimators, max depth can restrict the
random forest depth to n estimators × max depth. We can
roughly estimate the effect of this countermeasure from the result
in Fig. 4. In this figure, the success rate for the shallow depth
is nearly 20% lower than those for the middle and deep depths.
Now that the upper bound depth of the shallow depth is 1,732,
restricting random forest depth to 1,732 will decrease the success
rate by roughly 20%. We can implement this restriction by setting
max depth to 17 because n estimators = 100 in this paper.

However, this restriction can conflict with prediction accuracy.
To estimate the impact of the max depth restriction on the accu-
racy, we train the same random forest as in Section 6 with differ-
ent max depth (Fig. 7). In Fig. 7, max depth and the prediction
accuracy are represented on the horizontal and vertical axes, re-
spectively. The blue curve shows that the accuracy critically falls

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

Fig. 7 Depth dependence of the prediction accuracy of the random forest.
max depth, and the prediction accuracy are represented on the hor-
izontal and vertical axes. The blue curve shows that the accuracy
critically falls below max depth = 20.

down below max depth = 20. Combined with the estimation in
the preceding paragraph, this result shows that the max depth re-
striction required to decrease the success rate by 20% is on the
edge of this accuracy plunge. This suggests that we should care-
fully tune max depth to achieve a satisfactorily low attack suc-
cess rate and high prediction accuracy. Additionally, when we
simultaneously need a higher prediction accuracy and a lower at-
tack success rate, we should take other countermeasures. Investi-
gating such countermeasures will be a topic for future work.

7.3 Generality of Proposed Attack
We propose and evaluate the attack on random forests [22] in

this paper, but the proposed attack is expected to be effective for
other tree-based methods such as decision tree and XGBoost [21].
The proposed attack exploits the common characteristic in tree-
based methods: drastic changes in the timing indicate drastic
changes in the results of the invoked branches. Attackers can
ruin prediction results by changing the results of the branches
based on the timing. We select random forests in this paper from
the perspectives of prediction accuracy and reliability of experi-
ments. With decision tree, accurate models targeted by attackers
are difficult to train. With XGBoost, accurate models are possible
to train, but reliable experiments are slightly difficult to conduct.
Since XGBoost has many hyperparameters, experimental results
might cause a suspicion that attacks succeed due to specific hy-
perparameters. For this reason, we select random forests that can
achieve high prediction accuracy and have fewer hyperparameters
than XGBoost.

8. Conclusion

In this paper, to prove the threat of implementation attacks
to random forests, we presented a novel timing attack to gen-
erate adversarial examples, and evaluated its threat experimen-
tally. The proposed attack searches for a misclassified image in
the vicinity of the normal one by optimizing the timing using
the covariance matrix adaptation evolution strategy (CMA-ES),
a common evolution strategy.

In the experiment, we compared the proposed timing attack
with a state-of-the-art algorithm attack. The results show that the
attack success rate of the former exceeded that of the latter in the
black-box setting where attackers can use only prediction labels

and the timing. This suggests the threat of implementation at-
tacks to random forests in the sense that such attacks can make it
less effective to conceal the prediction model and the confidence
values as a countermeasure to adversarial example generation.

The detailed analysis of the experimental results indicates that
restricting the tree depth of random forests may mitigate the pro-
posed attack but decrease prediction accuracy of random forests.
This clarifies the need for more sophisticated countermeasures,
which will be a topic for future work.

References

[1] Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I. and Fergus, R.: Intriguing properties of neural net-
works, arXiv preprint arXiv:1312.6199 (2013).

[2] Brendel, W., Rauber, J. and Bethge, M.: Decision-Based Adversar-
ial Attacks: Reliable Attacks Against Black-Box Machine Learning
Models, Proc. 6th International Conference on Learning Representa-
tions (2018).

[3] Chen, P.-Y., Zhang, H., Sharma, Y., Yi, J. and Hsieh, C.-J.: ZOO:
Zeroth Order Optimization Based Black-Box Attacks to Deep Neural
Networks without Training Substitute Models, Proc. 10th ACM Work-
shop on Artificial Intelligence and Security, pp.15–26 (2017).

[4] Goodfellow, I.J., Shlens, J. and Szegedy, C.: Explaining and harness-
ing adversarial examples, arXiv preprint arXiv:1412.6572 (2014).

[5] Guo, C., Frank, J.S. and Weinberger, K.Q.: Low Frequency Adver-
sarial Perturbation, Proc. 35th Conference on Uncertainty in Artificial
Intelligence (2019).

[6] Guo, C., Gardner, J., You, Y., Wilson, A.G. and Weinberger, K.: Sim-
ple Black-box Adversarial Attacks, Proc. 36th International Confer-
ence on Machine Learning, pp.2484–2493 (2019).

[7] Kantchelian, A., Tygar, J.D. and Joseph, A.: Evasion and hardening
of tree ensemble classifiers, Proc. 33rd International Conference on
Machine Learning, pp.2387–2396 (2016).
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Editor’s Recommendation
In this paper, a timing attack on implementation of the Random

Forest algorithm is proposed. The attacker’s assumptions are rea-
sonable, and the effectiveness of the proposed method is shown
by evaluation using the MNIST data set. Since the IWSEC2020
program committee highly evaluated the novelty and usefulness
of this paper, it was selected as a recommended paper.
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