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Abstract: PR domain-containing 9 (PRDM9) is a zinc-finger protein that binds to specific DNA motifs and induces the crossing-
over between chromosomes, resulting in a high recombination rate around binding sites. In this study, we developed a strategy to 
evaluate the prediction accuracy of PRDM9 binding site by examining the correlation with local recombination rate to avoid the 
effect of overfitting to one type of data. We compared the methods using position-specific weight matrix (PWM), which has been 
commonly used in previous studies, and convolutional network (CNN), which has recently performed well. Approximately 170,000 
genomic DNA fragments of humans (301 bp each) containing the Chromatin Immuno-Precipitation with high-throughput 
sequencing (ChIP-seq) peak of PRDM9 of B-allele in the HEK293T cell line were used for constructing PWM and positive data 
to train CNN. We found that CNN outperformed PWM in terms of area under the curve, and the prediction scores of CNN correlated 
more strongly with the local recombination rate than PWM. We also investigated the potential PRDM9 binding sites missed by the 
ChIP-seq experiments but labeled as positive in CNN and discuss the reason for the difference in performances. 
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1. Introduction     

 Understanding sequence specificities and genomic binding 
sites recognized by DNA-binding proteins is crucial for 
elucidating the regulatory mechanisms of genes, such as 
transcription and selective splicing. Computational models created 
from experimentally determined sequence data have been used to 
predict binding sites on a genome-wide basis [1]. In general, when 
evaluating a model, the prediction accuracy is verified using test 
data obtained in advance, apart from the training data used to tune 
the model parameters. However, overfitting to noise was reported 
in a modeling using protein-binding microarray data [2]. In 
addition, it is difficult to use only one experimental data to evaluate 
the generalized performance of a model. To amend the effect of 
overfitting on one type of training data, a validation method that 
does not require test data is desirable. 
 PR domain-containing 9 (PRDM9) is a zinc finger protein 
that induces chromosomal recombination in mammalian germ 
cells by localizing in a narrow (1–2 kb) hotspot, where 
recombination frequently occurs in early meiosis [3]–[5]. The 
binding of PRDM9 induces topoisomerase sporulation-specific 11, 
which forms a double-strand break, and crossing-over occur at the 
site [6], [7]. The binding sites can be identified by Chromatin 
Immuno-Precipitation with high-throughput sequencing (ChIP-
seq) experiment. In this study, we focus on the correlation between 
PRDM9 binding and genetic recombination to validate the 
prediction accuracy. 
 For binding prediction, position-specific weight matrix 
(PWM) is one of the most widely used method to identify protein 
binding sites [8]. PWM is a matrix of data representing the DNA 
motifs to which a protein binds and is created on the basis of the 
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frequency of nucleotides at each position. Meanwhile, CNN can 
learn complex features from large amount of DNA sequences and 
have been reported to predict DNA-protein binding better than 
other methods, including PWM [2].  
 In this study, we examined the correlation between the 
predicted binding score for a genomic fragment and the 
recombination rate of the region to test whether CNN outperforms 
PWM in terms of the correlation strength between prediction 
scores and local recombination rates. We used the DNA sequence 
of the binding site of human PRDM9 and recombination map. First, 
we compared the performance of the PWM and CNN in terms of 
area under the curve (AUC) using test data. We observed a stronger 
correlation between the prediction scores and local recombination 
rates in CNN than in PWM. In addition, we revealed that the DNA 
fragments with high prediction scores in CNN had higher local 
recombination rates, even without ChIP-seq peaks. Further, we 
examined the feature that CNN recognizes and discussed possible 
binding mechanisms of PRDM9. 
 

2. Materials and Methods 
2.1 Materials 
 We retrieved data of ChIP-seq experiments performed by 
Altemose et al. (2017) to obtain DNA-PRDM9 binding sequence 
data [7] (https://www.ncbi.nlm.nih.gov/geo/, GSE99407). The 
experiments obtained 170,198 nonoverlapping peak fragments by 
transfecting HEK293T cell line with N-terminal YFP-tagged 
human PRDM9 of B-allele (hereafter, PRDM9) and conducted 
ChIP-seq against YFP. Each peak was included at the center of a 
301-bp region. We assigned 10% of the peak regions (17,009) to 
positive test data and the remaining 90% (153,189) to positive 
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training data for CNN. For negative data, 100-bp-length sequences 
were extracted without overlaps from human genomes (hg19) that 
are at least 1,000 bp away from the center of ChIP-seq peaks. 
 We used a recombination map estimated by pyrho [9] 
considering the population demography using genomic 
polymorphism data. In this study, we used the estimations based 
on the demography of the CEU (Utah residents with northern and 
western European ancestry) population. 
 

2.2 Preparation for test data 
 To verify the prediction accuracy of CNN and PWM, we 
created PRDM9-binding test data. Positive test data were 
generated by cutting out a 100-bp DNA fragment containing 31 bp 
around the peak (ChIP-seq core region) at a random position 
within the fragment. Negative test data were randomly sampled so 
that the positive data constituted 2% of total test data based on the 
ratio of the ChIP-seq-positive to -negative regions, yielding 
833,441 negative test regions. 
 

2.3 PWM used in the study and its scoring 
 We used PWMs obtained from the same ChIP-seq data and 
constructed using the Bayesian de novo motif-finding algorithm 
[10] (Additional file of Altemose et al. (2017 [7]). In total 17 
PWMs were available. 
 For scoring, the log-likelihood ratio score S, which is 
obtained based on the occurrence probability of a motif 
considering the nucleotide frequency in the background sequence, 
was calculated. The nucleotide frequencies of the background 
sequences were calculated for each chromosome and strand. Si,j,k 
is calculated by summing up the log-likelihood values for all sites 
of the j-th PWM, starting from the k-th site of the i-th fragment for 
both strands [11]. 
 Next, Si,j,k was summarized to the score for the i-th fragment 
and the j-th PWM, Si,j, expressed as follows: 𝑆 , = max 𝑆 , ,  1  

There are two ways to summarize the score for the i-th fragment. 
One is to accept the maximum score among N PWMs, Smax,i, 
expressed as follows: 𝑆 , = max 𝑆 , 2  

The other method is to sum the scores of all N PWMs, Ssum,i, 
expressed as follows: 𝑆 , = 2 , 3  

 Next, we determined how many PWMs should be used for 
the prediction. All PWMs were ranked by the probability of hitting 
within 100 bp of ChIP-seq peaks. We added PWMs one by one 
from the one with the maximum score and evaluated the 
performance in terms of AUC using Smax,i and Ssum,i. As a result, 
AUC was maximized using up to the 15th PWM with Ssum,i, and 
the condition was adopted as the final PWM scoring (Table 1). 
 

Table 1 AUC transition by changing cutoff of the PWM number 
PWM Max Method Sum Method 

Until 1st 
Until 2nd 
Until 3rd 
Until 4th 
Until 5th 
Until 6th 
Until 7th 
Until 8th 
Until 9th 
Until 10th 
Until 11th 
Until 12th 
Until 13th 
Until 14th 
Until 15th 
Until 16th 
Until 17th 

0.8330 
0.8363 
0.8329 
0.8250 
0.8301 
0.8364 
0.8414 
0.8449 
0.8469 
0.8503 
0.8528 
0.8512 
0.8568 
0.8577 
0.8582 
0.8203 
0.7941 

0.8330 
0.8383 
0.8358 
0.8279 
0.8339 
0.8403 
0.8451 
0.8488 
0.8510 
0.8557 
0.8584 
0.8565 
0.8615 
0.8623 
0.8629 
0.8294 
0.8040 

 

2.4 CNN and its scoring 
 We modified the equivariant Bayesian convolutional 
network (EBCN) [12] written in Python using deep learning 
libraries: TensorFlow-GPU (Version 1.13.1) [13] and Keras-GPU 
(Version 2.3.1). The model employs Monte Carlo (MC) dropout 
[14] in which the dropout is performed during not only training but 
also prediction, and the average of the repeated output predictions 
is produced. In addition, the model is internally adjusted so that the 
output for an input forward sequence is equal to the output of its 
reverse complement sequence. These features result in a clean 
separation of the internal representations [15] and a small 
inconsistency in the model accuracy from training to training. The 
input is a DNA fragment of constant length, which is converted 
into a matrix of 4× input length by one-hot vectorizing the 
nucleotides (Table 2). Then, the matrix undergoes multiple 
convolutional and pooling layers to extract features and outputs the 
scores (0–1) for PRDM9 binding through dense layer with softmax 
function. 
 

Table 2 One-hot encoding for nucleotides 
Nucleotide One-hot vector 

A [1,0,0,0]T 
C 
G 
T 

[0,1,0,0]T 

[0,0,1,0]T 

[0,0,0,1]T 
 

2.5 Creating training data for CNN and the network 
optimization 

 Positive training data were created using 90% of the ChIP-
seq positive region. To construct robust CNN, we tried three 
training methods with some changes to the positive fragments. 
First, DNA fragments of 100-bp length with the ChIP-seq peak in 
its center were used for training (training method 1). Next, DNA 
fragments of 100-bp length with ChIP-seq core at a random 
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position were used as positive training data (training method 2). 
Finally, we trained the model using three-fold augmented positive 
fragments (training method 3). In training method 3, for each 
fragment, the peak was randomly replaced within the fragment for 
three times. Negative data were increased to match the number of 
positive augmented data. 
 We employed the EBCN structure (recombination 
topology) developed by Brown and Lunter (2019) [12] and further 
optimized the network structure and hyperparameters. We tuned 
number of filters in each convolutional layer, kernel size of the first 
convolutional layer, number of internal convolutional layers, 
kernel size of inner convolutional layers, pool size, learning rate, 
coefficient of the L2 normalization term, dropout rate, batch size, 
optimizer and activation function of the convolutional layer (Table 
3).  In particular, batch size was optimized from among 32, 64, 
128, 256, 512, 1024, and 2048, optimizer was from among SGD 
[16], Momentum [17], and Adam [18], and activation function was 
from among ELU [19], ReLU [20], SELU [21], and LReLU [22]. 
The hyperparameter auto-optimization library, Optuna, was 
employed [23].  
 

Table 3 List of hyperparameters and searching range and step 
Hyperparameters Minimum Maximum Step 

The number of filters 2 100 2 
The kernel size of first filter 2 40 2 
The number of internal conv. 

layers 
1 3 1 

The kernel size of internal 
filter 

2 4 1 

Pool size 2 6 2 
L2 coefficient 0 0.01 0.0001 
Learning rate 0.0001 0.1 None 
Dropout rate 0 1 None 

 
 Owing to time constraints, approximately 10% of the 
training data were used for each training method. The epoch was 
set to 20, and the trial was conducted 100 times. After the 
hyperparameter search, if the network structure conflicts with 
equivariance, we shaved off at most 1 bp of the input sequence and 
completed structures of CNN for each training method (Tables 4–
9). 
 

Table 4 Optimized network structure of final CNN for training 
method 1 

Layers Parameters 
Equivariant Conv1D Layer 

1 
Filters = 34; kernel size = 22; 
activation function = LReLU 

Equivariant MC Dropout 
Layer 1 

Dropout rate = 0.1731 

Spatial MaxPooling1D 
Layer 

Pool size = 6 

Equivariant Conv1D Layer 
2 

Filters = 34; kernel size = 4; 
 activation function = LReLU 

Equivariant MC Dropout 
Layer 2 

Dropout rate = 0.1731 

Equivariant Conv1D Layer 
3 

Filters = 34; kernel size = 4; 
 activation function = LReLU 

Equivariant MC Dropout 
Layer 3 

Dropout rate = 0.1731 

Equivariant Conv1D Layer 
4 

Filters = 34; kernel size = 4; 
activation function = LReLU 

Equivariant MC Dropout 
Layer4 

Dropout rate = 0.1731 

Reverse Complement Sum 
Pooling Layer   

None 

Global Spatial 
MaxPooling1D Layer 

None 

Dense Layer Activation function = Softmax 
 

Table 5 Hyperparameters of backpropagation for training  
method 1 

Hyperparameter Optimal Value 
Learning rate 
L2 coefficient 

Batch size 

1.659×10−3 
0.0011 

64 
Optimizer Adam 

 
Table 6 Optimized network structure of final CNN for training 

method 2  
Layers Parameters 

Equivariant Conv1D Layer 
1 

Filters = 54; kernel size = 40; 
activation function = LReLU 

Equivariant MC Dropout 
Layer 1 

Dropout rate = 0.2360 

Spatial MaxPooling1D 
Layer 

Pool size = 6 

Equivariant Conv1D Layer 
2 

Filters = 54; kernel size = 2; 
activation function = LReLU 

Equivariant MC Dropout 
Layer 2 

Dropout rate = 0.2360 

Equivariant Conv1D Layer 
3 

Filters = 54; kernel size = 2; 
activation function = LReLU 

Equivariant MC Dropout 
Layer 3 

Dropout rate = 0.2360 

Reverse Complement Sum 
Pooling Layer   

None 

Global Spatial 
MaxPooling1D Layer 

None 

Dense Layer Activation function = Softmax 
 

Table 7 Hyperparameters of backpropagation for training 
 method 2 

Hyperparameter Optimal Value 
Learning rate 9.652×10−2 
L2 coefficient 0.0033 

Batch size 32 
Optimizer Momentum 
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Table 8 Optimized network structure of final CNN for training 

method 3  
Layers Parameters 

Equivariant Conv1D Layer 
1 

Filters = 88; kernel size = 14; 
activation function = LReLU 

Equivariant MC Dropout 
Layer 1 

Dropout rate = 0.3980 

Spatial MaxPooling1D 
Layer 

Pool size = 2 

Equivariant Conv1D Layer 
2 

Filters = 88; kernel size = 3; 
activation function = LReLU 

Equivariant MC Dropout 
Layer 2 

Dropout rate = 0.3980 

Reverse Complement Sum 
Pooling Layer  

None 

Global Spatial 
MaxPooling1D Layer 

None 

Dense Layer Activation function = Softmax 
 

Table 9 Hyperparameters of backpropagation for training  
method 3 

Hyperparameter Optimal Value 
Learning rate 1.737×10−3 
L2 coefficient 0.0 

Batch size 128 
Optimizer Adam 

 

3. Results 
3.1 CNN outperformed PWM in prediction accuracy using 

test data 
 We trained CNN in all three training methods. The training 
was repeated five times, 50 epochs each, and the model that had 
the maximum accuracy was adopted as the final model for each of 
three training method. We compared the AUC of the three CNN 
training methods and the PWM, using the test data. The AUC of 
PWM was 0.8629. The AUCs of training methods 1–3 were 0.9125, 
0.8950, and 0.9167, respectively. The all CNN training methods 
outperformed PWM. Training method 3 showed the highest AUC, 
and the PWM showed the lowest AUC. In the following analyses, 
we use the results with training method 3 as a representative. 

 

Figure 1 Receiver operating characteristic (ROC) curve with 
test data  
ROC curves are shown for PWM and three training methods. The 
dashed orange, dashed green, and dashed blue lines represent the 
ROC curves of training method 1–3, respectively. The solid red 
line indicates the ROC curve of PWM. 
 

3.2 CNN again outperformed PWM in prediction accuracy 
validated using recombination map 

 To evaluate model prediction accuracy using recombination 
rate, the entire autosomal genome was divided into fragments of 
100-bp length from the start position, and fragments without 
ambiguous nucleotide (N) were used. For each fragment, the 
average recombination rate (cM/bp) was calculated from the 
recombination map. We scored the probability of PRDM9 binding 
for each fragment using CNN and PWM. The correlation 
coefficient (ρ) between the prediction score and recombination rate 
was statistically significant for CNN (ρ = 0.180, p-value < 1.0×
10−16) and for PWM (ρ = 0.138, p-value < 1.0×10−16). The 
correlation coefficient was stronger for CNN than for PWM. 
 The scored fragments were sorted in descending order by 
prediction score, and fragments were grouped into 10 bins (10% of 
data for each bin). The mean and standard error of recombination 
rate in each bin was calculated and shown in Figure 2. For CNN, 
the average recombination rate was high in bins with high 
prediction scores and low in bins with low prediction scores (Fig. 
2B). To observe the correlation within the group of high scores, we 
grouped the top 10% of fragments into 1% bins and examined the 
average recombination rate. Again, CNN showed a stronger 
correlation than PWM (Fig. 2A). 
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Figure 2 Correlation between recombination rate and 
prediction score for all fragments 
The yellow and green lines represent the mean recombination rate 
in bins for CNN score and PWM score, respectively. The error bars 
are drawn in the figure but are nearly invisible because of the large 
sample sizes. The average recombination rate of all ChIP-seq-
negative and -positive fragments are shown in the blue and red 
dashed lines, respectively.  
 

3.3 Can PWM and CNN detect potential recombination 
hotspots from ChIP-seq-negative fragments? 

 To examine whether PWM and CNN detect potential 
recombination hotspots missed by the ChIP-seq experiments, we 
plot the prediction score and average recombination rate in each 
bin for ChIP-seq-negative fragments (Figure 3). Although the 
correlation became somewhat weaker, we observed a statistically 
significant correlation between prediction scores and 
recombination rates. The correlation coefficient between the 
prediction score and the recombination rate (ρ) was  0.129 (p-
value < 1.0×10−16) in PWM and 0.169 (p-value < 1.0×10−16) in 
CNN. The results indicate that PWM and CNN properly capture 
sequence features of recombination hotspots. 

 

Figure 3 Correlation between recombination rate and 
prediction score for top 10% 
The purple and light blue lines represent the mean recombination 

rate in bins for CNN score and PWM score to ChIP-seq-negative 
fragments, respectively. The error bars were drawn in the figure 
but invisible because of the large sample size. The average 
recombination rate of all ChIP-seq-negative and -positive 
fragments are shown in blue and red dashed lines, respectively. 
 

3.4 CNN captures sequence features surrounding PRDM9-
binding site 

 The results shown in Subsections 3.1 and 3.2 indicated that 
CNN outperformed PWM in predicting PRDM9 binding, and the 
result presented in Subsection 3.3 suggested the possibility of 
detecting PRDM9 binding sites undetected by ChIP-seq 
experiments. However, the high recombination rate of fragments 
with high prediction scores did not necessarily mean that the 
fragments contain actual PRDM9 binding sites. There are two 
possible reasons. One possibility is that CNN finds the potential 
binding sites missed in the ChIP-seq experiments due to 
differences in the conditions of PRDM9 binding between actual 
germ cells and cultured cells, or it detects binding sites of other 
alleles rather than B-allele used for the experiments. Another 
possibility is that CNN detects the recombination hotspots using 
surrounding features of PRDM9 rather than the binding motif. 
 To test the latter possibility, we examined the distance from 
ChIP-seq-negative and CNN-positive fragments to the nearest 
ChIP-seq peak. To define CNN-positive fragments, the optimal 
threshold was decided using the ROC curve (Figure 1). The point 
whose coordinates were closest to (0,1) was used for the threshold 
[24]. We obtained 4,118,963 CNN-positive and ChIP-seq-negative 
fragments and 22,062,475 CNN-negative and ChIP-seq-negative 
fragments with the threshold. We randomly extracted equal 
numbers of CNN-positive and -negative fragments without 
overlap (411,886 fragments each) from the ChIP-seq-negative 
fragments and examined the distance to the nearest ChIP-seq peak 
(Figure 4). The results showed that the CNN-positive DNA 
fragments were significantly closer to the ChIP-seq peak than the 
CNN-negative fragments (p-value < 1.0×10−16, Mann–Whitney U 
Test). 
 For comparison, we conducted the same procedure using 
PWM-positive fragments. We obtained 5,579,323 PWM-positive 
and ChIP-seq-negative fragments and 20,602,115 PWM-negative 
and ChIP-seq-negative fragments. We randomly extracted equal 
numbers of PWM-positive and PWM-negative fragments without 
overlap (557,922 fragments each). The CNN-positive fragment is 
still significantly closer to ChIP-seq peaks than the PWM-positive 
fragments (p-value < 1.0×10−16, Mann–Whitney U Test) (Figure 
5).  
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Figure 4 Distance to the nearest ChIP-seq peak center from 
ChIP-seq-negative and CNN-positive fragments 
Orange histogram represents the frequency of distance between the 
center of CNN-positive fragment and the center of the ChIP-seq 
peak. Blue histogram represents the frequency of distance between 
the center of CNN-negative fragment and the center of the ChIP-
seq peak. 
 
 

 
Figure 5 Distance to the nearest ChIP-seq peak center from 
ChIP-seq-negative and PWM-positive fragments 
Orange histogram represents the frequency of distance between the 
center of PWM-positive fragment and the center of the ChIP-seq 
peak. Blue histogram represents the frequency of distance between 
the center of PWM-negative fragment and the center of the ChIP-
seq peak. 
 

4. Discussion 
4.1 Advantages of validation using recombination map 
 In this study, we compared the performance of CNN and 
PWM in terms of the correlation between prediction scores and 
recombination rates other than validating prediction models using 
test data. In these two methods, CNN consistently outperformed 
PWM and the method using recombination map was confirmed its 
usefulness for validation at least. Also, the method allows to 
validate models without the influence of overfitting to the ChIP-

seq data and verifying the prediction accuracy even for ChIP-seq- 
negative data. This validation method is not limited to PWM or 
CNN but can be applied to a variety of prediction models. 
 

4.2 Comparison between CNN and PWM 
 CNN outperformed PWM in both validation methods, 
which used test data and recombination rate. The reason was that, 
as suggested by the distances from the CNN-positive and ChIP-
seq-negative fragments to the nearest ChIP-seq peak (Fig. 4), CNN 
could predict on the basis of a comprehensive judgment of the 
surrounding features in addition to directly recognizing the binding 
site by the PRDM9 zinc finger protein. Further, the fact that the 
discriminatory performance to the ChIP-seq-positive fragments 
was improved by adding weaker motifs of PWMs suggested the 
usefulness of information other than direct protein-binding sites. 
Nevertheless, CNN that used only information about 100 bp 
around the peak (training method 1) resulted in higher accuracy 
than the PWM. These results suggested that CNN is a better 
modeling method for predicting the binding site of PRDM9. 
 

4.3 Features recognized by CNN and the formation of 
PRDM9 binding sites 

 Our analysis suggested that CNN captures some unknown 
features around the ChIP-seq peak other than the zinc finger 
binding motif of PRDM9. For example, biased gene conversion 
would form GC-rich regions around recombination hotspots [25], 
and PRDM9 binding motifs are highly enriched with the cytosine 
nucleotide. Therefore, PRDM9 binding sites tend to locate in 
regions with high GC content, and CNN might have recognized 
such features. In addition, CNN potentially detected a different 
PRDM9 binding site rather than the ChIP-seq peak or similar 
binding sites. Further verification will be needed to make an 
assertion. 
 

5. Concluding Remarks 
 We developed a strategy to evaluate the accuracy of 
PRDM9 binding site prediction by examining the correlation with 
local recombination rate to avoid the effect of overfitting to one 
type of data. We evaluated PWM and CNN methods for detecting 
PRDM9 binding sites using not only test data but also 
recombination map and found that CNN outperformed in both 
cases. This validation method is applicable for not only PWM and 
CNN but also variety of models. Further, the genomic distance 
between the ChIP-seq peak and CNN-positive fragments 
suggested that CNN recognized not only the binding motif of the 
zinc finger but also the features of surrounding sequences when 
predicting the PRDM9 binding to DNA fragments.  
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