
Coupling Measurement in Aspect-Oriented Systems

Jianjun Zhao
Department of Computer Science and Engineering

Fukuoka Institute of Technology
3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

zhao@cs.fit.ac.jp

Abstract

Coupling is an internal software attribute that
can be used to indicate the degree of interdepen-
dence among the components of a software sys-
tem. Coupling is thought to be a desirable goal
in software construction, leading to better val-
ues for external attributes such as maintainabil-
ity, reusability, and reliability. Aspect-oriented
software development (AOSD) is a new technique
to support separation of concerns in software de-
velopment. In aspect-oriented systems, the basic
components are aspects or classes, which consist
of attributes (aspect or class instance variables)
and those modules such as advice, introduction,
pointcuts, and methods. Thus, in aspect-oriented
systems, the coupling is mainly about the degree
of interdependence among aspects and/or classes.
To test this hypothesis, good coupling measures
for aspect-oriented systems are needed. In this
paper, we propose a coupling measure suite for
assessing the coupling in aspect-oriented systems.
To this end, we first identify four types of interac-
tions between aspects and classes, and then based
on these interactions, we define some coupling
measures between aspects and classes.

1 Introduction

Aspect-oriented software development
(AOSD) is a new technique to support sep-
aration of concerns in software development

[2, 8, 10, 11]. The techniques of AOSD make it
possible to modularize crosscutting aspects of a
system. Like objects in object-oriented software
development, aspects in AOSD may arise at
any stage of the software life cycle, including
requirements specification, design, implementa-
tion, etc. Some examples of crosscutting aspects
are exception handling, synchronization, and
resource sharing.

The current research so far in AOSD is focused
on problem analysis, software design, and imple-
mentation techniques. However, efficient evalu-
ations of this new design technique in a rigor-
ous and quantitative fashion is still ignored dur-
ing the current stage of the technical develop-
ment. For example, it has been frequently claimed
that applying an AOSD method will eventually
lead to quality software, but unfortunately, there
is little data to support such claim. Aspect-
oriented software is supposed to be easy to main-
tain, reuse, and evolution, yet few quantitative
studies on maintenance, reuse, and evolution have
been conducted, and measures to quantify the
amount of maintenance, reuse, and evolution in
aspect-oriented software are lacking. In order
to verify claims concerning the maintainability,
reusability, and reliability of software developed
using aspect-oriented techniques, software mea-
surement tools are required.

As with object-oriented systems, we would like
to be able to relate aspect-oriented structural qual-
ity to critical maintainability, reusability, and re-

研究会Temp
社団法人 情報処理学会 研究報告IPSJ SIG Technical Report

研究会Temp
2003－SE－142　　(6)

研究会Temp
2003／5／30

研究会Temp
－39－

liability process attributes. We need appropri-
ate measures of aspect-oriented structure to begin
to relate structure to process. The development
of measures of structure appropriate to aspect-
oriented software has just begun. One example is
the work of Zhao who developed a suite of struc-
ture measures which are specifically designed to
quantify the information flows in aspect-oriented
software [12].

Coupling and cohesion are two structural at-
tributes whose importance is well-recognized in
the software engineering community. In this pa-
per we focus on coupling; cohesion measurement
for aspect-oriented systems has been studied in
[13]. Coupling is an internal software attribute
that can be used to indicate the degree of inter-
dependence among the components of a software
system. It has been recognized that good soft-
ware design should obey the principle of low cou-
pling. A system that has strong coupling may
make it more complex because it is difficult to un-
derstand, change, and correct highly interrelated
components in the system. Coupling is therefore
considered to be a desirable goal in software con-
struction, leading to better values for external at-
tributes such as maintainability, reusability, and
reliability. Recently, many coupling measures and
several guidelines to measure coupling of a sys-
tem have been developed for procedural software
and object-oriented software [5, 7, 4, 3].

An aspect-oriented system may contain many
aspects and classes. These aspects and classes are
not independent; they can interact with each other
in various kinds of ways. Thus, in aspect-oriented
systems, the coupling is mainly about the degree
of interdependence among aspects and/or classes.
To test this hypothesis, good coupling measures
for aspect-oriented systems are needed. More-
over, in order to measure the couping of an aspect-
oriented system, we should consider various types
of interactions between aspects and classes in the
system.

However, although coupling has been widely
studied for procedural and object-oriented soft-

ware [4, 3, 5, 7], it has not been studied for
aspect-oriented software yet. Moreover, existing
approaches to measuring the coupling of proce-
dural and object-oriented software can not be di-
rectly applied to aspect-oriented systems since it
contains new types of interactions that are differ-
ent from those in object-oriented software, new
program representations that are appropriate for
representing the interactions between these new
modules are needed.

In this paper, we propose a coupling measure
suite for assessing the coupling in aspect-oriented
systems. To this end, we first identify four types
of interactions between aspects and classes, and
then based on these interactions, we define some
coupling measures between aspects and classes.

Because aspect-oriented paradigm significantly
different from procedural and object-oriented
paradigms, we really need to develop a notion
of coupling for aspect-oriented systems, which
is an indicator of the degree to which the com-
ponents in the system interact each other. We
hope that by examining the ideas of the coupling
in aspect-oriented systems from several different
viewpoints and through independently developed
measures, we can have a better understanding
of what the coupling is meant in aspect-oriented
systems and the role that coupling plays in the
development of quality aspect-oriented software.
As the first step to study the coupling in aspect-
oriented systems, in this paper we would like to
provide a sound and formal basis for coupling
measurement in aspect-oriented systems before
applying it to real aspect-oriented system design.

The rest of the paper is organized as follows.
Section 2 briefly introduces AspectJ, a general
aspect-oriented programming language based on
Java. Section 3 identifies four types of interac-
tions between aspects and classes in an aspect-
oriented system. Section 4 proposes some cou-
pling measures for aspect-oriented systems. Sec-
tion 5 disscusses some related work, and conclud-
ing remarks are given in Section 6.

研究会Temp
－40－

 ce0 public class Point {
 s1 protected int x, y;
 me2 public Point(int _x, int _y) {
 s3 x = _x;
 s4 y = _y;
 }
 me5 public int getX() {
 s6 return x;
 }
 me7 public int getY() {
 s8 return y;
 }
 me9 public void setX(int _x) {
 s10 x = _x;
 }
me11 public void setY(int _y) {
 s12 y = _y;
 }
me13 public void printPosition() {
 s14 System.out.println("Point at("+x+","+y+")");
 }
me15 public static void main(String[] args) {
 s16 Point p = new Point(1,1);
 s17 p.setX(2);
 s18 p.setY(2);
 }
 }

ase27 aspect PointShadowProtocol {
 s28 private int shadowCount = 0;
 me29 public static int getShadowCount() {
 s30 return PointShadowProtocol.
 aspectOf().shadowCount;
 }
 s31 private Shadow Point.shadow;
 me32 public static void associate(Point p, Shadow s){
 s33 p.shadow = s;
 }
 me34 public static Shadow getShadow(Point p) {
 s35 return p.shadow;
 }

 pe36 pointcut setting(int x, int y, Point p):
 args(x,y) && call(Point.new(int,int));
 pe37 pointcut settingX(Point p):
 target(p) && call(void Point.setX(int));
 pe38 pointcut settingY(Point p):
 target(p) && call(void Point.setY(int));

 ae39 after(int x, int y, Point p) returning :
 setting(x, y, p) {
 s40 Shadow s = new Shadow(x,y);
 s41 associate(p,s);
 s42 shadowCount++;
 }
 ae43 after(Point p): settingX(p) {
 s44 Shadow s = new getShadow(p);
 s45 s.x = p.getX() + Shadow.offset;
 s46 p.printPosition();
 s47 s.printPosition();
 }
 ae48 after(Point p): settingY(p) {
 s49 Shadow s = new getShadow(p);
 s50 s.y = p.getY() + Shadow.offset;
 s51 p.printPosition();
 s52 s.printPosition();
 }
 }

ce19 class Shadow {
 s20 public static final int offset = 10;
 s21 public int x, y;

me22 Shadow(int x, int y) {
 s23 this.x = x;
 s24 this.y = y;
me25 public void printPosition() {
 s26 System.outprintln("Shadow at
 ("+x+","+y+")");
 }
 }

Figure 1: A sample AspectJ program.

2 Aspect-Oriented Programming with As-
pectJ

We present our coupling measures in the con-
text of AspectJ, the most widely used aspect-
oriented programming language [9]. Our basic
techniques, however, deal with the basic concepts
of aspect-oriented programming and therefore ap-
ply to the general class of AOP languages.

AspectJ [9] is a seamless aspect-oriented exten-
sion to Java; AspectJ adds some new concepts and
associated constructs to Java. These concepts and
associated constructs are called join points, point-
cut, advice, introduction, and aspect. We briefly
introduce each of these constructs as follows.

The aspect is the modular unit of crosscutting
implementation in AspectJ. Each aspect encap-
sulates functionality that crosscuts other classes
in a program. Like a class, an aspect can be
instantiated, can contain state and methods, and

also may be specialized with subaspects. An
aspect is combined with the classes it crosscuts
according to specifications given within the as-
pect. Moreover, an aspect can use an introduc-
tion construct to introduce methods, attributes,
and interface implementation declarations into
classes. Introduced members may be made vis-
ible to all classes and aspects (public introduc-
tion) or only within the aspect (private introduc-
tion), allowing one to avoid name conflicts with
pre-existing elements. For example, the aspect
PointShadowProtocol in Figure 1 privately
introduces a field shadow to the class Point at
s31.

A central concept in the composition of an as-
pect with other classes is called a join point. A
join point is a well-defined point in the execu-
tion of a program, such as a call to a method,
an access to an attribute, an object initializa-
tion, an exception handler, etc. Sets of join

研究会Temp
－41－

points may be represented by pointcuts, implying
that such sets may crosscut the system. Point-
cuts can be composed and new pointcut desig-
nators can be defined according to these combi-
nations. AspectJ provides various pointcut des-
ignators that may be combined through logical
operators to build up complete descriptions of
pointcuts of interest. For example, the aspect
PointShadowProtocol in Figure 1 declares
three pointcuts named setting, settingX,
and settingY at p36, p37, and p38.

An aspect can specify advice, which is used
to define code that executes when a pointcut is
reached. Advice is a method-like mechanism
which consists of instructions that execute before,
after, or around a pointcut. around advice exe-
cutes in place of the indicated pointcut, allowing
a method to be replaced. For example, the as-
pect PointShadowProtocol in Figure 1 de-
clares three pieces of after advice at ae39, ae43,
and ae48; each is attached to the corresponding
pointcut setting, settingX, or settingY.

An AspectJ program can be divided into two
parts: base code which includes classes, inter-
faces, and other standard Java constructs and as-
pect code which implements the crosscutting con-
cerns in the program. For example, Figure 1
shows an AspectJ program that associates shadow
points with every Point object. The program
can be divided into the base code containing the
classes Point and Shadow, and the aspect code
which has the aspect PointShadowProtocol
that stores a shadow object in every Point.
Moreover, the AspectJ implementation ensures
that the aspect and base code run together in a
properly coordinated fashion. The key component
is the aspect weaver, when ensures that applica-
ble advice runs at the appropriate join points. For
more information about AspectJ, refer to [1].

To focus on the key ideas of our work, we do
not discuss the coupling between classes in this
paper because they can be measured using exist-
ing techniques [3, 7].
Example. Figure 1 shows an AspectJ program

taken from [1] that associates shadow points
with every Point object. The program con-
tains one aspect PointShadowProtocol
and two classes Point and Shadow. The
aspect has three methods getShadowCount,
associate and getShadow, and three
pieces of advice related to pointcuts setting,
settingX and settingY respectively1. The
aspect also has two attributes shadowCount
and shadow such that shadowCount is an
attribute of the aspect itself and shadow is an
attribute that is privately introduced to class
Point. Through the rest of the paper, We use
this example program to demonstrate our basic
idea of coupling measurement.

In the rest of the paper, we assume that an as-
pect is composed of attributes (aspect instance
variables), and modules2 such as advice, introduc-
tion, pointcuts and methods.

3 Aspect-Class Interactions

In an aspect-oriented system, an aspect can in-
teract with a class in several ways, i.e., by ob-
ject creation, method call, introduction declara-
tion, and join point. These types of interactions
between aspects and classes may affect the cou-
pling between classes and aspects.

��� ������	
����
�� ��������
���

The object-creation interaction is related to the
case that a module � in an aspect � may create
an object of a class � through a declaration or
by using an operator such as new. At this time,
there is an implicit call from � to �’s construc-
tor. An object-creation interaction can be denoted
as O-interaction. For example, statement s40
in Figure 1 represents an object creation of class
Shadow in aspect PointShadowProtocol.

1Unlike a method that has a unique method name, advice in AspectJ
has no name. So for easy expression, we use the name of a pointcut to
stand for the name of advice it associated with.

2For unification, we use the word a “module” to stand for a piece of
advice, a piece of introduction, a pointcut, or a method declared in an
aspect.

研究会Temp
－42－

��� ������	
��� ��������
���

Method-call interactions may occur when an
aspect � may have a call from its module �� to
a method �� in the public interface of class � .
A method-call interaction can be denoted as M-
interaction. For example, statement s45 in Fig-
ure 1 represents a call to method getX() of class
Point in aspect PointShadowProtocol.

��� ���������
�� ��������
���

Introduction interactions may exist when an as-
pect � declares a piece of introduction � that pub-
licly introduces one method (or constructor) into
a class � . If a piece of introduction in � pub-
licly introduces a field fd into a class � , we re-
gard fd as an instance variable of both � and � .
Therefore, fd is accessible to all modules in � and
� . If a piece of introduction in � privately in-
troduces a field fd into a class � , fd is only ac-
cessible to all modules in �. An introduction in-
teraction can be denoted as an I-interaction. For
example, statement s31 in Figure 1 represents
a piece of introduction that privately introduce a
field shadow into class Point; this means only
code defined in PointShadowProtocol can
access shadow.

��� ��
�	��
�� ��������
���

In an aspect-oriented system, an aspect may
be woven into one or more classes at some join
points, declared within pointcuts which are used
in the definition of advice. This leads to that a
piece of advice in an aspect may advise one or
more methods in a class. By carefully examin-
ing the pointcuts and their associated advice, one
can determine those methods that a piece of ad-
vice may advise. This information can be used
to connect the base program (classes) and as-
pects. A join-point interaction can be denoted
as J-interaction. For example, the after advice
declared in aspect PointShadowProtocol
(lines ae43–s47) of Figure 1 may weave into
method setX() of class Point.

4 Coupling Measures Based on Aspect-Class
Interactions

We next present a coupling measure suite for
aspect-oriented systems based on the four types
of interactions between aspects and classes dis-
cussed previously.

��� �	��������
�� �����
����
�� ���	

����

We define this measure related to coupling be-
tween aspects and classes, denoted by OICM as
follows. The OICM for an aspect is a count of the
number of classes to which it is interacted due to
object creations.

��� �	��������
�� �����
����
�� ���	

����

We define this measure related to coupling be-
tween aspects and classes, denoted by MICM as
follows. The MICM for an aspect is a count of the
number of classes to which it is interacted due to
method calls.

��� �	��������
�� �����
����
�� �������

We define this measure related to coupling be-
tween aspects and classes, denoted by IICM as
follows. The IICM for an aspect is a count of the
number of classes to which it is interacted due to
introduction.

��� �	��������
�� �����
����
�� ���	

����

We define this measure related to coupling be-
tween aspects and classes, denoted by JICM as
follows. The JICM for an aspect is a count of the
number of classes to which it is interacted due to
join points.

5 Related work

We discuss some related work in the area of
measurement of aspect-oriented systems. To the
best of our knowledge, our work is the first at-
tempt to study how to assess the coupling between
aspects and classes in aspect-oriented systems.

研究会Temp
－43－

Zhao [12] proposes a metrics suite for aspect-
oriented software, which are specifically designed
to quantify the information flows in an aspect-
oriented program. To this end, He presents a
dependence model for aspect-oriented software
which is composed of several dependence graphs
to explicitly represent dependence relationships
in a module, a class, or the whole program. Based
on the model, Zhao defines various kinds of met-
rics that can be used to measure the complexity of
an aspect-oriented program from various different
viewpoints. However, although Zhao’s approach
can assess the complexity of aspect-oriented soft-
ware from various different viewpoints, it does
not address the issue related to coupling measure-
ment in aspect-oriented software.

6 Concluding Remarks

In this paper, we proposed a coupling measure
suite for assessing the coupling in aspect-oriented
systems. To this end, we first identified four types
of interactions between aspects and aspects, and
then based on these interactions, we defines some
coupling measures between aspects and classes.

The coupling measures proposed in this paper
focused only on the interactions between aspects
and classes, and did not take the interactions be-
tween aspects or classes into account. These is-
sues need also to consider in order to build a
whole coupling measurement suite. Also, in this
paper we did not consider to measure the coupling
due to derived aspects (i.e., aspect inheritance).
In our future work, we will study the influence of
aspect inheritance and other aspect-oriented fea-
tures on coupling, and apply our coupling mea-
sure suite to real aspect-oriented system design.

References

[1] The AspectJ Team. The AspectJ Programming Guide.
2002.

[2] L. Bergmans and M. Aksits. Composing crosscutting
Concerns Using Composition Filters. Communications
of the ACM, Vol.44, No.10, pp.51-57, October 2001.

[3] L.C. Briand, J. Daly and J. Wuest. A Unified Frame-
work for Coupling Measurement in Object-Oriented
Systems. IEEE Transactions on Software Engineering,
Vol.25, No.1, pp.91-121.

[4] L.C. Briand, P. Devanbu, and W. Melo, “An In-
vestigation into Coupling Measures for C++,” Proc.
19th International Conference on Software Engineer-
ing, pp.412-421, May 1997.

[5] S. R. Chidamber and C. F. Kemerer. A Metrics
Suite for Object-Oriented Design. IEEE Transactions
on Software Engineering, pp.476-493, Vol.20, No.6,
1994.

[6] B. Henderson-Sellers. Software Metrics. Prentice Hall,
Hemel Hempstaed, U.K., 1996.

[7] M. Hitz and B. Montazeri. Measuring Coupling and
Cohesion in Object-Oriented Systems. Proceedings of
International Symposium on Applied Corporate Com-
puting, pp.25-27, Monterrey, Mexico, October 1995.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin, “Aspect-Oriented
Programming, “ Proceedings of the 11th European
Conference on Object-Oriented Programming, pp.220-
242, LNCS, Vol.1241, Springer-Verlag, June 1997.

[9] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin, “An Overview of
AspectJ,” proc. 13th European Conference on Object-
Oriented Programming, pp220-242, LNCS, Vol.1241,
Springer-Verlag, June 2000.

[10] K. Lieberher, D. Orleans, and J. Ovlinger, “Aspect-
Oriented Programming with Adaptive Methods,” Com-
munications of the ACM, Vol.44, No.10, pp.39-41, Oc-
tober 2001.

[11] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, “N
Degrees of Separation: Multi-Dimensional Separation
of Concerns,” Proceedings of the International Confer-
ence on Software Engineering, pp.107-119, 1999.

[12] J. Zhao, “Toward A Metrics Suite for Aspect-Oriented
Software,” Technical Report SE-136-5, Information
Processing Society of Japan (IPSJ), March 2002.

[13] J. Zhao and B. Xu, “Cohesion Measurement for
Aspect-Oriented Systems,” March 2003. (submitted
for publication)

研究会Temp
－44－

