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Optimization Variant of Vertex-Coloring Reconfiguration
Problem

Yusuke Yanagisawa1,a) Akira Suzuki1,b) Yuma Tamura1,c) Xiao Zhou1,d)

Abstract: Suppose that we are given a positive integer k, and a k-(vertex-)coloring f0 of a given graph G. Then we
are asked to find a coloring of G using the minimum number of colors among colorings that are reachable from f0 by
iteratively changing a color assignment of exactly one vertex while maintaining the property of k-colorings. In this
paper, we give linear-time algorithms to solve the problem for graphs of degeneracy at most two and for the case where
k ≤ 3. These results imply linear-time algorithms for series-parallel graphs and grid graphs. In addition, we give
linear-time algorithms for chordal graphs and cographs. On the other hand, we show that, for any k ≥ 4, this problem
remains NP-hard for planar graphs with degeneracy three and maximum degree four. Thus, we obtain a complexity
dichotomy for this problem with respect to degeneracy of a graph and the number k of colors.
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1. Introduction
In combinatorial reconfiguration, we often consider the fol-

lowing problem: we are given two feasible solutions of a combi-
natorial search problem, then we are asked to determine whether
one solution can be transformed into the other in a step-by-
step fashion, such that each intermediate solution is also feasi-
ble. Such a problem is called reconfiguration problem. After Ito
et al. proposed this framework [15], the reconfiguration prob-
lem has been extensively studied in the field of theoretical com-
puter science. (See, e.g., the surveys of van den Heuvel [14] and
Nishimura [22].)

Combinatorial reconfiguration models “dynamic” transforma-
tions of systems, where we wish to transform the current config-
uration of a system into a more desirable one by a step-by-step
transformation. In the current framework of combinatorial recon-
figuration, we need to have in advance a target (a more desirable)
configuration. However, it is sometimes hard to decide a target
configuration, because there may exist exponentially many desir-
able configurations. Based on this situation, Ito et al. introduced
the new framework of reconfiguration problems, called the opti-
mization variant [16].

In this variant, we are given a single solution as a current
configuration, and asked for a more desirable solution reachable
from the given one. This variant was introduced very recently,
and hence it has only been applied to Independent Set Recon-
figuration [16], [17] and Dominating Set Reconfiguration [1]
to the best of our knowledge. Therefore, since Coloring Re-
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configuration is one of the most studied reconfiguration prob-
lems [2], [3], [4], [5], [6], [8], [11], [13], [18], [24], we focus on
this problem and study it under this framework.

1.1 Our problem
For an integer k ≥ 1, let C be a color set consisting of k col-

ors 1, 2, . . . , k. Let G be a graph with the vertex set V(G) and
the edge set E(G). Recall that a k-coloring f of G is a map-
ping f : V(G) → C such that f (v) , f (w) holds for each edge
vw ∈ E(G).

In the (Vertex-)Coloring Reconfiguration problem, we are
given two k-colorings f0 and fr of the same graph G. Then we
are asked to determine whether there is a sequence 〈 f0, f1, . . . , f`〉
of k-colorings of G such that f` = fr and fi can be obtained from
fi−1 by recoloring only a single vertex in G for all i, 1 ≤ i ≤ `.
Such a sequence is called reconfiguration sequence from f0 to fr.
The Coloring Reconfiguration is one of the most studied recon-
figuration problems [2], [3], [4], [5], [6], [8], [11], [13], [18], [24].
See also the survey of Mynhardt and Nasserasr [21].

In this paper, we study the optimization variant of Coloring
Reconfiguration. We denote this problem by Opt-Coloring Re-
configuration. In Opt-Coloring Reconfiguration, we are given
only one k-coloring f0 of the given graph G. Then we are asked
to find a k-coloring fsol of G such that there exists a reconfigu-
ration sequence of k-colorings from f0 to fsol, and fsol uses the
minimum number of colors over all colorings which can be trans-
formed from f0 through reconfiguration. We denote by (G, k, f0)
an instance of Opt-Coloring Reconfiguration. Note that fsol is
not always a coloring of G using the minimum number of colors
among all colorings of G.

1.2 Related results
As we have mentioned above, Coloring Reconfiguration has
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been studied intensively.
For Coloring Reconfiguration, a sharp analysis under the

number k of colors has been obtained. It is known that Coloring
Reconfiguration is PSPACE-complete for any fixed k ≥ 4 [4].
On the other hand, it is known that Coloring Reconfiguration
is solvable in linear time for any k ≤ 3 [8], [18]. In addition,
given a yes-instance of Coloring Reconfiguration for any k ≤ 3,
a reconfiguration sequence with shortest length can be found in
polynomial time [8].

Coloring Reconfiguration has also been studied from the
viewpoint of graph classes. It is known that Coloring Reconfigu-
ration is PSPACE-complete for bipartite planar graphs [4]. Since
every bipartite planar graph is 3-degenerate, Coloring Reconfig-
uration is PSPACE-complete for 3-degenerate graphs. Color-
ing Reconfiguration is known to be PSPACE-complete also for
graphs with bounded bandwidth [24] and chordal graphs [13]. On
the other hand, Coloring Reconfiguration is solvable in polyno-
mial time for split, trivially perfect, 2-degenerate, and (k − 2)-
connected chordal graphs for any number k of colors [6], [13].

The optimization variant of reconfiguration problems were re-
cently proposed by Ito et al. [16]. To the best of our knowl-
edge, it has only been applied to Independent Set Reconfigura-
tion [16], [17] and Dominating Set Reconfiguration [1]. There-
fore, in this paper, we apply this new framework to one of the
most studied reconfiguration problems, namely Coloring Recon-
figuration.

1.3 Our results
In this paper, we give linear-time algorithms to solve Opt-

Coloring Reconfiguration for graphs of degeneracy two, and for
any graph when k ≤ 3. These results imply linear-time algorithms
for series-parallel graphs and grid graphs. In addition, we give
linear-time algorithms for chordal graphs and cographs for any
k. Since Coloring Reconfiguration is PSPACE-hard for chordal
graphs [13], we obtain a difference in complexity between Col-
oring Reconfiguration and Opt-Coloring Reconfiguration, that
is, some difficulties disappear for the optimization variant, in a
sense. On the other hand, we show that, for any k ≥ 4, this prob-
lem remains NP-hard for planar graphs with degeneracy three and
maximum degree four. Thus, we obtain a complexity dichotomy
for this problem with respect to the number of colors and degen-
eracy of a graph.

2. Preliminaries
Let G = (V, E) be a graph. We denote by V(G) and E(G) the

vertex set and the edge set of G, respectively. We assume that
all graphs in the remainder of this paper are simple, undirected,
and have at least one edge. The degeneracy d(G) of a graph G
is the minimum integer d such that any subgraph H of G has a
vertex of degree at most d. For a positive integer k, a graph G is
k-colorable if G has a k-coloring. We say that a k-coloring f of
G is optimal if G has no (k − 1)-coloring. We denote by χ(G),
called the chromatic number of G, the integer k such that G has
an optimal k-coloring.

A coloring f of a graph G is k-reachable from a coloring f0 of
G if there is a sequence 〈 f0, f1, . . . , f`〉 of k-colorings of G such

that f` = f and fi can be obtained from fi−1 by recoloring only a
single vertex of G for every i, 1 ≤ i ≤ `. For a coloring f of G,
let col( f ) be the number of colors used in f . We define

χ(G, k, f0) = min{col( f ) | f is a coloring of G

and f is k-reachable from f0}

and χ(G, k, f0) = +∞ if k < col( f0). Note that χ(G, k, f0) is
at least χ(G). Opt-Coloring Reconfiguration is the problem of
computing χ(G, k, f0) for a given graph G, a positive integer k
and a coloring f0 of G. We remark that, with minor adjustments,
all algorithms in this paper can actually find a coloring fsol of G
such that col( fsol) = χ(G, k, f0).

3. Linear-time algorithms
3.1 The case where the number of colors is at most three

In this subsection, we show the following theorem:

Theorem 1. Let (G, k, f0) be an instance of Opt-Coloring Re-
configuration. If k ≤ 3, the problem can be solved in linear time.

Proof. Recall that the input graph G has at least one edge. This
implies that χ(G) > 1 and thus χ(G, k, f0) > 1. If f0 is a 2-
coloring of G, then we conclude that χ(G, k, f0) = 2. In the re-
mainder of this proof, we assume that k = 3 and hence f0 is a
3-coloring of G.

We give an algorithm for an instance (G, 3, f0). Our algorithm
contains the following two steps. First, the algorithm checks in
linear time whether G is 2-colorable, that is, bipartite. Since f0
is a 3-coloring, χ(G) is two or three. If G is not 2-colorable,
we have χ(G) = 3. In this case, the algorithm concludes that
χ(G, k, f0) = 3, otherwise we go to the next step.

In the next step, the algorithm finds an arbitrary 2-coloring fr of
G in linear time, and then checks whether fr is 3-reachable from
f0 or not. It is known that Coloring Reconfiguration is solvable
in linear time if k ≤ 3 [18]. If fr is 3-reachable from f0, the al-
gorithm concludes that χ(G, k, f0) = 2, otherwise χ(G, k, f0) = 3.
This step correctly outputs a solution because one can see that
any 2-coloring is 3-reachable from any other 2-coloring. The to-
tal running time of our algorithm is linear, completing the proof.

ut

3.2 The graphs of degeneracy at most two
In this subsection, we show the following theorem:

Theorem 2. Let (G, k, f0) be an instance of Opt-Coloring Re-
configuration. If the degeneracy d(G) is at most two, then the
problem can be solved in linear time.

Proof. For the case where k ≤ 3, we use the algorithm given
in Theorem 1. Suppose that k ≥ 4. It is known that, if
k ≥ d(G) + 2, then any two k-colorings of G are k-reachable from
each other [7]. Thus, for the case where d(G) ≤ 2 and k ≥ 4, we
have χ(G, k, f0) = χ(G), and hence it suffices to compute χ(G).
One can easily check whether or not G is 2-colorable, that is,
χ(G) = 2 in linear time. If χ(G) , 2, then χ(G) = 3 because
d(G) ≤ 2 and χ(G) ≤ d(G) + 1. Thus, χ(G, k, f0) = χ(G) can be
computed in linear time, completing the proof. ut

Since both series-parallel and grid graphs have degeneracy at

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-AL-185 No.13
2021/11/19



IPSJ SIG Technical Report

most two, we obtain the following corollary by Theorem 2:

Corollary 1. Opt-Coloring Reconfiguration is solvable in lin-
ear time for series-parallel graphs and grid graphs.

3.3 Chordal graphs
In this subsection, we show the following theorem:

Theorem 3. Opt-Coloring Reconfiguration is solvable in linear
time for chordal graphs.

Proof. Let (G, k, f0) be an instance of Opt-Coloring Recon-
figuration, where G is a chordal graph. Suppose that k ≥
col( f0) holds. Our algorithm computes χ(G) and concludes that
χ(G, k, f0) = χ(G). Since we can compute χ(G) in linear time for
any chordal graph G [23], our algorithm takes linear time.

We give the correctness of the algorithm. Clearly, if χ(G) = k,
then f0 itself is an optimal coloring of G and hence χ(G, k, f0) =

χ(G) holds. We show that χ(G, k, f0) = χ(G) holds also for
χ(G) < k. It suffices to prove that any optimal coloring of G
is k-reachable from f0 if χ(G) < k. For any chordal graph G,
χ(G) = d(G) + 1 holds [20]. Thus, we have k ≥ d(G) + 2. It is
known that, if k ≥ d(G) + 2, then any two k-colorings of G are k-
reachable [7]. Therefore, any optimal coloring of G is k-reachable
from f0 if χ(G) < k, and hence χ(G, k, f0) = χ(G), completing the
proof. ut

3.4 Cographs
In this subsection, we give a linear-time algorithm for

cographs. In fact, the algorithm is almost the same as the one
for chordal graphs. For the correctness of the algorithm, we use
the Grundy number. A k-coloring fg of a graph G is called a
Grundy coloring if each vertex v ∈ V(G) such that fg(v) = i is
adjacent to at least one vertex with color j for each j < i. The
Grundy number χg(G) of G is the maximum integer k such that G
has a Grundy coloring with k colors.

Theorem 4. Opt-Coloring Reconfiguration is solvable in linear
time for cographs.

Proof. Let (G, k, f0) be an instance of Opt-Coloring Reconfigu-
ration, where G is a cograph. Suppose that k ≥ col( f0) holds. Our
algorithm computes χ(G) and concludes that χ(G, k, f0) = χ(G).
Since we can compute χ(G) in linear time for any cograph G [23],
our algorithm takes linear time.

We give the correctness of the algorithm. As in the proof of
Theorem 3, we show that any optimal coloring of G is k-reachable
from f0 if χ(G) < k. For any cograph G, χ(G) = χg(G) holds [9].
Thus, we have k ≥ χg(G)+1. It is known that, any two k-colorings
of G are k-reachable if k ≥ χg(G) + 1 [2]. Therefore, any opti-
mal coloring of G is k-reachable from f0 if χ(G) < k, and hence
χ(G, k, f0) = χ(G), completing the proof. ut

4. NP-hardness
In this section, we show that Opt-Coloring Reconfiguration

remains NP-hard even for any k ≥ 4, planar graphs with degen-
eracy three and maximum degree four. We assume that k = 4 be-
cause our proof can easily be applicable to the case where k > 4.
Our proof consists of the following three steps:

vi v̄i

(a)

wj,1 wj,2 wj,3

wj,4

wj,5

(b)

Fig. 1 (a) A variable gadget Xi and (b) a clause gadget Y j.

Step 1 construct an instance (Gφ, 4, fφ) of Opt-ColoringRecon-
figuration from an instance φ of 3-SAT so that Gφ has de-
generacy three;

Step 2 transform (Gφ, 4, fφ) into (Gp, 4, fp) where Gp is a planar
graph of degeneracy three; and

Step 3 reduce the maximum degree of the graph Gp and con-
struct an instance (G, 4, f0).

In 3-SAT, we are given a CNF-formula φ with a collection
{C1,C2, . . . ,Cm} of m clauses over n variables {x1, x2, . . . , xn}, and
each clause contains exactly three variables. Our task is to deter-
mine whether there exists a variable assignment which satisfies a
given CNF-formula or not. 3-SAT is a well-known NP-complete
problem [19].

In fact, our construction of G follows the existing reduction
which proves the NP-hardness of 3-Coloring problem for pla-
nar graphs with degeneracy three and maximum degree four [10],
[12]. Before we explain the construction of G and f0, we show
that χ(G, 4, f0) ≥ 4 if φ has no feasible variable assignment.
In [10], [12], the authors proved that G has a 3-coloring if and
only if φ has a feasible variable assignment. Therefore, if φ has
no feasible variable assignment, any coloring f0 cannot reach any
3-coloring of G, and hence χ(G, 4, f0) ≥ 4. Thus, in the remain-
der of this section, it suffices to give a 4-coloring f0 of G so that
χ(G, 4, f0) ≤ 3 if φ has a feasible variable assignment. In this
technical report, we focus on only Step 1 and omit the explana-
tion of Steps 2 and 3.

4.1 Step 1: constructing an instance from a CNF-formula
As the first step in our reduction, we explain how to construct

an instance (Gφ, 4, fφ) of Opt-Coloring Reconfiguration from an
instance φ of 3-SAT, where Gφ has degeneracy three. In the con-
struction, we use a variable gadget and a clause gadget in Fig. 1,
which appears in [10]. The variable gadget Xi, 1 ≤ i ≤ n, con-
sists of two vertices vi and v̄i. The clause gadget Y j, 1 ≤ j ≤ m,
consists of five vertices w j,1, w j,2, . . . , w j,5.

For a given CNF-formula φ, we build a corresponding graph
Gφ as follows. First, for each variable xi with 1 ≤ i ≤ n and each
clause C j with 1 ≤ j ≤ m of φ, we add one variable gadget Xi and
one clause gadget Y j, respectively. We also add a cycle of three
vertices vT , vF and vB. We connect vB to vi and v̄i in each variable
gadget Xi by edges, and connect vT to w j,1 and w j,4 in each clause
gadget Y j by edges. Then, if a variable xi (resp. x̄i) appears at
the `-th position of a clause C j of φ, we connect vi (resp. v̄i) of
the variable gadget Xi and w j,` of the clause gadget Y j by an edge,
as illustrated in Fig. 2. This completes the corresponding graph
Gφ. Clearly, Gφ is constructed in polynomial time. From the con-
struction of Gφ, it is not hard to see that Gφ has degeneracy three.
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Fig. 2 An example of the construction of a graph Gφ and a 4-coloring fφ of Gφ, where C2 = x1 ∨ x2 ∨ x̄3.

Next we explain the construction of fφ. Let {T, F, B, E} be a
color set. The vertices vT , vF and vB are colored by T, F and B,
respectively. For each variable gadget Xi, 1 ≤ i ≤ n, vi is colored
by T and v̄i is colored by F. For each clause gadget Y j, 1 ≤ j ≤ m,
w j,1 and w j,2 are colored by B, w j,3 is colored by E, w j,4 is colored
by F and w j,5 is colored by T . Clearly, our construction of fφ is
done in polynomial time. Then, we have the following lemma,
whose proof is omitted in this technical report.

Lemma 1. χ(Gφ, 4, fφ) ≤ 3 if φ has a feasible variable assign-
ment.

5. Conclusion
In this paper, we gave linear-time algorithms to solve the prob-

lem for graphs of degeneracy at most two and for the case where
k ≤ 3. These results imply linear-time algorithms for series-
parallel graphs and grid graphs. In addition, we gave linear-time
algorithms for chordal graphs and cographs. On the other hand,
we showed that, for any k ≥ 4, this problem remains NP-hard for
planar graphs with degeneracy three and maximum degree four.
In particular, our theorems give a sharp complexity dichotomies
with respect to the degeneracy of the input graph and the number
k of colors.

It remains open to clarify the complexity status of perfect
graphs, bipartite graphs, or graphs of maximum degree three.
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