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High Quality Consistent Digital Curved Rays via Vector
Field Rounding

Takeshi Tokuyama1,a) Ryo Yoshimura2,b)

Abstract: We consider the consistent digital rays (CDR) of curved rays, which approximates a set of curved rays
emanating from the origin by the set of rooted paths (called digital rays) of a spanning tree of a grid graph. Previously,
a construction algorithm of CDR for diffused families of curved rays to attain an O(

√
n log n) bound for the distance

between digital ray and the corresponding ray is known [11]. In this paper, we give a description of the problem as a
rounding problem of the vector field generated from the ray family, and investigate the relation of the quality of CDR
and the discrepancy of the range space generated from gradient curves of rays. Consequently, we show the existence
of a CDR with an O(log1.5 n) distance bound for any diffused family of curved rays.
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1. Introduction
Digital pictures and graphic displays are modeled by using a

digital plane consisting of pixels in the square region [0, n]×[0, n].
A pixel often means the unit square that is a cell of the inte-
ger grid, but it is represented by the grid point at its lower-left
corner, and the unit square is called pixel square if necessary in
this paper. In the digital plane, geometric objects are represented
by sets of pixels. In such a pixel-based representation, geomet-
ric computation (e.g. the intersection computation) can be done
pixel-wise using the pixel buffers equipped in GPU. Thus, the
pixel-based representation of digital objects would lead to an ad-
ditional methodology for geometric computation.

However, conversion of geometric objects into digital objects
is a nontrivial problem [21], and it may cause several inconsisten-
cies of computation. In particular, the digital objects representing
basic objects in Euclidean geometry do not always satisfy Eu-
clidean axioms. The first two Euclidean axioms are the properties
on line segments: (1) we can draw a line segment between any
given two points, and (2) we can extend a line segment straightly
and continuously to a line. Also, it is implied that the line seg-
ment between two points is unique, and it is a subset of any longer
line segment going through them. As a consequence, a nonempty
intersection of two line segments must be either a point or a line
segment (the second case happens if the line segments are on the
same line). These axioms are also considered in non-Euclidean
geometries, where line segments are replaced by geodesic curves.

A naive digital line segment representing the line segment pq
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between two pixels p and q is the set of pixels corresponding
to pixel squares intersecting the real line segment pq. However,
the axioms do not hold for this definition of digital line seg-
ments. As a consequence, as shown in Figure 1, the intersection
of a pair of such digital line segments may have more than one
connected components in the 4-neighbor topology of the digital
plane, which may cause inconsistency in computation. It is a cu-
rious and important issue in mathematics and computer science
to investigate a digital representation of a family of geometric ob-
jects such that they satisfy discrete counterparts of the Euclidean
axioms.

Fig. 1 The intersection (purple pixel squares) of naive digital line segments
may be disconnected.

The concept of consistent digital rays gives a model of digitiza-
tion of a family of rays in the first quadrant[11], ?, which enables
us to investigate the theoretical limit of digitization quantitatively
by using the discrepancy theory [2], [31]. Here, a ray is a non-
decreasing curve in the first quadrant emanating from the origin,
and a pair of rays in the family do not intersect each other except
at the origin (a concrete definition is given in Section 3).

Consider the triangular region ∆ defined by {(x, y) | x ≥ 0, y ≥
0, x + y ≤ n} in the plane, and the integer grid G = {(i, j) | i, j ∈
{0, 1, . . . , n}, i + j ≤ n} in the region.

Each element of G is called a pixel (corresponding to the pixel
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Fig. 2 CDR for linear rays and parabolic rays in the triangular region of
a 20 × 20 grid, and sampled linear and parabola digital rays in a
400 × 400 square grid.

in a digital picture). A pixel is called a boundary pixel if it lies
on the off-diagonal boundary x + y = n of ∆. The directed grid
graph structureG = (G, E(G)) corresponding to the four-neighbor
topology is given such that we have directed edges from (i, j) ∈ G
to (i + 1, j) and (i, j + 1) if i + j ≤ n − 1.

A digital ray is a directed path in G from the origin o to a
pixel p. A digital ray is identified with the set of pixels on
it, and regarded as a subset of G. Let us consider a family
Π = {Π(p) | p ∈ G} of digital rays. The family is called con-
sistent if the following three properties hold:
( 1 ) Uniqueness property: For each p ∈ G, there exists a unique

digital ray Π(p) from the origin o to p in the family. We
define Π(o) = {o}.

( 2 ) Subsegment property: If q ∈ Π(p), then Π(q) ⊆ Π(p).
( 3 ) Prolongation property: For each Π(p), there is a (not neces-

sarily unique) boundary pixel r such that Π(p) ⊆ Π(r).
These properties are considered as the digital counterparts of

the Euclidean axioms modified for the family of all halflines
(called linear rays) emanating from the origin in the first quad-
rant.*1

It is observed that the union of edge sets of paths in a consis-
tent family of digital rays forms a (directed) spanning tree T of
G rooted at o such that all leaves are boundary pixels (this con-
dition corresponds to the prolongation property). The tree T is
identified with the family Π of digital rays, and both of them are
called CDR (Consistent Digital Rays). See the pictures (a) and
(b) of Figure 2 for examples of CDR.

Given a family of rays, it is desired to find a CDR approx-
imating rays simultaneously. The quality of the approximation
is measured by the largest distance between the digital ray Π(p)
and the corresponding ray C(p) going through p over all p ∈ G.
The Hausdorff distance is a popular distance between geometric
objects, and considered in the previous works.

Historically, the theory started with how to realize digital
straightness[21] to find a digitization of lines and line segments.
Lubby [22] first gave a construction of a CDR, where each Π(p)
simulates a linear ray within Hausdorff distance O(log n), and
showed that the bound is asymptotically tight using geometric
discrepancy. The construction was re-discovered by Chun et al.
? in the formulation shown above. Christ et al. [14] gave a con-
struction of consistent digital line segments where the lines need
not go through the origin. There are works on variations and the
high-dimensional generalizations [12], [15], [16].

The theory is extended by Chun et al. to families of curved
rays [11]. A typical example is the family of parabolas y = ax2

for a ≥ 0. In Figure 2, the combinatorial difference between two

*1 The shortest-path property given in [11], [12], ? is omitted by defining
G as a directed graph in this paper.

CDRs (a) and (b) can be observed. The difference leads to the
visual difference of digital rays illustrated in Figure 2, where it
can be seen that the digital rays in (b) approximate parabolas as
shown in (d) extended to a sufficiently large grid, while (a) ap-
proximates linear rays as shown in (c). A construction method
of CDR for a wide class of families of curved rays called diffused
ray families (its definition is given in Section 3.3) is given in [11].
However, the usage of discrepancy theory is limited because of
difficulty to handle curved rays, and the attained distance bound
is O(

√
n log n).

In this paper, we give a novel description of the problem as a
rounding problem of a vector field, and regard the problem as a
variant of the linear discrepancy problem. Intuitively, the rays are
considered as geodesic curves for the vector field, and the round-
ing of the vector field naturally leads to a CDR. Then, in order to
solve this variant of discrepancy problem, we apply the transfer-
ence theory from the combinatorial discrepancy to the geometric
discrepancy, and generate a tailor-made low-discrepancy pseudo-
random sequence for the given family F .

This enables us to prove the existence of a CDR with an
O(log1.5 n) upper bound for the distance between rays and their
corresponding digital rays for any diffused ray family. Although
the above proof uses a non-constructive method in discrepancy
theory, a CDR with a slightly weaker O(log2 n) distance bound is
computed in polynomial time.

2. Preliminaries on discrepancy theory
We introduce the definitions of three kinds of discrepancies

used in this paper.

2.1 Range space and geometric Discrepancy
Consider a family A of subregions of R = [0, n] × [0, 1] and a

set P of n points in R. The pair (P,A) forms a range space. Let
vol(A) be the area of A ∈ A. We define

D(P, A) = |vol(A) − |P ∩ A|| for A ∈ A,

D(P,A) = sup
A∈A

D(P, A), and

D(n,A) = inf
|P|=n

D(P,A).

D(P,A) and D(n,A) are called the geometric discrepancies of
the range space (P,A) and the region familyA, respectively. See
[2] for the geometric discrepancy theory. *2

2.2 Combinatorial Discrepancy
For a finite set X, a family S ⊆ 2X is called a set system on

X. It generates a hypergraph H = (X,S). A hypergraph coloring
(bi-coloring) of H is a mapping χ : X → {−1,+1}, and we define
χ(S ) =

∑
x∈S χ(x) for S ∈ S. The combinatorial discrepancy is a

measure of the balance of the coloring defined as follows:

disc(χ,S) = max
S∈S
|χ(S )|,

disc(S) = min
χ

disc(χ,S).

*2 The geometric discrepancy is defined more generally in [2] for range
spaces in [0, 1]d instead of [0, n] × [0, 1].
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Given a range space (P,A), A|P = {{P ∩ A} | A ∈ A} is a set
system on P, and we can consider its combinatorial discrepancy
disc(A|P). We define the combinatorial discrepancy of the region
familyA by disc(n,A) = max|P|=n disc(A|P).

The combinatorial discrepancy of a range space and the geo-
metric discrepancy are strongly related via transference principle
(Theorem 5.2).

2.3 Linear discrepancy
Given a hypergraph H = (X,S) and a real valued function

w : X → [−1, 1] called weight function, we consider a function
χ : X → {−1, 1} called a rounding of w. For each S ∈ S, w(S )
and χ(S ) are the summations of the values of w and χ over S ,
respectively. The linear discrepancy of the rounding χ is

lindisc(w, χ) = max
S∈S
|χ(S ) − w(S )|.

minχ lindisc(w, χ) and maxw minχ lindisc(w, χ) are called the lin-
ear discrepancy of w and H, respectively. The combinatorial dis-
crepancy disc(S) is equivalent to the linear discrepancy of the
weight function w ≡ 0.

3. Consistent Digital Rays
3.1 The structure of consistent digital rays

As mentioned in the introduction, a CDR is regarded as a
rooted directed spanning tree T of the grid graph G on the tri-
angular grid G, such that T has no leaf in the interior of ∆. Let
`(z) be the off-diagonal line defined by x + y = z. L(k) = {(x, y) ∈
G | x + y = k} = `(k) ∩G is a level set of G for a natural number
k ≤ n. By definition, all leaves of T are in L(n).

Each non-root pixel has exactly one incoming edge of T . Also,
as illustrated in Figure 3, there is a unique pixel (named branch-
ing pixel) in L(k) with two outgoing edges for k , n, since
|L(k + 1)| = |L(k)| + 1 and there is no leaf vertex in L(k). Accord-
ingly, there exists a point (not necessarily a pixel) p ∈ `(k + 1)
such that all incoming edges to the pixels on the left (resp. right)
of p are vertical (resp. horizontal). Such a point is called a split
point, which partitions the incoming edges to each level into ver-
tical and horizontal ones.

Fig. 3 The branching pixels (colored yellow) and a split point are illustrated
in the left picture, which shows the first five levels of the CDR in the
right picture [11].

3.2 Off-diagonal distance between rays
A non-decreasing curve segment in ∆ emanating from the ori-

gin is called a partial ray. We slightly abuse the notation so that a
rooted path in G is also a partial ray, which consists of horizontal
and vertical segments corresponding to its edges. We say that a

partial ray terminates on `(t) if it ends at a point on `(t). A partial
ray is called a ray if it terminates on the off-diagonal boundary
`(n) of ∆.

Given a partial ray C crossing `(z), let qC(z) = (xC(z), yC(z)) be
the unique intersection point of C and `(z). We define the discrete
off-diagonal-wise L∞ distance (off-diagonal distance in short) us-
ing xC(z) as follows:

Given partial rays C and C′ both terminating on `(m) for a nat-
ural number m ≤ n, their off-diagonal distance is defined by

do(C,C′) = max
k=1,2,...,m

|xC(k) − xC′ (k)|.

In other words, we measure the distance between two partial rays
by the maximum horizontal distance (the vertical distance is the
same) between their intersection points with `(k) over natural
numbers k ≤ m. In particular, we can consider the off-diagonal
distance do(Γ,C) between a rooted path Γ in G and a partial ray
C terminating at the same pixel.

The off-diagonal distance is a discrete variant of the L∞-
Hausdorff distance (i.e., the Hausdorff distance based on the L∞
distance), which equals sup0<z≤m |xC(z) − xC′ (z)| for partial rays.
It is observed that the Hausdorff distance (i.e., the Hausdorff dis-
tance based on the Euclidean distance) between C and C′ is at
most

√
2(do(C,C′) + 1), and at least do(C,C′) (see textbooks or

? for the definition of the Hausdorff distance). Thus, we use the
off-diagonal distance in our analysis, since its asymptotic bound
gives that of the Hausdorff distance.

3.3 CDR as rounding of a vector field
A family F of rays is called a ray family if for each point

p = (x, y) ∈ ∆ \ {o} there exists a unique ray C(p) of F going
through it. We denote the partial ray that is the part of C(p) ter-
minating at p by C̃(p).

A ray family F is called smooth if each ray in F is differen-
tiable.

Let us focus on a smooth ray family F . We give a description
of CDR as a rounding problem of a vector field induced from F
to a discrete vector field on pixels (see Figure 4).

For p = (xp, yp) for xp > 0, suppose that the ray C(p) is given
by a function y = fp(x) in a neighbourhood of p. The slope of
C(p) at p is given by f ′p(xp) using the derivative of f . Since the

slope is nonnegative, we can write f ′p(xp) =
1−αp

αp
uniquely by

using a real number 0 < αp ≤ 1. It defines the gradient vector
Vp = (αp, 1−αp) to give the direction of the curve C(p) at p nor-
malized with respect to the L1 norm. We set Vp = (0, 1) if xp = 0
and yp > 0. We do not define a gradient vector at o = (0, 0). This
defines a vector field V : ∆ \ {o} → R2 on the triangular region.*3

*3 If a potential function Φ to present gradient vectors as ( ∂Φ
∂x ,

∂Φ
∂y

) is given,
the rays are considered as geodesic paths in the potential field.
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Fig. 4 The vector field of the gradient vectors (left), a CDR approximat-
ing it (center), and its corresponding rounding χ (right, shown up to
L(8).)

As illustrated in the center picture of Figure 4, the CDR prob-
lem can be regarded as the problem to find an assignment of either
(1, 0) or (0, 1) to each pixel of G \ {o} such that the unit vector in-
dicates the kind (horizontal or vertical) of the incoming edge of
T to the pixel. If the CDR approximates the ray family F , the
assignment should approximate the vector field V.

Each vector Vp is uniquely determined by αp ∈ [0, 1], and the
vector field is converted to a [0, 1]-valued function w defined by
w(p) = αp. We call w the gradient weight of the vector field V in
this paper. The vectors (1, 0) and (0, 1) are converted to 1 and 0
by this transformation.

Therefore, the CDR problem is converted to the problem to
compute an assignment χ : G \ {o} → {0, 1} from the gradient
weight (see the right picture of Figure 4). This is analogous to
the linear discrepancy problem, if we scale the range of the weight
from [−1, 1] to [0, 1]. Thus, we call χ a rounding of w.

By definition, the off-diagonal distance between the digital ray
Γ = Π(p) and the partial ray C = C̃(p) towards p ∈ L(m)
is do(Γ,C) = maxk=1,2,...m |xΓ(k) − xC(k)|, where xΓ(k) is the x-
coordinate value of the pixel qΓ(k) = Γ ∩ L(k). The following
lemma relates the gradient weight and the rounding to the off-
diagonal distance.

xC(k) =
∫ k

0 w(qC(z))dz, and xΓ(k) =
∑k

i=1 χ(qΓ(i)).

Proof. If a ray goes through a point q = (x, y) on `(z) and
reaches a point (x + dx, y + dy) on `(x + dz) for an infinitesi-
mally small dz, then dx = αqdz = w(q)dz by the definition of the
gradient vector. If C is the ray, q = qC(z) = (xC(z), yC(z)). Thus,
xC(k) =

∫ k
0 w(qC(z))dz.

The x-value of a pixel q = qΓ(k) on a path Γ is the num-
ber of horizontal edges up to the pixel, which is the prefix sum
of χ over the path Γ up to the level L(k), and hence xΓ(k) =∑k

i=1 χ(qΓ(i)). �

A function f on ∆ is called off-diagonal monotone if it is non-
decreasing on each off-diagonal line `(z). That is, f (p) ≥ f (q) if
xp ≥ xq and p, q ∈ `(z). It is called strongly off-diagonal mono-
tone if it is increasing on each off-diagonal line.

The function χ corresponding to a spanning tree of G if
χ(0, k) = 0 and χ(k, 0) = 1 for 1 ≤ k ≤ n (i.e., the edges of
T are vertical on the y-axis and horizontal on the x-axis). How-
ever, the spanning tree might have leaves in the interior of G (such
a spanning tree is called a weak CDR in [12]). The spanning tree
becomes a CDR if and only if χ is off-diagonal monotone, which
is equivalent to the fact that there is a split point in each level.

We call a smooth ray family F diffused if the gradient weight

w of its corresponding vector field is strongly off-diagonal mono-
tone and continuous on each `(z). This definition of the diffused
ray family is equivalent to the one given in [11].

From now on, we focus on a CDR of a diffused family of rays,
and regard it as the problem of seeking for a rounding χ mini-
mizing the off-diagonal distance. The difference of this rounding
problem from the ordinary linear discrepancy problem is as fol-
lows:
( 1 ) The set system is {Π(p) | p ∈ G}, which depends on T , and

hence on the choice of χ.
( 2 ) The rounding must preserve the off-diagonal monotonicity.
( 3 ) We must relate the off-diagonal distance to the discrepancy.

We apply the discrepancy theory to this vector field rounding
problem.

4. Construction of CDR for diffused ray fami-
lies

4.1 Construction algorithm of CDR via level-wise threshold
rounding

We give a construction algorithm named θ-threshold rounding
algorithm of a CDR approximating given diffused ray family F
by using a (0, 1]-valued sequence θ : {1, 2, . . . n} → (0, 1].

Given a gradient weight w and a (0, 1]-valued sequence θ, the
θ-threshold rounding χ of w is defined by the following:

For q ∈ L(k) (k = 1, 2, . . . , n), χ(q) = 1 if and only if
w(q) ≥ θ(k).

The construction algorithm is very simple: Given a diffused
ray family F , we consider its gradient weight w, compute its θ-
threshold rounding, and obtain the corresponding CDR.

Consider the linear ray family F = {Clin
a : y = ax| a ∈ [0,∞]},

where Clin
∞ is the line x = 0. The derivative of y = ax is a, which

is equal to y
x . Hence, the slope of C(p) at p = (x, y) is y

x , and the
vector field V is defined by Vp = ( x

x+y
, y

x+y
), and w(p) = x

x+y
. If

p = (kt, k(1 − t)) ∈ L(k), w(p) = t. Thus, χ(p) = 1 if and only if
t ≥ θ(k).

Consider the parabola family F = {Cpara
a : y = ax2 | a ∈

[0,∞]}, where Cpara
∞ is the line x = 0. The derivative of y = ax2

is y′ = 2ax =
2y
x , and hence the slope of C(p) at p = (x, y) is

2y
x . Thus, the vector field V is defined by Vp = ( x

x+2y ,
2y

x+2y ), and
w(p) = x

x+2y . If p = (kt, k(1 − t)) ∈ L(k), w(p) = t
2−t . Thus,

χ(p) = 1 if and only if t
2−t ≥ θ(k).

The model of geometric computation to discuss the complexity
and some more examples are given in the appendix.

4.2 Discrepancy that bounds the off-diagonal distance
The θ-threshold rounding algorithm is equivalent to the algo-

rithm given in [11], where θ is fixed to be a random sequence or a
known low discrepancy sequence independently of choice of F .
In contrast to it, we seek for a tailor-made sequence θ to fit each
ray family F .

A ray C ∈ F defines its gradient curve ϕC : {(z, w(qC(z))) | 0 <
z ≤ n} in the (z, w) plane. Consider the family F ∗ = {ϕC | C ∈ F }
of gradient curves.

Given a curve ϕ : w = f (z) in F ∗, let
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R−(ϕ, (a, b]) = {(z, w) | a < z ≤ b, 0 ≤ w < f (z)} and

R+(ϕ, (a, b]) = {(z, w) | a < z ≤ b, f (z) < w ≤ 1} for 0 ≤ a ≤ b ≤ n.

In other words, R−(ϕ, (a, b]) (resp. R+(ϕ, (a, b])) is the subregion
of (0, n] × [0, 1] below (resp. above) ϕ and bounded by two verti-
cal lines z = a and z = b. We define the family of regions

AF ∗ ={Rε(ϕ, (a, b]) | 0 ≤ a ≤ b ≤ n, ϕ ∈ F ∗, ε ∈ {+,−}}

∪ {(a, b] × [0, 1] | 0 ≤ a < b ≤ n}.

Fig. 5 The gradient curves of parabola rays and a region R−(ϕ, (a, b]) in
AF ∗ .

For the linear ray C : y = ax, w(qc(z)) = 1
1+a , and hence ϕC is

the horizontal line defined by w = 1
1+a . Thus, AF ∗ is the family

of axis parallel rectangles.
For the parabola ray C : y = ax2(a ≥ 0), qC(z) = (−1+

√
1+4az

2a , z−
−1+

√
1+4az

2a ), and w(qC(z)) = 1
√

1+4az
. The curve ϕC is defined by

w = 1
√

1+4az
. The gradient curves and a region in AF ∗ for the

family F of parabola rays are illustrated in Figure 5.
Let us fix the (0, 1]-valued sequence θ, and focus on the round-

ing χ and corresponding CDR Π constructed by the θ-threshold
rounding algorithm.

The point set S (θ) = {si = (i, θ(i)) | 1 ≤ i ≤ n} is called the θ-
Hammersley point set, or Hammersley point set if θ is implicitly
given*4.

The following lemma shows a relation between the positions
of points of S (θ) in the arrangement of gradient curves and the
assignment of χ-values of pixels in the arrangement of rays.

If sk = (k, θ(k)) ∈ S (θ) is below (resp. above) the gradient
curve ϕC , χ(p) = 1 (resp. χ(p) = 0) for all pixels p ∈ L(k) lying
on the right (resp. left) of C.

Proof. We assume sk is below ϕC (the other case is analogous).
Hence, θ(k) < w(qC(k)).

Because of the continuity and strong monotonicity of w on `(k),
there is a unique point u ∈ `(k) satisfying w(u) = θ(k). The point u
becomes a split point because of the definition of the θ-threshold
rounding.

By the assumption, w(u) = θ(k) < w(qC(k)), and the strong
monotonicity of w implies that u is on the left of C. Thus, each
pixel p ∈ L(k) on the right of C is also on the right of u, and thus
χ(p) = 1 because of the definition of the split points. �

We consider the geometric discrepancy D(S (θ),AF ∗ ), and the
following theorem tells the explicit relation of the discrepancy
and the off-diagonal discrepancy.

Suppose that D(S (θ),AF ∗ ) ≤ δ(n) for a function δ. Then,
do(Π(p), C̃(p)) ≤ δ(n) + 1 for each pixel p in G.

*4 The original 2-dimensional Hammersley point set uses the van der Cor-
put sequence as θ, but the notation is abused to allow to use a general
θ.

Proof. Let S = S (θ), Γ = Π(p), and C = C̃(p). Without loss
of generality, we assume p ∈ L(n). We assume the off-diagonal
distance max1≤k≤n |xΓ(k)−xC(k)| between Γ and C is d, and derive
d ≤ δ(n) + 1 to prove the theorem.

From the assumption, there exists k0 such that |xΓ(k0) −
xC(k0)| = d. Thus, either xΓ(k0) = xC(k0) + d or xΓ(k0) =

xC(k0) − d, and we focus on the former case, since the latter case
can be handled analogously.

Consider the first index m > k0 such that xΓ(m) ≤ xC(m). In
other words, m is the first index after k0 such that the pixel of Γ
in the level L(m) comes on the left of (or on) C. Such m exists
because both Γ and C reach p. Thus,

xΓ(m) − xC(m) ≤ 0 = xΓ(k0) − xC(k0) − d (1)

Consider R = R−ϕC ,(k0 ,m−1] ∈ AF ∗ , which is the region below ϕC

and k0 < z ≤ m − 1. Let N(S ,R) be the number of points of S in
R.

The path Γ is on the right of C in the range k0 ≤ z ≤ m− 1, and
it is derived from Lemma 4.2 that χ(qΓ(k)) = 1 if sk ∈ R. Thus,
we have the following:

m−1∑
k=k0+1

χ(qΓ(k)) ≥
∑

k:sk∈R

χ(qΓ(k)) =
∑

k:sk∈R

1 = N(S ,R). (2)

From Lemma 3.3, xΓ( j) =
∑ j

k=1 χ(qΓ(k)), and hence combined
with (2),

xΓ(m − 1) − xΓ(k0) =

m−1∑
k=k0+1

χ(qΓ(k)) ≥ N(S ,R). (3)

By the definitions of R and ϕC ,

vol(R) =

∫ m−1

k0

ϕC(z)dz =

∫ m−1

k0

w(qC(z))dz.

On the other hand, from Lemma 3.3,∫ m−1

k0

w(qC(z))dz = xC(m − 1) − xC(k0).

Thus,
vol(R) = xC(m − 1) − xC(k0).

Since the geometric discrepancy D(S ,AF ∗ ) is bounded by δ(n),

N(S ,R) ≥ vol(R) − δ(n) = xC(m − 1) − xC(k0) − δ(n).

Thus, combined with (3),

xΓ(m − 1) − xΓ(k0) ≥ N(S ,R) ≥ xC(m − 1) − xC(k0) − δ(n),

and hence

xΓ(m − 1) − xC(m − 1) + δ(n) ≥ xΓ(k0) − xC(k0). (4)

From (1) and (4), we have

xΓ(m − 1) − xC(m − 1) + δ(n) ≥ xΓ(m) − xC(m) + d.

Equivalently,

xC(m) − xC(m − 1) + δ(n) ≥ xΓ(m) − xΓ(m − 1) + d.

Since the x-value of a ray increases by at most one if the ray pro-
ceeds one level, xC(m)− xC(m−1) ≤ 1 and xΓ(m)− xΓ(m−1) ≥ 0.
Hence, we have

1 + δ(n) ≥ d.

This is what we desire to obtain. �
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5. Construction of the tailor-made low-
discrepancy sequence

We give an upper bound of D(n,AF ∗ ) using the transference
principle that derives an upper bound of the geometric discrep-
ancy from that of the combinatorial discrepancy. Then, we con-
struct θ such that S (θ) = {(i, θ(i)) | i = 1, 2, . . . , n} attains this
discrepancy asymptotically.

5.1 Combinatorial property of the range space of gradient
curves

Given a diffused family F , for any point v = (z0, w0) in the
rectangle (0, n] × [0, 1], there exists a unique gradient curve ϕC

going through v.

Proof. The range of w on `(z0) is [0, 1] since F contains x-
axis and y-axis. Because of the strong off-diagonal monotonicity
and the continuity of w, there exists a point q ∈ `(z0) such that
w(q) = w0. Because of the definition of a ray family, there exists
a unique ray C ∈ F going through q, and wC(q) = w(q). Thus, ϕC

is the unique gradient curve going through v. �

For a diffused family F , each pair of gradient curves in F ∗ do
not intersect each other in the domain 0 < z ≤ n.

[Pseudo-rectangles] Given a family C of x-monotone curves in
(0, n] × [0, 1] such that each pair of curves do not intersect each
other, a region bounded by a pair of curves and two vertical lines
is called a pseudo-rectangle associated with C. A (possibly infi-
nite) set of such pseudo-rectangles is called a family of pseudo-
rectangles associated with C

The following lemma follows the definition of AF ∗ , Defini-
tion 5.1, and Corollary 5.1. See Figure 5 to get intuition. For
a diffused ray family F , AF ∗ is a family of pseudo-rectangles
associated with F ∗.

5.2 Discrepancies for the pseudo-rectangles
The Hammersley point set using the van der Corput sequence

(van der Corput-Hammersley point set) is known to give an
O(log n) bound for the geometric discrepancy for the family of
axis-parallel rectangles (see [2]). However, it is known that its
discrepancy becomes Ω(

√
n) if we consider a rotated rectangle

(Exercise 3, Section 2.1 of [2]), and hence the O(log n) bound
cannot be applied to pseudo-rectangles. It seems difficult to di-
rectly convert the O(log n) bound of geometric discrepancy for
rectangles to the one for pseudo-rectangles.

Fortunately, the combinatorial structure for the hypergraph of
the range space of the pseudo-rectangles is the same as that of
axis-parallel rectangles.

The problem to investigate the combinatorial discrepancy
disc(n,R) for the family R of axis-parallel rectangles is called
Tusnády’s problem. An O(log4 n) bound [5] was given by Beck,
and it was improved by Bohus to O(log3 n) as an application of
k-permutation problem [7]. The current best bound is O(log1.5 n)
given by Nikolov [10], although it is not constructive. The con-
struction given by Bansal and Garg [8], [29] has an O(log2 n)
discrepancy, and their algorithm runs in polynomial time using
the semi-definite programming as a subroutine.

Because the combinatorial discrepancy only depends on the
combinatorial properties of the range space, all these bounds
hold for the combinatorial discrepancy of a range space of
pseudo-rectangles. Thus, we obtain the following theorem from
Lemma 5.1.

disc(n,AF ∗ ) = O(log1.5 n), and a set P of n points attaining
disc(AF ∗ |P) = O(log2 n) can be computed in polynomial time.

It is known that an upper bound of the combinatorial discrep-
ancy for range spaces can be converted to that of the geometric
discrepancy as shown in the following theorem named Transfer-
ence Principle or Transference Lemma (Proposition 1.8 of [2]):

[Transference Principle] LetA be a range space. If D(n,A) =

o(n) and disc(n,A) = O( f (n)) for a function satisfying f (2n) ≤
(2 − δ) f (n) for all n and fixed δ > 0, then D(n,A) = O( f (n)).

The assumptions on f (n) and the condition that D(n,A) = o(n)
hold for the range space of pseudo-rectangles. Therefore, an up-
per bound of the combinatorial discrepancy is transferred to that
of geometric discrepancy for the pseudo-rectangles. (A more gen-
eral result is given by Aistleitner, Bilyk and Nikolov [30].) The
transference is given in a constructive fashion such that a point
set P giving the geometric discrepancy bound can be obtained in
polynomial time in n if the coloring attaining the combinatorial
discrepancy can be done in polynomial time. Thus, we have the
following:

D(n,AF ∗ ) = O(log1.5 n), and a set P of n points attaining
D(P,AF ∗ ) = O(log2 n) can be computed in polynomial time.

5.3 Arraying a point set to obtain a uniform number se-
quence

We have shown that there exists a point set in [0, n] × [0, 1] at-
taining the O(log1.5 n) geometric discrepancy for the region fam-
ily AF ∗ . However, we need θ(i) ∈ [0, 1] such that its Hammer-
sley point set S (θ) = {si = (i, θ(i)) | 1 ≤ i ≤ n} forms a low-
discrepancy point set to attain the discrepancy bound. We claim
that any low-discrepancy point set for AF ∗ can be arrayed to be-
come a Hammersley point set without losing the low-discrepancy
property.

[Arraying lemma] If we have a set P of n points with δ(n) ge-
ometric discrepancy for AF ∗ , we can construct a Hammersley
point set P′ with O(δ(n)) geometric discrepancy.

Proof. Consider the sorted list p1, p2, . . . , pn of P in the abscis-
sas in the (z, w) plane. Let Ci be the unique gradient curve in F ∗

going through pi, and p′i be the point on Ci with the abscissa i.
In other words, each point pi is moved along Ci to the position of
the abscissa i. Now, we have the point set P′. Consider a region R
bounded by a gradient curve C ∈ F ∗ and two vertical lines. Since
each point is moved along a curve and no pair of curves intersect,
a point p′i is below C if and only if pi is below C.

Consider the numbers N(P, `) and N(P′, `) of points in P and
P′ to the left of a vertical line ` : z = a, respectively. Since the
points of P′ are arrayed, N(P′, `) = bac. Since D(P,AF ∗ ) ≤ δ(n)
and (0, a]× [0, 1] ∈ AF ∗ has the area a, |N(P, `)−a| ≤ δ(n). Thus,
|N(P, `) − N(P′, `)| ≤ δ(n) + 1. Therefore, at most δ(n) + 1 points
of P move crossing `, since the move of points keeps the sorting
order. Thus, at most 2(δ(n) + 1) points move crossing two verti-
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cal boundaries of R. Therefore, the discrepancy of P′ is at most
3δ(n)+2 = O(δ(n)). Given P′, the sequence θ such that P′ = S (θ)
is automatically obtained. �

Thus, θ is constructed as desired, and we obtain our main result
shown below. Note that the asymptotic distance bounds hold for
both of the off-diagonal and Hausdorff distances.

For a diffused ray family F , there exists a CDR with an
O(log1.5 n) distance bound between a partial ray towards a pixel
and its digital ray. A CDR with an O(log2 n) distance bound can
be computed in polynomial time in n.

Proof. Immediate from Theorem 4.2, Theorem 5.2 and
Lemma 5.3. �

6. Digital pseudoline arrangement
A family of curves is called a pseudoline arrangement if each

pair of curves intersect at most once to each other. The consistent
digital pseudoline arrangement is defined by Chun et al. [11].

One important class of the consistent digital pseudoline ar-
rangement is given as a union of translated copies of a CDR T .
A translated copy T (s) is obtained by translating T so that the
origin is translated to (s,−s) for an integer s.

The union ∪−k≤s≤kT (s) represents the set of digital rays ema-
nating from 2k + 1 grid points on the off-diagonal line x + y = 0.
The union is called a family of shifted digital rays.

If we consider shifted digital rays using the CDR of linear rays
given in Example 4.1, we can generate digital line segments for
a line segments (with nonnegative slopes) between pixels in G as
segments of shifted linear rays. This is a different construction of
digital line segments from [14]. If we consider shifted digital
rays using the CDR for parabola rays given in Example 4.1, we
have an approximation of the family of parabolas with the vertical
axes and peaks on the off-diagonal line x + y = 0.

We can immediately apply our construction to improve the dis-
tance bound of shifted digital rays for a general diffused ray fam-
ily to O(log1.5 n) .

Another class of consistent digital pseudoline arrangements
discussed in [11] is the digitized homogeneous polynomial fam-
ily approximating the family {C j,a | y = ax j for a > 0 and
j ∈ {1, 2, . . . , k}} for an integer k. We can apply our formulation to
construct a union of CDR for it, but unfortunately, we have tech-
nical difficulty to generalize the Arraying Lemma (Lemma 5.3)
to guarantee an improved distance bound.

7. Concluding remarks
The distance bound O(log1.5 n) is near to the known Ω(log n)

lower bound, but it is curious whether we can improve it to
O(log n). Moreover, if we remove the off-diagonal monotonic-
ity condition on χ, we have a weak CDR. It is known that the
distance bound for a weak CDR is reduced to O(1) for the family
of linear rays [12]. It is curious to investigate the weak CDR for
a general ray family.

Developing a practical algorithm for computing theoretically
guaranteed CDR is also an important problem. Although the θ-
threshold rounding algorithm is very simple, the sequence θ at-

taining the O(log1.5 n) distance bound is not constructed explic-
itly. The one with O(log2 n) distance bound has a polynomial
time construction. However, we need to deal with hypergraphs
on vertex sets with nearly n2 vertices and polylogarithmic vertex
degrees if we apply the transference principle. Moreover, the col-
oring of the hypergraph to attain the combinatorial discrepancy
in [8], [29] uses the semi-definite programming(SDP). Therefore,
the algorithm is not much efficient for practical use. It is desired
to give an efficient construction of CDR for a given family of
curved rays with theoretically near optimal distance bound.

There are n! different CDRs in G corresponding to the ways
to locate the branching pixel of each L(k). Thus, it is implied
that the infinite set of all diffused families of rays is mapped to n!
CDRs, and the inverse image of a CDR T is a class of families
of rays within O(log1.5 n) distance from the set of paths of T . It
is curious to extend this observation to more general geometric
objects in the plane.

8. Appendix
8.1 Geometric Primitives

Although the existence of the CDR is given mathematically
by using abstract properties of the ray family, the θ-threshold
rounding algorithm needs computation of the weight w and the
sequence θ. Therefore, necessary primitive geometric operations
(which is called geometric primitives) must be executed using in-
formation of the ray family.

Given s = (zs, ws) and t = (zt, wt) in the (z, w)-space, we say s
is higher than t with respect to F ∗ if there exists a gradient curve
(called separating curve) ϕC : {(z, w(qC(z))) | 0 < z ≤ n} such that
w(qC(zs)) < ws and w(qC(zt)) ≥ wt. If s and t are on the same
gradient curve, we say they have the same height.

The following two geometric primitives are necessary for the
algorithm.
( 1 ) Given p ∈ ∆, compute the weight w(p) with a sufficient pre-

cision so that necessary comparisons in the algorithm can be
done properly.

( 2 ) Given s and t in the (z, w)-plane, decide which is higher (or
they have the same height) with respect to F ∗.

A given set of points in the (z, w)-plane can be sorted with re-
spect to the height by using the second primitive. This enables to
identify a range space of pseudo-rectangles to that of axis-parallel
rectangles combinatorially.

We assume that each geometric primitive can be done in poly-
nomial time in n in order to guarantee the polynomial time com-
plexity for computing a CDR.

The computation of the weight w(p) needs locally differen-
tiable representations of rays, and the computation of qC(z) needs
solution of equations as shown in the examples given below.

8.2 Examples
In the following examples, the geometric primitives need nu-

merical computation such as solution of non-algebraic equations.
Consider an increasing differentiable function f (x) such that

f (0) = 0. Then, the family F = {Ca : y = a f (x) | a ∈ [0,∞]} is
a smooth ray family, if we consider C∞ as the vertical line x = 0.
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Given any p = (x0, y0) ∈ ∆ for x0 > 0, Ca0 for a0 =
y0

f (x0) is the

unique ray going through p, and w(p) = 1
1+a0 f ′(x0) =

f (x0)
f (x0)+y0 f ′(x0) .

The family F is diffused if f (x) is a concave function.
For example, the sigmoid function σ(x) = 1−e−x

1+e−x is a concave
function for x ≥ 0. Thus, the family F = {Csig

a : y = aσ(x) | a ∈
[0,∞]} is a diffused family. The derivative at p = (x, y) is
y′ = 2a e−x

(1+e−x)2 , which equals 2ye−x

1−e−2x and hence w(p) = 1−e−2x

1−e−2x+2ye−x .

The x-coordinate value of the point qC(z) for C = Csig
a is the

root of the equation x+a 1−e−x

1+e−x = z, and it does not have an explicit
analytic expression. Thus, the geometric primitive concerning
ϕC(z) requires substantial numerical computation.

For 0 < a ≤ 1, define the function Fa(x) = (1 − a)n sin πx
2na

for 0 ≤ x ≤ na. We define Csin
a : y = Fa(x) for a > 0, and

C sin
0 is defined to be the y-axis. Then, F = {Csin

a | a ∈ [0, 1]}
is a family of (increasing segments of) sine curves in ∆. It is a
diffused ray family, and we can apply our algorithm. The weight
w(p) for p = (x, y) is not explicitly expressed by using elementary
functions of x and y, and should be computed numerically.
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