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Abstract: The performance of a speech emotion recognition (SER) system heavily relies on deep representa-
tions learned from training samples. Recently, transformer has exhibited outstanding properties in learning
relevant representations for this task. However, to better fuse it with conventional models, experimental
investigations are still needed. In this paper, we attempt to take advantage of several integrations of trans-
former with two most widely used deep learning models - CNN and BLSTM. Experiments on the IEMOCAP
benchmark dataset demonstrate that the proposed approaches can make a promising improvement.

1. Introduction

Speech emotion recognition (SER), referring to the pro-

cess of detecting the emotional state of a speaker, has be-

come a very active research topic in the affective computing

field and has had a wide range of applications which require

human-computer interaction (HCI) such as call center con-

versation, in-car board system, and mobile communication

[1]. Due to its practical importance, SER has received sub-

stantial attention from both academia and industry. How-

ever, as of now, it still remains a challenging technical prob-

lem due to the inherent subtlety of human emotions [2]. To

successfully implement a speech emotion recognition system,

emotion need to be defined and modeled carefully. Discrete

and dimensional emotional models are two widely used ap-

proaches. The former is based on six basic emotions: sad-

ness, happiness, fear, anger, disgust, and surprise, the latter

uses valence, arousal, and dominance to describe emotion

quantitatively. In this paper, we will only consider the dis-

crete one.

SER aims to identify the high-level affective status of an

utterance from the low-level features. It can be treated

as a classification problem on sequences [3]. In the past,

people have come with many different methods, most of

which extract a large amount of complex low-level hand-

crafted features (such as pitch, Mel-frequency cepstrum co-

efficients (MFCC) and so on) out of the initial utterance and

then apply conventional classification algorithms like Hid-

den Markov Model (HMM) [4] and support vector machines

(SVM) [5]. In recent years, the boom of deep learning has

exhibited outstanding performances in extracting discrimi-

native features for SER. [3] proposed to use the segments

with highest energy to train a Deep Neural Network (DNN)
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model to extract effective emotional information. [6] first

used convolutional neural networks (CNN) to learn affective-

salient features for SER and showed excellent performances

on several benchmark datasets. [7] applied a long short-term

memory (LSTM) to learn long-range temporal relationships

for SER. In [8], they directly used raw audio samples to train

a convolutional recurrent neural network (CRNN) to build

a continuous arousal and valence space.

More recently, attention-based deep-learning approaches

have started finding their application for SER. In [9], at-

tention layers are used to focus on the emotional relevant

parts and produce utterance-level affective-salient features

for SER. In other researches, the authors showed the effi-

ciency of transformer on the SER task [2], [10], [11]. How-

ever, the interaction between transformer and other deep

learning structures is still needed to be investigated. In

this paper, we propose two different approaches to utilize

network-based structure aggregated with transformer. We

first intergrate LSTM with transformer (ILT), trying to

replace the function of positional encoding of transformer

by LSTM. Then we utilize the cross attention transformer

(CAT), which aims to interact and combine the informa-

tion obtained from CNN and LSTM. Our experiments show

both methods outperform our baseline system, indicating

their strength for emotion recognition.

The remainder of this paper is organized as follows. We

describe the transformer and our proposals in Section 2. In

Section 3, we briefly introduce the IEMOCAP database used

in the experiment and the experimental setup. Experiments

are addressed and their results are analysed in Section 4. Fi-

nally, Section 5 presents the conclusions and future works.

2. Model Architecture

2.1 Transformer

Due to the poor ability of RNN families in solving the
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phenomenon of special long-term dependence, [12] proposed

transformer, which exploits the self-attention mechanism to

reduce the distance between any two positions in the se-

quence to a constant. Given an input sequential matrix

as X ∈ Rdt×df , by multiplying with three different train-

able weight matrix WQ ∈ Rdf×dk ,WK ∈ Rdf×dk ,WV ∈
Rdf×dv , we can obtain the set of queries Q ∈ Rdt×dk , the

set of keys K ∈ Rdt×dk , and the set of values V ∈ Rdt×dv .

Then the self-attention can be calculated as:

Z = Attention(Q,K,V) = softmax(
QKT

√
dk

)V, (1)

where variable Z ∈ Rdt×dv represents the attentional ma-

trix.

Researchers found it beneficial to linearly project the

queries, keys and values h times with different weight matrix

WQ,WK ,WV respectively, concatenate them together,

and then multiply with another weight matrix WO ∈
Rhdv×df to obtain the final output. This is called Multi-

Head Attention.

MHA(Q,K,V) = Concat(Z1, . . . ,Zh)W
O (2)

To address the crucial problem that transformer has little

ability to capture sequential sentence, it is required to add

a positional encoding (PE). This means summing a sinusoid

function with a large period over the input before feeding

it to the first encoder layer. The intuition here is that for

any fixed offset k, PEpos+k can be represented as a liner

function of PEpos, which provides great convenience for the

model to capture the relative position relationship between

sequential data.

PE(pos, 2i) = sin(
pos

10000
2i
df

) (3)

PE(pos, 2i+ 1) = cos(
pos

10000
2i
df

), (4)

where pos is the position of each sequential data in input

features, i represents the ith dimension of the input embed-

ding of each data.

2.2 Intergrate LSTM with Transformer (ILT)

As the positional encoding for transformer is just a fixed

positional representation of input features, initially we aim

to replace it by connecting LSTM between CNN and trans-

forer. However in our prilimary experiment, we find that this

approach cannot work well. Therefore we propose to use a

paralled combination of LSTM and transformer instead of

cascaded ones, illustrated in Fig. 1. The input features are

represented as a sequence of vectors X = [x1,x2, · · · ,xN ],

where N is the length of frames. At first the input fea-

tures are fed into the CNN, which is composed of serveral

conv blocks. In each conv block, there is a convolutional

layer, followed by batch normalization, average pooling, and

dropout operation. After passing throuth CNN, the output

C = [c1, c2, · · · , cK ] is fed into two flows to the subsequen-

tial models respectively. The first flow is to the LSTM,

which is applied to learn long-term dependencies and con-

textual information by introducing the gating mechanism.

We utilize the bidirectional LSTM (bi-LSTM) that the out-

put at the current time step can be both learned from the

former and latter state. Also the LSTM output can be re-

garded as an additional position info. After obtaining the

output sequences H = [h1,h2, · · · ,hK ], we conduct the

attention layer as an aggregation function for LSTM. The

second flow is to transformer, which has been depicted in

Section 2.1.

C = CNN([x1,x2, · · · ,xN ]) (5)
−→
ht =

−−−−→
LSTM(ht−1, ct), t ∈ 1, · · · ,K (6)

←−
ht =

←−−−−
LSTM(ht+1, ct), t ∈ 1, · · · ,K (7)

ht = [
−→
ht;
←−
ht], t ∈ 1, · · · ,K (8)

βt =
exp(WTht)∑K

τ=1 exp(W
Thτ )

(9)

OLSTM =

K∑
t=1

βtht (10)

OTrans = Transformer(C), (11)

where W is a trainable weight matrix.

Then two outputs are intergrated together. Let the fusion

output as Ofinal, we try to utilize the following three fusion

strategies to put the output from LSTM OLSTM and the

output from transformer OTrans together:

concatnation

Ofinal = [OLSTM ;OTrans] (12)

plus

Ofinal = αOLSTM + (1− α)OTrans (13)

trainable plus (attention)

Ofinal = αAOLSTM + αBOTrans (14)

αA =
exp(WA)

exp(WA) + exp(WB)
(15)

αB =
exp(WB)

exp(WA) + exp(WB)
, (16)

where WA and WB are two different trainable weight ma-

trices.

2.3 Cross Attention Transformer (CAT)

Recently in multimodal deep learning, many researches

tend to utilize the cross-modal transformer to learn from dif-

ferent modalities (such audios, words, videos, etc) [13], [14],

[15]. Inspired by this, we propose to employ this state-of-

art model to merge the different information learned from

CNN and LSTM. Since CNN makes a good fist at reduc-

ing frequency variations (i.e. frequency modeling), LSTM
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Fig. 1: Overview Structure of the proposed framework intergrate LSTM with transformer (ILT).

is skilled at learning characteristic of data over long peri-

ods of time (i.e. temporal modeling) [16], it is reasonable

to joint-encoding outputs of them. Depicted in Fig. 2, the

input features are fed into CNN and LSTM simutanouly.

Considering that a tremendous length of input features will

affect the function of LSTM and bring more parameters for

training, we add an 1D convolutional layer before LSTM

simply for reducing the length of input features. Let the out-

put after CNN and LSTM be H(C) = h1,h2, · · · ,hK and

H(L) = h1,h2, · · · ,hT respectively, when we treat H(C)

as queries, H(L) as keys and values of transformer, we are

mapping the information from CNN to LSTM, which is cor-

responding to the transformer (CtoL) in Fig. 2. Similarily,

by considering H(L) as query matrix, H(C) as key and value

matrix, the transformer is responsible for obtaining interac-

tive information from LSTM to CNN, which is the trans-

former (LtoC) in Fig. 2. Because in both CtoL and LtoC,

the self-attention are a combination with two different net-

works, they are called cross attention transformer. After

that, the output from two cross attention transformers are

addeed together and pass through the fully connected layer

and softmax layer to obtain the final posterior probabilities

of each emotion.

3. Experimental setup

3.1 Dataset

The interactive emotional dyadic motion capture database

(IEMOCAP) [17] is used to evaluate our approach. It con-

tains approximately 12 hours of speech. There are 10 actors

(5 males and 5 females) to perform 5 dyadic sessions, with

10 emotions (anger, happiness, sadness, neutral, frustration,

excitement, fear, surprise, disgust, and other), which have

been evaluated by at least three different annotators. Ini-

tially, along with previous researches [18], [19], considering

the imbalanced label and lack of some emotions, only the fol-

lowing five emotions are extracted: anger, happiness, excite-

ment, sadness, and neutral. Then happiness and excitement

Fig. 2: The block diagram of the proposed cross attention

transformer (CAT).

are merged into happiness because of the similarity between

them. Finally, the amount of labels used in this experiment

are 1103, 1636, 1084, 1708 respectively for anger, happiness,

sadness and neutral, totally 5531 examples. These dataset

is radomly split into training, validation and test sets in the

ratio of 0.55:0.25:0.2. We employ the five-fold cross valida-

tion to train our model and report the average results.

3.2 Feature extraction and preprossing

Due to the small size of data, which may lead to severe

overfitting, we first augment our training and validation data
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Table 1: Accruacy comparasion of two baseline systems and our proposed ILT. PE reprents positional encoding in transformer,

WA is the weighted accuracy and UA is the unweighted accuracy.

Net Structure Fusion Mode PE WA(%) UA(%)

CNN-transformer (baseline1) -
False 65.76 67.17
True 66.91 67.60

CNN-LSTM-transformer (baseline2) -
False 65.60 67.36
True 66.47 67.52

ILT

concatenation
False 66.05 66.82
True 66.21 67.40

plus
False 67.26 68.38
True 66.50 67.36

trainable plus

(attention)
False 67.56 68.63
True 67.12 67.89

Table 2: Performance of different variants of our proposed

CAT. The representation CNN+LSTM means that the in-

put feature go through CNN and LSTM simultaneously and

then two outputs are added together.

System WA(%) UA(%)
CAT 68.10 69.25
CNN-Transformer (baseline) 66.91 67.60
LSTM-Transformer 55.19 56.40
CNN+LSTM 66.90 67.98
CAT (CNNtoLSTM only) 66.98 67.83
CAT (LSTMtoCNN only) 65.57 66.49

by adding high signal-noise ratio (SNR) white noise. Then

the speech signal in IEMOCAP is sampled at 16kHz and

zero-padding or cutting is applied for the utterances whose

duration is less or more than 7.5 seconds. We use the mod-

ified utterances to calculate the log-mel spectrograms (log-

Mels) with the window size 25 ms and the frame size 10 ms

as input feature to our model. The log-Mels are extracted

by librosa toolkit and the number of filter banks is set to

40, therefore we can obtain a matrix of size 40×750. We

use the pytorch toolkit to implement all our models. We

choose cross-entropy loss as loss function, and Adam with a

learning rate of 0.0001 and 1st&2nd momentum of 0.9&0.99

as optimizer. The batch size and training epoch are set

to 40 and 100. As evaluation criteria, we employ three met-

rics in this experiment: confusion matrix, weighted accuracy

(WA), and unweighted accuracy (UA). Confusion matrix de-

picts the classification situation of each label. Weighted ac-

curacy is the classification accuracy for the entire data set,

and unweighted accuracy is an average of the classification

accuracy for each emotion [7]. Here, all hyper parameters of

our model were finetuned to maximize the WA.

3.3 Baseline systems

For the baseline model, we test the CNN connected with

transformer sequentially (CNN-Transformer), which is re-

garded as Fig. 1 with LSTM removed. Moreover, we insert

LSTM into the middle of our baseline system as another

baseline system (CNN-LSTM-Transformer).

4. Experiments and Analysis

4.1 Experiment on ILT

Table 1 summarizes the experiment results of ILT and

our baselines in different conditions. Far from obtain-

ing better performance, simply connecting LSTM between

CNN and transformer even brings a little bit worse ac-

curacy. We infer that because too many pooling layers

in CNN lead to less temporal information, LSTM cannot

learn anything from a relatively short interval. Among the

three fusion ways tested (concatenation, plus, and train-

able plus(attention)) in ILT, the last one shows the best

result among them, which exceeds the baseline models with

+0.65% and +1.03% absolute improvements in WA and UA,

respectively. This reveals that, by putting LSTM in the

same position of transformer and intergrating them with the

attention mechanism, we can focus on more emotional part

of input utterances. The attention factor learned by training

data is 0.65 for LSTM and 0.35 for transformer, indicating

that LSTM contributes more in this integration mode.

In addition, there also exists an interesting phenomenon.

In baselines/ILT with concatenation fusion, it appears that

positional encoding can make performance increase to some

extent. However, for ILT with plus and trainable plus in-

tegration modes, a better performance is obtained without

PE. We suppose that since the two models are placed in par-

allel, the function of positional encoding is duplicated with

the function of LSTM.

4.2 Experiment on CAT

Depicted in Table 2, the Cross Attention Transformer

achieves the best performance, which has an increase of

+1.19% on WA and +1.65% on UA, indicating the effec-

tiveness of joint learning of the information from the two

basic deep learning models. Besides, we explore the abla-

tion study to see different contributions to accuracy with

different part of the CAT. We first use the output of CNN

simply added to the result from LSTM, which shows the

transformer part can bring 1.20% WA improvement and

1.27% UA improvement. Then by setting the weight of

transformer (LtoC) or the weight of transformer (CtoL) in

Fig. 2 as 0, we get the CAT (CNNtoLSTM only) and CAT

(LSTMtoCNN only) respectively. Comparing with passing

through the transformer directely, mapping into a differ-

ent model indeed can improve the performance. By adding

these two variant CAT together, a better accuracy can be

observed. Moreover, mapping from CNN to LSTM leads to

a better WA and UA than from LSTM to CNN, inspiring
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(a) CNN-Transformer (b) Cross Attention Transformer

Fig. 3: Confusion matrix of baseline system and proposal CAT. (ang anger state; hap happiness; sad sadness; neu neutral)

Fig. 4: Human’s confusion matrix [20] of the IEMOCAP

dataset. It is obtained by non-expert participants assessing

utterences of the dataset in a “humanized machine learning”

style, which means that for each utterence it is possible to

see the correct answer after one gives his own answer.

us to finetune the weight of the CAT to further improve the

performance as a future work.

Meanwhile, we report the confusion matrix from our pro-

posal CAT and our baseline model, shown in Fig. 3. We

observe that sadness obtains the highest recognition rate,

and happiness obtains the lowest recognition confused with

other classes. This seems plausible because the neutral state

is located in the center of the arousal-valence space of emo-

tion, which makes the discrimination from other classes dif-

ficult. Moreover, the error rate from anger to happiness

is quite higher than others, which can be reasonable con-

sidering the dimensional emotional model: both anger and

happiness have a high arousal level. Hence, the system’s

frequent confusion is due to the fact that valence is harder

to predict than activation.

Different from our baseline systems, we can see the prob-

abilities of misclassifying anger and happiness as neutral

and misclassifying neutral as anger and happiness are re-

duced so that anger, happiness and neutral can achieve a

higher probability of being correctly predicted by using the

CAT. Although there is less sadness being truly classified

as themselves, the error pattern is more balanced than the

baseline system. These results indicate that the cross atten-

tion transformer network provides an improvement in the

recognition accuracy of most emotions. Comparing with hu-

man error structure depicted in Fig. 4, it can be observed

that the error pattern of cross attention transformer is closer

to human ones than baseline CNN-Transformer. However,

while it is hard to confuse angry with happiness and neutral

and confuse happiness with neutral for humans, the error

rate is quite high in our model. This indicates that we need

to further focus on the reason for such bias, i.e. the explain-

able of network structure.

5. Conclusion

This paper proposes two SER frameworks ILT and CAT

to aggregate transformer with other deep learning models.

In ILT, we combine LSTM with transformer in a parallel

style; in CAT, we utilize the cross attention transformer

to learn the interaction between the information that CNN

and LSTM carries. Experiments on the IEMOCAP dataset

demonstrate the effectiveness of our proposed algorithms.

For future work, we will evaluate the performance using

other input features, such as prosodic features, voice quality
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features, etc. Furthermore, we plan to focus on the recog-

nized text data by real-time automatic speech recognition

(ASR) for multimodal learning for SER.
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