
2021年度情報処理学会関西支部　支部大会

C-07

Visualizing Performance of Reinforcement Learning Algorithms

on a Simulator

Menglei Zhang† Yukikazu Nakamoto†

1. Introduction

Reinforcement learnings become to play key roles in em-

bedded systems and auto driving systems are promising ap-

plications. Reinforcement learning have a lot of algorithms

with various properties. We need to have criteria to choose

a reinforcement learning algorithm in a specific application

and consider obtain information on the purpose with visual-

ization of the reinforcement learning algorithm. In this paper,

we have developed visualization of the reinforcement learning

algorithm, deep q-network (DQN), as the first step.

2. Implementation of Reinforcement

Learning

In this paper, We use Pytorch to build a neural network

model with multiple Convolutional layers, and use the OpenAI

Gym environment to train our model, and use the Grad-CAM

method to visualize the features captured by the Convolutional

neural network in the form of heat maps, in a way that is easier

for humans to understand Represents the features captured by

the Convolutional neural network from the environment.

2.1 CarRacing-v0

The CarRacing-v0 environment[2] is a very simple problem

similar to a tracking car, as shown in Fig.1 below. Our goal is

using the reinforcement learning to control the car to run on the

track and speed as fast as possible. This environment gives a

simple continuous control task, which requires us to learn from

the pixels obtained from the bird view, The CarRacing-v0 en-

vironment will return the screenshot of each frame as a state,

the pixel is 96*96, so the state is a 96*96 image. Actions in

the CarRacing-v0 environment include steer, gas, brake. We

can use OpenAI Gym’s Python API to control the movement

of the car. When we train the neural network, we can give the

environment state takes another downsampling to reduce the

dimensionality of the neural network input. The reward given

to the agent by the environment is defined to be divided into

two parts:

(1) One is that as time passes, the price will always be paid,

†University of Hyogo

-0.1/frame, if it is calculated according to 30frams/s, it is

-3/s;

(2) The vehicle track in the CarRacing-v0 environment is di-

vided into many areas of the same width, which are called

tiles. The second part is the passage the reward obtained

by the tiles on the track will be awarded to the agent with

a reward of 1000/N each time a tile passes, where N is the

total number of tiles.

Figure 1 CarRacing-V0 environment

2.2 Deep Q-Learning

Deep Q-Learning is a variant of Q-Learning[1]. For Q-

Learning, many real-world problems cannot be solved because

many real-world problems are continuous, which means that

their states are non-discrete. Q-Learning cannot create an in-

finite Q Table to record all Q values. Therefore, a method

is needed to fit the calculation of the Q value. Because the

characteristic of the neural network is that it can fit any equa-

tion in theory, the neural network can be used to complete this

task well. This is the biggest difference between DQN and Q-

Learning. The interaction process between our model and the

OpenAI Gym environment can be simply illustrated by Fig.2.

2.2.1 Value Function Approximation

DQN is based on Q-Learning, an off-policy algorithm that

learns better strategies by evaluating Q(s,a) and boosting

strategies based on Q. In Q-Learning, a table is used to store

all Q values, but this is hardly feasible in many real-world

Figure 2 The structure of process

problems because there are simply too many states to store

using a table. The feature of DQN is to replace Q(s,a) with a

neural network, and no matter how many states there are, the

final Q value can be output by matrix operation to reduce the

dimensionality. This is Value Function Approximation

2.3 Grad-CAM

Gradient-weighted Class Activation Mapping (Grad-CAM)

is a method of visualizing the abstract features of Cnvolutional

neural networks[2]. CAM is the class activation mapping. It

is a picture of the same size as the original picture. The pixel

value of each position on the picture ranges from 0 to 1, and

is generally represented by a grayscale image from 0 to 255[4].

It can be understood as the contribution distribution to the

prediction output. The higher the score, the higher the re-

sponse of the original picture to the network and the greater

the contribution.Convolutional neural networks are very effec-

tive in many tasks, but compared to traditional machine learn-

ing algorithms, such as decision trees or logistic regression, the

content and rules they learn are difficult to present in a way

that humans understand, so they are used by many people.

Think of it as a ”black box”. Grad-CAM is a algorithm that

can indicate which pixels in the image have a strong influence

on the output of the Convolutional neural network[5]. In other

words, you can know which positions the Convolutional neural

network is sensitive to pixel values.

3. Experiments

(1) We created a DQN model and trained it in the following

hardware environment.

OS Windows10 19043.1110

CPU E5 2670V3

GPU RTX 3060

RAM 64GB

Pytorch LTS 1.8.1

(2) We use Pytorch to build the neural network, Our model

mainly uses 3-layer Convolutional Neural Network,The

CarRacing-v0 environment will return screenshots of each

step, and the neural network will learn the characteristics

of each screenshot to control the movement of the vehicle.

4. Result and Discussion

(1) After training for 800 episodes, it took a total of 67 min-

utes and 32 seconds. As shown in Fig.3, the score of each

game is gradually improving.

Figure 3 Scores per episode

Figure 4 Heat map of the first frame

(2) We randomly selected a screenshot, and used Grad-CAM

to visualize their features.As shown in Fig.4, it can be

seen intuitively from the heat map that the Convolutional

neural network is indeed sensitive to the front end of the

runway and controls the movement of the car by paying

attention to the runway ahead.

5. Concolusion

We evaluated the possibility of Convolutional neural net-

work visualization through Grad-CAM in DQN. In the future,

we will create more complex models and train the models on

more realistic simulators. Grad-CAM can also be used in other

reinforcement learning models with a neural network structure,

and we are verifying this possibility. At the same time, we de-

velop other visualization methods in the reinforcement learning

algorithms except DQN.

References

[1] Sutton, R and Barto, A : REINFORCEMENT LEARN-
ING, An Introduction, 2nd ed., Bradford Books (2018)．

[2] OpenGym : CarRacing-v0, https://gym.openai.com/

envs/CarRacing-v0/, access (2021-7-23)

[3] Selvaraju, R., Das, A.,Vedantam, R., Cogswel, M.,
Parikh, D., and Batra, D. : Grad-CAM: Why did you say
that? Visual Explanations from Deep Networks, Interna-
tional Journal of Computer Vision, vol. 128, pp. 336–359
(2020).

[4] Gildenblat, J. and contributors : Class Activation
Map methods implemented in Pytorch, GtiHub,
https://github.com/jacobgil/pytorch-grad-cam,
access (2021-2023).

[5] Kazuki Nagamine, Satoshi Endo, Koji Yamada, Naruaki
Toma, Yuhei Akamine : Analysis of the Action Value of
Deep Q Network by visualization, FIT2018 : F-042

