
Unit Testing for Aspect-Oriented Programs

Jianjun Zhao
Department of Computer Science and Engineering

Fukuoka Institute of Technology
3-30-1 Wajiro-Higashi, Higashi-ku, Fukuoka 811-0295, Japan

zhao@cs.fit.ac.jp

Abstract

In this paper, we propose a data-flow based unit testing
approach for aspect-oriented programs. Our approach tests
two types of units for an aspect-oriented program, i.e., as-
pects that are modular units of crosscutting implementation
of the program, and those classes whose behavior may be
affected by one or more aspects. For each aspect or class,
our approach performs three levels of testing, i.e., module,
inter-module, and aspect or class testing. For an individ-
ual module such as advice, introduction, and a method, or
a public module along with other modules it calls in an as-
pect or class, we perform module or inter-module testing.
For modules that can be accessed outside the aspect or class
and can be invoked in any order by users of the aspect or
class, we perform aspect or class testing.

1 Introduction

Aspect-oriented software development (AOSD) is a new
technique to support separation of concerns in software de-
velopment [3, 8, 11, 13]. The techniques of AOSD make
it possible to modularize crosscutting aspects of a system.
Like objects in object-oriented software development, as-
pects in AOSD may arise at any stage of the software life
cycle, including requirements specification, design, imple-
mentation, etc. Some examples of crosscutting aspects are
exception handling, synchronization, and resource sharing.

The current research so far in AOSD is focused on prob-
lem analysis, software design, and implementation tech-
niques. Even though the importance of software testing
and verification is known, it has received little attention in
the aspect-oriented paradigm. Although it has been claimed
that applying an AOSD method will eventually lead to qual-
ity software, aspect-orientation does not provide correctness
by itself. An aspect-oriented design can lead to a better sys-
tem architecture and an aspect-oriented programming lan-
guage enforces a disciplined coding style, but they are by
no means shields against programmer’s mistakes or a lack
of understanding of the specification. As a result, software
testing remains an important task even in AOSD.

Aspect-oriented programs differs significantly from pro-
cedural and object-oriented programs in terms of analysis,
design, structure, and development techniques. In aspect-
oriented programs, the basic unit of organization is the as-

pect (or class) construct. An aspect with its encapsulation
of state with associated advice, introduction, and methods
(operations) is a significantly different abstraction in com-
parison to the procedure or class unit within procedural or
object-oriented programs. The inclusion of join points in an
aspect where pieces of code can be advised or introduced
to one or more classes further complicates the static and
dynamic relationships among aspects and classes. These
specific features in aspect-oriented programs require spe-
cial testing support and also provide opportunities for ex-
ploitation by a testing strategy. However, although many
testing approaches have been proposed for procedural and
object-oriented programs, they can not be applied directly
to aspect-oriented programs. Therefore, new testing tech-
niques and tools that are appropriate for testing aspect-
oriented programs are needed.

Unit testing is to test each unit (basic component) of a
program to verify that the detailed design for the unit has
been correctly implemented [19]. Since unit testing is per-
formed after implementing a program’s unit (component), it
is very effective to check various errors in a program’s units
at an earlier stage of its life cycle. There are two types of
unit testing, i.e., specification-based unit testing (black-box
testing), and program-based unit testing (white-box testing).
Specification-based testing focuses on verifying the func-
tions and behaviors of software components according to
an external view. Program-based testing focuses on check-
ing the internal logic structures and behaviors of a software
component. One type of program-based testing is data flow
testing [7, 16] which tests how values which are associ-
ated with variables can affect the execution of the program.
Data-flow testing uses the data flow relations in a program
to guide the selection of tests.

This paper proposes a data-flow based unit testing ap-
proach by combining the unit testing and data-flow testing
techniques to test aspects and classes in an aspect-oriented
program. By supporting data flow testing of aspects or
classes, our approach provides opportunities to find errors
in aspects or classes that may not be covered by using
specification-based testing.

In aspect-oriented programs, the basic testing unit is an
aspect (or class). An aspect (or class) is designed to work
as independently as possible from its environment. This
is a benefit to unit testing, since it allows the programmer
to write a small testing program to exercise the aspect (or
class) along. However, on the other hand, an aspect may

研究会Temp
社団法人 情報処理学会 研究報告IPSJ SIG Technical Report

研究会Temp
2003－SE－142　　(5)

研究会Temp
2003／5／30

研究会Temp
－31－

affect the behavior of one or more classes through advice
and introduction, making the interactions between the as-
pect and affected classes more complex. Therefore, when
performing unit testing on an aspect or class, one should
consider not only the aspect or class being tested but also
those classes whose behavior may be affected by the aspect
being tested and those aspects that may affect the behavior
of the class being tested.

Based on the above consideration, our unit testing ap-
proach tests two types of units in an aspect-oriented pro-
gram, i.e., aspects that are modular units of crosscutting
implementation of the program, and those classes whose
behavior may be affected by one or more aspects. For each
aspect or class, our approach performs three levels of test-
ing, i.e., module, inter-module, and aspect or class testing.
For an individual module such as a piece of advice, a piece
of introduction, or a method, or a public module along with
other modules it calls in an aspect or class, we perform
module or inter-module testing. For modules that can be
accessed outside the aspect or class and can be invoked in
any order by users of the aspect or class, we perform as-
pect or class testing. Our approach can handle unit testing
problems that are unique to aspect-oriented programs. We
use the control-flow graph as a basis for computing def-use
pairs of an aspect or class being tested and use such infor-
mation to perform data-flow testing on the aspect or class.

The rest of the paper is organized as follows. Section
2 briefly introduces the AspectJ and data-flow testing of
object-oriented programs. Section 3 discusses some issues
that arise in testing aspects or classes in aspect-oriented pro-
grams. Section 4 describes a data-flow based approach to
testing of aspects or classes. testing approach. Section 5
discusses related work. Concluding remarks are given in
Section 6.

2 Background

��� �����	

In this paper we use AspectJ [2] as our target language to
show the basic ideas of our unit testing approach for aspect-
oriented programs. We believe that our ideas are indepen-
dent of AspectJ and are generally applicable to the class of
aspect-oriented programming languages.

Aspect-oriented programming (AOP) is a programming
technique for expressing programs involving encapsulated,
crosscutting concerns through composition techniques, and
through reuse of the crosscutting code [2, 13]. AspectJ is a
seamless aspect-oriented extension to Java by adding some
new concepts and associated constructs to Java. These con-
cepts and associated constructs are called join points, point-
cut, advice, introduction, and aspect.

Aspect is modular unit of crosscutting implementation in
AspectJ. Each aspect encapsulates functionality that cross-
cuts other classes in a program. An aspect is defined by as-
pect declaration, which has a similar form of class declara-
tion in Java. Similar to a class, an aspect can be instantiated
and can contain state and methods, and also may be special-
ized in its sub-aspects. An aspect is then combined with the
classes it crosscuts according to specifications given within
the aspect. Moreover, an aspect can introduce methods,
attributes, and interface implementation declarations into

types by using an introduction construct. Introduced mem-
bers may be made visible to all classes and aspects (pub-
lic introduction) or only within the aspect (private introduc-
tion), allowing one to avoid name conflicts with pre-existing
members.

In addition to introductions, the essential mechanism
provided for composing an aspect with other classes is
called a join point. A join point is a well-defined point in the
execution of a program, such as a call to a method, an access
to an attribute, an object initialization, exception handler,
etc. Sets of join points may be represented by pointcuts, im-
plying that such sets may crosscut the system. Pointcuts can
be composed and new pointcut designators can be defined
according to these combinations. AspectJ provides various
pointcut designators that may be combined through logical
operators to build up complete descriptions of pointcuts of
interest. For a complete listing of possible designators one
can refer [2].

An aspect can specify advice that is used to define some
code that is executed when a pointcut is reached. Advice
is a method-like mechanism which consists of instructions
that is executed before, after, or around a pointcut. around
advice executes in place of the indicated pointcut, allowing
a method to be replaced.

Example. Figure 1 shows a sample AsepctJ
program taken from [2] that associates shadow
points with every Point object and contains one
PointShadowProtocol aspect that stores a shadow
object in every Point and two classes Point and
Shadow.

��� ��	� ��� ���	��� �� �����	������	��
��������

Data-flow testing is to test how values which are asso-
ciated with variables can affect the execution of the pro-
gram. Data-flow testing is concerned with the variable oc-
currences within the program. Each variable occurrence is
classified as either a definition occurrence or an use occur-
rence. A definition occurrence of a variable is where a value
of the variable is defined. A use occurrence of a variable is
where the value of the variable is used. Use occurrence can
be further classified as either a computation use or a pred-
icate use. If the value of a variable is used in computing a
value for defining other variables or as an output value in
an output statement, the occurrence of the variable is called
computation use, denoted as c-use. Otherwise, if the value
of a variable is used to decide the result of a predicate state-
ment for selecting execution paths, the occurrence is called
predicate use, denoted as p-use [19].

Data-flow testing has been applied to test classes in
object-oriented programs [7]. In such a testing, three lev-
els of data-flow testing for classes have been proposed, i.e.,
intra-method testing, inter-method testing, and intra-class
testing. Intra-method testing has the same meaning as the
unit testing of a procedure in procedural programs. Inter-
method testing has the same meaning as the integrating test-
ing of procedures in procedural programs. Intra-class test-
ing performs testing on the interactions of public methods
when they are called in random sequences.

In order to perform data-flow testing on classes at three
different levels, one must compute three kinds of def-use

研究会Temp
－32－

 ce0 public class Point {
 s1 protected int x, y;
 me2 public Point(int _x, int _y) {
 s3 x = _x;
 s4 y = _y;
 }
 me5 public int getX() {
 s6 return x;
 }
 me7 public int getY() {
 s8 return y;
 }
 me9 public void setX(int _x) {
 s10 x = _x;
 }
me11 public void setY(int _y) {
 s12 y = _y;
 }
me13 public void printPosition() {
 s14 System.out.println("Point at("+x+","+y+")");
 }
me15 public static void main(String[] args) {
 s16 Point p = new Point(1,1);
 s17 p.setX(2);
 s18 p.setY(2);
 }
 }

ase27 aspect PointShadowProtocol {
 s28 private int shadowCount = 0;
 me29 public static int getShadowCount() {
 s30 return PointShadowProtocol.
 aspectOf().shadowCount;
 }
 s31 private Shadow Point.shadow;
 me32 public static void associate(Point p, Shadow s){
 s33 p.shadow = s;
 }
 me34 public static Shadow getShadow(Point p) {
 s35 return p.shadow;
 }

 pe36 pointcut setting(int x, int y, Point p):
 args(x,y) && call(Point.new(int,int));
 pe37 pointcut settingX(Point p):
 target(p) && call(void Point.setX(int));
 pe38 pointcut settingY(Point p):
 target(p) && call(void Point.setY(int));

 ae39 after(int x, int y, Point p) returning :
 setting(x, y, p) {
 s40 Shadow s = new Shadow(x,y);
 s41 associate(p,s);
 s42 shadowCount++;
 }
 ae43 after(Point p): settingX(p) {
 s44 Shadow s = new getShadow(p);
 s45 s.x = p.getX() + Shadow.offset;
 s46 p.printPosition();
 s47 s.printPosition();
 }
 ae48 after(Point p): settingY(p) {
 s49 Shadow s = new getShadow(p);
 s50 s.y = p.getY() + Shadow.offset;
 s51 p.printPosition();
 s52 s.printPosition();
 }
 }

ce19 class Shadow {
 s20 public static final int offset = 10;
 s21 public int x, y;

me22 Shadow(int x, int y) {
 s23 this.x = x;
 s24 this.y = y;
me25 public void printPosition() {
 s26 System.outprintln("Shadow at
 ("+x+","+y+")");
 }
 }

Figure 1: A sample AspectJ program.

pairs, i.e., intra-method, inter-method, and intra-class def-
use pairs in a class, that correspond to these three levels of
testing. Intra-method def-use pairs have the same mean-
ing as that in procedural programs, that is, a definition of a
variable and a subsequent use are both located in the same
method. Techniques for performing intraprocedural data-
flow analysis can be used for intra-method data-flow analy-
sis of primitive types [14]. Inter-method def-use pairs have
the same meaning as inter-procedural def-use pairs as that
have in procedural programs. Intra-class def-use pairs arise
due to sequences of method invocations that arise if the
class was instantiated. An instantiated class can call meth-
ods in any order. In order to compute intra-class def-use
pairs, three program representations, i.e., a class call graph,
a frame around the class call graph, and a class control-flow
graph are needed. The flame allows users to simulate a ran-
dom calling sequence between methods in a class, and en-
ables techniques for interprocedural def-use analysis to be
applied to detect def-use pairs of primitive types in the class
with different levels of precision due to aliasing effects and
the techniques used for dealing with aliases [7].

3 Unit Testing of Aspect-Oriented Programs

We next present a motivation example to discuss the
issues that arise in testing aspects and classes of aspect-
oriented programs, and discusses several kinds of unit test-
ing problems.

��� ��	� �	��� !"�����

Consider the aspect PointShadowProtocol shown
in Figure 1, that modifies the behavior of class Point.
PointShadowProtocol declares a piece of after-
advice (with the settingX pointcut), or code to be ex-
ecuted before traversing a join point into a method body.
This after-advice is applicable to each join point where a
target object of type Point receives a call to the method
with signature Point.setX(int). The target key-
word is used to give the name to the target object.

In AspectJ this after-advice is applied by the com-
piler without explicit reference to the aspect from the
Point class. So when testing class Point, by defini-
tion, existing unit testing approaches only test the Point
class itself, but does not consider the effect from the
PointShadowProtocol aspect. However, when class
Point and aspect PointShadowProtocol are com-
piled together, then intuitively the behavior of Point’s
setX method may be changed due to the after-advice. As a
result, in order to correctly testing class Point, we should
take into account not only the Point class itself but also
the PointShadowProtocol aspect that may affect the
behavior of Point through the after-advice. On the other
hand, consider that we want to perform testing on aspect
PointShadowProtocol. we should not just test the as-
pect itself, because the after-advice in the aspect just specify
a partial behavior of the methods declared in class Point,
and also because the after-advice is automatically woven
into some methods in the Point class by the compiler,
and therefore no call exists for the after-advice. So when

研究会Temp
－33－

we perform unit testing on PointShadowProtocol,
we must test the PointShadowProtocol together with
those methods in class Point, whose behavior may be af-
fected by the advice from the PointShadowProtocol.
Unfortunately, existing unit testing approaches can handle
neither of these cases.

As a result, it is impractical to test an aspect or class in
isolation in an aspect-oriented program. To correctly test as-
pects and classes, we must (1) test an aspect together with
those methods whose behavior may be affected by the as-
pect’s advice (from the aspect perspective), and (2) test a
class together with those pieces of advice that may affect
its behavior and those pieces of introduction that may intro-
duce some new members to the class (from the class per-
spective). To make this possible, we define some notions
below.

� A clustering aspect, denoted by c-aspect, is an indi-
vidual aspect together with some methods in one or
more classes, such that the methods’ behavior may be
affected by the aspect’s advice.

� A clustering class, denoted by c-class, is an individual
class together with some pieces of advice and intro-
duction in one or more aspects, such that the advice
may affect the behavior of the class’s methods, and the
introductionmay change the type structure of the class.

� A clustering method1, denoted by c-method, is an in-
dividual method together with one or more pieces of
advice that may affect the method’s behavior.

� A normal class, denoted by n-class, is an individual
class whose behavior may never be affected by some
aspect.

� A normal method, denoted by n-method is an individ-
ual method whose behavior will never be affected by
some piece of advice.

In this paper, we focus on testing c-aspect and c-class
units in an aspect-oriented program, and do not consider
n-classes of the program because these n-classes can be
tested using existing class testing techniques [7] for object-
oriented programs.

Example. Consider the program shown in
Figure 1, which is composed of one aspect
PointShadowProtocol and two classes Point
and Shadow. From the above definitions, the c-aspect of
aspect PointShadowProtocol, which is also called
PointShadowProtocol, should contain the aspect
itself as well as methods Point, setX, and setY in class
Point. The c-class of class Point, which is also called
Point, should contain the class itself as well as those
pieces of after-advice associated with pointcuts setting,
settingX, and settingY respectively, because the
behavior of its constructor Point and two methods setX
and setY may be changed by the after-advice declared in

1We treat a constructor in a class as a special case of a method, and
similar to the clustering method, we can define a clustering construc-
tor, denoted by c-constructor, and a normal constructor, denoted by n-
constructor.

PointShadowProtocol. On the other hand, Shadow
is a normal class since no aspect exists that may affect its
behavior. In the rest of the paper, we use the same name
to represent the c-aspect, c-class, or n-class of its original
aspect or class, and also the same name to represent the
c-method or n-method of its original method.

In the rest of the paper, for unification, we use the word
“module” to stand for a c-method, a piece of introduction,
or a n-method declared in an aspect or class.

��� �#��� �� $��	 ���	��� ��� �����	� ���
%������

When performing aspect or class testing on aspect-
oriented programs, we consider three different kinds of unit
testing problems for a c-aspect or a-class, i.e., module, inter-
module, and aspect or class testing. Performing these kinds
of testing on a c-aspect or c-class generally involves a mod-
ule or a group of modules in the aspect or class. In all
cases of the testing, we may need some testing stubs and/or
drivers to perform the testing, and also techniques to inspect
the state of the aspect or class (object) after the module se-
quence invocation. Below, we explain each of these testing
problems with examples.

Module Testing. Module testing is to perform testing on an
individual module in a c-aspect or c-class. For a c-aspect or
c-class, module testing has three possible forms: n-method,
c-method, and introduction testing, and has the same mean-
ing as intra-method testing of object-oriented programs [7],
because n-method, c-method, or introduction can be re-
garded as a method-like module. On the other, module
testing of a c-class has only two forms, i.e, n-method and
c-method testing.

Example. Module testing of c-aspect
PointShadowProtocol includes separately test-
ing of one c-constructor Point and two c-methods
setX and setY, that contains three pieces of
after-advice with the setting, settingX, and
settingY pointcuts respectively, and three n-methods
getShadowCount, getShadow, and associate
in PointShadowProtocol. Module testing of class
Point includes testing of one c-constructor Point
and two c-methods setX and setY, that contains three
pieces of after-advice with the setting, settingX,
and settingY pointcuts respectively, and four n-methods
getX, getY, printPosition, and main (special
method) in the Point class.

Inter-Module Testing. Inter-module testing is to perform
testing on a public module along with some other modules
it calls, directly or indirectly, in a c-aspect or c-class. Inter-
module testing does not consider invocations from other
modules outside the c-aspect or c-class, and aims at test-
ing the internal interactions among modules within the c-
aspect or c-class. For a c-aspect, the interactions among its
modules form the interaction chains which are composed
of some basic interactions between c-method and c-method,
c-method and introduction, c-method and n-method, intro-
duction and introduction, introduction and n-method, and n-
method and n-method. For a c-class, the interactions among
its modules form the interaction chains which are composed
of some basic interactions between c-method and c-method,

研究会Temp
－34－

c-method and n-method, and n-method and n-method.
Example. Consider c-aspect

PointShadowProtocol, we can perform inter-
module testing on the setX c-method (containing the
after-advice with the settingX pointcut) by integrating
the c-method and the getShadow n-method in the
c-aspect, and testing various calls to the c-method within
the aspect. Similarly, we can perform inter-module testing
on the setY c-method (containing the after-advice with
the settingY pointcut) by integrating the c-method and
the getShadow n-method, and testing various calls to the
c-method within the aspect.

Aspect or Class Testing. Aspect or Class testing is to test
the interactions of multiple public modules in a c-aspect or
c-class when they are called in a random sequence from the
outside of the c-aspect or c-class. Unlike inter-module test-
ing that only considers one public module along with other
modules it calls within a c-aspect or c-class, aspect or class
testing considers multiple modules and their interactions in
a c-aspect or c-class, allowing multiple calls to these mod-
ules from the outside of the c-aspect or c-class.

Example. Consider aspect testing on the
PointShadowProtocol c-aspect, we may select
test sequences such as �c-method setX, c-method setY,
n-method associate� and �c-method setX, c-method
setY, n-method getShadow�. For performing class
testing on c-class Point, we may select test sequences
such as � c-method setX, c-method setY, n-method
getX� and � c-method setX, c-method setY, n-method
getY�.

4 Data Flow Testing of Aspects and Classes

In order to perform testing on aspects or classes, we
present data-flow based testing technique to identify mod-
ules of an c-aspect or c-class that should be tested. Our data-
flow testing considers all aspect or class instance variables
and def-use pairs that are closed related to some specific
program points in the c-aspect or c-class. In this section,
we first define three types of def-use pairs and then describe
how to compute these def-use pairs for the c-aspect or c-
class based on a framed control-flow graph.

&�� ����$�� ����� ��� �����	� ��� %������

We identify the module, inter-module, and aspect or
class def-use pairs in a c-aspect or c-class that should be
tested to correspond to the three levels of c-aspect or c-class
testing described in Section 3. In the following we gener-
alize the definitions of three def-use pairs for a class in an
object-oriented program described in [7] to define the three
types of def-use pairs for a c-aspect or c-class in an aspect-
oriented program and describe them with examples.

Module Def-Use Pairs. Informally, module def-use pairs
occur within a single module such as c-method, introduc-
tion, and method of a c-aspect or c-class. Module def-use
pairs can be used to test the def-use interactions within a
single module.

Definition 1 Let � be a c-aspect or c-class, and � be a
module of �. Let � and � be two statements in � such that

� defines a variable, and � uses the variable. If there exists
a program � that calls � such that in � , ��� �� is a def-use
pair exercised during a single invocation of �, then ��� ��
is an module def-use pair.

Example. In c-aspect PointShadowProtocol, c-
method setX, which contains the after-advice with the
settingX pointcut, has method def-use pair (s44, s45)
with respect to variable s, because the definition of s in
statement s44 reaches the use of s in statement s45.

Inter-Module Def-Use Pairs. Informally, inter-module
def-use pairs occur when modules within the calling con-
text of a single public module interact, such that a definition
of a variable in one module reaches across module bound-
aries to a use of the variable in some module called, directly
or indirectly, by the public module in a c-aspect or c-class.
Inter-module def-use pairs can be used to test def-use inter-
actions among a public module and a group of modules it
calls, directly or indirectly, in the c-aspect or c-class.

Definition 2 Let � be a c-aspect or c-class, and �� be a
public module of �. Let ������� 	 	 	 ���� be the set of
modules in � called, directly or indirectly, when �� is in-
voked. Let � and � be two statements in �� and �� respec-
tively, such that � defines a variable, and � uses the vari-
able, and ����� � ���������� 	 	 	 ����. If there exists
a program� that calls�� such that in� , ��� �� is a def-use
pair exercised during a single invocation by � of ��, and
such that either �� �� �� , or �� and �� are separate in-
vocation of the same module, then ��� �� is an inter-module
def-use pair.

Example. In c-aspect PointShadowProtocol, c-
constructor Point, which contains the after-advice with
the setting pointcut, invokes the associate method,
and receives a shadow value back, which it uses to initialize
the object of class Shadow. Def-use pair (s40, s33) is an
inter-module pair (between c-method Point and method
associate), because the definition of s in statement s40
of the Point c-constructor reaches the use of s in state-
ment s33 of the associate method.

Aspect or Class Def-Use Pairs. Informally, aspect or class
def-use pairs occur when sequences of public modules are
invoked in a c-aspect or c-class.

Definition 3 Let � be a c-aspect or c-class, and �� be a
public module of �. Let ������� 	 	 	 ���� be the set of
modules in � called, directly or indirectly, when �� is in-
voked. Let
� be a public module in � (possibly the same
module as ��), and �
��
�� 	 	 	 �
�� be the set of modules
in � called, directly or indirectly, when
� is invoked. Let
� be a statement in �� � ���������� 	 	 	 ���� and � be
a statement in
� � �
��
�� 	 	 	 �
��, such that � defines a
variable, and � uses the variable. If there exists a program
� that calls �� and
� such that in � , ��� �� is a def-use
pair, and such that after � is executed and before � is exe-
cuted, the call to �� terminates, then ��� �� is an aspect or
class def-use pair.

Example. Consider the method sequence
�setX,getX�. setX may set the value of variable

研究会Temp
－35－

x to the value of its formal parameter _x passed from a call
from the main() class, and getX may get the value of
variable x and return it to a call from the after-advice with
the settingX pointcut. The definition of x in statement
s10 of setX and the use of x in statement s6 of getX
form a class def-use pair.
&�� %���'	��� ����$�� ����� ��� �����	�

��� %������
In order to perform data-flow testing on a c-aspect or c-

class, we need to compute all types of def-use pairs for the
c-aspect or c-class, i.e., we need module, inter-module, and
aspect or class def-use pairs for the c-aspect or c-class. In
the following, we first describe how to construct the framed
control-flow graph and then show how to compute the three
types of def-use pairs based on the graph.

Framed Control Flow Graphs for Aspects and Classes.
We use the framed control-flow graph (FCFG) to compute
the def-use pairs of a c-aspect or c-class. The FCFG consists
of a collection of control-flow graphs (CFGs) each presents
a module in a c-aspect or c-class and some additional arcs
used to construct the frame. In an FCFG, there are some
vertices used to represent the frame such as frame entry ver-
tex, frame loop, frame call, frame return, and frame exit.
The frame call vertex is connected to the entry vertex of
each CFG for modules. If there is a call in one module
to call another module in a c-aspect or c-class, we connect
two modules’ CFGs at call sites using call arcs. The FCFG
can simulate a random calling sequence between modules
in a c-aspect or c-class, and therefore support the data-flow
analysis on the c-aspect or c-class. The FCFG can be con-
structed by the following three steps.

First, the call graph of an c-aspect or c-class is con-
structed to represent the call relationships among modules
in the c-aspect or c-class. It is a digraph such that its vertices
represent modules and its arcs represent the calling relations
between modules in the c-aspect or c-class.

Second, a frame to represent a test driver for the c-aspect
or c-class is constructed and enclosed into the call graph of
the c-aspect or c-class to form a partial FCFG. The frame
allows one to simulate a random calling sequence to some
modules in the c-aspect or c-class.

Third, each vertex � of the call graph in the partial FCFG
is replaced with the CFG for �. The CFG for a module
� represents the static control flow relationships that exist
within �. The CFG of � contains a vertex for each state-
ment in � and arcs between vertices that represent flow of
control between statements. There is also a unique vertex
called entry vertex to represent the unique entry to �, and
a unique vertex called exit vertex to represent the exit from
�.

Example. Figure 2 shows the call graphs for c-aspect
PointShadowProtocol and c-class Point. Figure 3
shows the FCFGs of c-aspect PointShadowProtocol
and c-class Point respectively.

Computing Def-Use Paris. Having the FCFG as a rep-
resentation for a c-aspect or c-class of an aspect-oriented
program, we can use existing data-flow analysis algorithms
[6, 14] to compute the module, inter-module, and aspect or
class def-use pairs for each c-aspect or c-class of the pro-
gram based on the FCFG.

For an aspect-oriented program without the possibility of
aliasing 2, we use intraprocedural data flow analysis tech-
niques such as traditional iterative or interval-based data
flow analysis [1, 12] to compute the def-use pairs for a sin-
gle c-method, introduction, or n-method in a c-aspect or c-
class. These techniques operate on the control flow graph
of these modules. In order to compute the inter-module def-
use pairs for a group of interactive modules in a c-aspect or
c-class, and the aspect or class def-use pairs for a c-aspect
or c-aspect, we use interprocedural data flow analysis tech-
niques [7].

When an aspect-oriented program contains aliases, we
borrow the idea from [6] to use the data flow analysis algo-
rithm developed by Pande, Landi, and Ryder [14] to com-
pute the module, inter-module, and aspect or class def-use
pairs for a c-aspect or c-class, based on the FCFG. However,
in order to apply the algorithm to the FCFG, some adjust-
ments on the FCFG should be made. We perform the fol-
lowing data-flow analysis for a c-aspect or c-class �. First,
conditional reaching definitions and conditional alias infor-
mation for� is computed in terms of the FCFG. Second, the
data flow information is propagated through the program us-
ing the FCFG and the propagation rules introduced in [14],
with the following adjustments by handling (1) the frame
call vertex as a call vertex, (2) the frame return vertex as a
return vertex, (3) the frame loop vertex as a statement ver-
tex without definitions or uses, and (4) the frame entry and
exit vertices as program entry and exit vertices. Through
these adjustments and analysis, we can obtain the module,
inter-module, and aspect or class def-use pairs for �.

5 Related Work
We discuss some related work on unit testing of object-

oriented programs which directly or indirectly influence our
work on aspect-oriented programs. We focus on compar-
ing our work with the program-based unit testing of object-
oriented programs. For specification-based class testing,
one can refer to [5, 10, 17].

Harrold and Rothermel [7] propose a method for per-
forming class testing by testing the data-flow interactions
in a class. The detailed for their testing method has been
described in Section 2. Their testing method is a program-
based one that may provide opportunities to detect errors in
classes which may not be uncovered by specification-based
class testing. Buy et al. [4] propose a technique for auto-
matic generation of test cases for class testing. They show
that how the results of data-flow analysis defined by Har-
rold and Rothermel [7] can be used as part of a method
for generating test cases for classes. Their technique is a
combination of data-flow analysis, symbolic execution, and
automatic deduction. Roughly speaking, our unit testing ap-
proach for aspect-oriented programs can be regarded as an
extension of the testing approach proposed by Harrold and
Rothermel [7] to handle the unit testing problems that are
unique to aspect-oriented programs. It is also possible to
further explore the problem of generating test cases for c-
aspect or c-class in aspect-oriented programs based on the
technique proposed by Buy et al. [4].

Parrish et al. [15] propose an approach to apply the

2An alias occurs when two names for the same memory location are
visible at a point in the program [7].

研究会Temp
－36－

me32 ae43

call arc

ae39me34me29 ae48

from the outside of the aspect-cluster: PointShadowProtocol

me2 me9 me11

call arc from the outside of aspect-cluster or class-cluster

ae43
ae39

ae48

aspect module vertex

From the outside of the class-cluster: Point

me5 me9 me11

class module vertex

me2
me7 me13 me15

(a) (b)

Figure 2: The call graphs of c-aspect PointShadowProtocol (a) and c-class Point (b).

conventional flow graph-based testing strategies to object-
oriented class modules. Based on the conventional flow
graph, they present a general class graph to represent
classes. Based on this new graph, many existing flow
graph-based techniques can be applied to classes in both
specification-based testing and program-based unit testing.
They also show their insights on how to define a new set of
test coverage criteria in terms of the class graph. However,
in contrast to the approach proposed by Parrish et al. [15],
that considers the form of data flow information involving
types during testing, we consider the data-flow information
with variables. Moreover, with some extensions of the class
graph, we can use a similar way as Parrish et al. [15] used
to test aspect-oriented programs.

Kim and Wu [9] focus on the issue related to data bind-
ing in class testing. Their class testing has three phases.
First, each method in the class is tested by using existing
functional and structural testing approaches. Second, actual
data bindings are tested with the focus of the data binding
between methods. Finally, the sequences of methods are
tested by using the class graph model proposed by Parrish
et al. [15] as a basis. To do so, they divide the class graph
into a set of sub-graphs in terms of the data members in
the class. Based on these sub-graphs, they use the different
flow-graph test generation methods given in [15] to achieve
various flow graph-based testing criteria. However, as we
pointed out in Section 3, when testing aspects or classes in
aspect-oriented programs, it is impractical to test them in
isolation, and we should consider not only the class being
tested, but also those aspects that may affect the class’s be-
havior.

In summary, although the class testing approaches dis-
cussed above can be used to testing classes from various
different viewpoints, they can not, however, be applied di-
rectly to testing aspects or classes in aspect-oriented pro-
grams due to the problems we pointed out in Section 3. To
the best of our knowledge, our work presented in this paper
is the first time to address the problem of testing aspects and
class of an aspect-oriented program.

6 Concluding Remarks
In this paper, we proposed a data-flow based approach to

testing aspect-oriented programs. Our unit testing approach
tests two types of units for an aspect-oriented program, i.e.,
aspects that are modular units of crosscutting implementa-
tion of the program, and those classes whose behavior may
be affected by one or more aspects. For each aspect or class,
our approach performs three levels of testing, i.e., module,
inter-module, and aspect or class testing. For an individual
module such as a piece of advice, a piece of introduction,
or a method, or a public module along with other mod-
ules it calls in an aspect or class, we perform module or
inter-module testing. For modules that can be accessed out-
side the aspect or class and can be invoked in any order
by users of the aspect or class, we perform aspect or class
testing. While our three-level testing borrowed some ideas
from that of object-oriented programs [7], our approach can
handle testing problems that are unique to aspect-oriented
programs.

Our testing approach proposed in this paper focused only
on the aspects or classes themselves. We can also, however,
apply the data flow testing to the problem of integration test-
ing of aspects and classes. Also, in this paper, we did not
consider how to test extended aspect or class (i.e., aspect or
class inheritance) in an aspect-oriented program. We would
like to study these issues in our future work. We are plan-
ing to develop a unit testing tool [18] based on the technique
proposed in this paper to support data flow testing of aspects
and classes in AspectJ programs.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compiler, Principles,
Techniques, and Tools. Addison-Wesley, Boston, MA, 1986.

[2] The AspectJ Team. The AspectJ Programming Guide. August
2001. http://aspectj.org

[3] L. Bergmans and M. Aksits. Composing crosscutting Con-
cerns Using Composition Filters. Communications of the
ACM, Vol.44, No.10, pp.51-57, October 2001.

研究会Temp
－37－

s45

me32

frame
call

frame related arccontrol-flow arc

ae43

call arc

s33

s44

s46

ae39

s41

me34

s35

me29

s30

s47

s50

ae48

s49

s51

s52

s40

s42

frame
return

frame
exit

frame
loop

frame
entry

me2
me9 me11

class module
vertex

aspect module
vertex

s3

s4

s10
s12

s45

me5

frame
call

ae43

s6

s44

s46

ae39

s41

me7

s8

s47

s50

ae48

s49

s51

s52

s40

s42

frame
return

frame
exit

frame
loop

frame
entry

me2
me9 me11

s3

s4

s10 s12

me13

s14

me15

s16

s17

s18

(a) (b)

Figure 3: The framed control-flow graphs of c-aspect PointShadowProtocol (a) and c-class Point (b).

[4] U. Buy, A. Orso, and M. Pezze. Automatic Testing of Classes.
Proc. the International Symposium on Software Testing and
Analysis, pp.39-48, 2000.

[5] R. Doong and P. Frankl. The ASTOOT Approach to Test-
ing Object-Oriented Programs. ACM Transactions on Soft-
ware Engineering and Methodology, Vol.3, No.2, pp.101-
130, April 1994.

[6] M. J. Harrold and M. L. Soffa. Efficient Computation of In-
terprocedural Definition-Use Chains. ACM Transactions on
Programming Languages and Systems, Vol.16, No.2, pp.175-
204, March 1994.

[7] M. J. Harrold and G. Rothermel. Performing Data Flow Test-
ing on Classes. Proc. ACM SIGSOFT Foundation of Software
Engineering, 1994.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J. M. Loingtier, and J. Irwin. Aspect-Oriented Programming.
proc. 11th European Conference on Object-Oriented Pro-
gramming, pp220-242, LNCS, Vol.1241, Springer-Verlag,
June 1997.

[9] H. Kim and C. Wu. A Class Testing Technique Based on Data
Binding. Proc. 1996 Aisa-Pacific Software Engineering Con-
ference, pp.104-109, 1996.

[10] D. Kung, J. Gao, P. Hsia, and Y. Toyoshima, C. Chen, K.-S.
Kim, and Y.-K. song. Developing an Object-Oriented Soft-
ware Testing and Maintenance Environment. Communica-
tions of ACM, Vo.38, No.10, pp.75-86, October 1995.

[11] K. Lieberher, D. Orleans, and J. Ovlinger. Aspect-Oriented
Programming with Adaptive Methods. Communications of
the ACM, Vol.44, No.10, pp.39-41, October 2001.

[12] S. S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann, 1997.

[13] H. Ossher and P. Tarr. Multi-Dimensional Separation of Con-
cerns and the Hyperspace Approach. Proc. the Symposium
on Software Architectures and Component Technology: The
State of the Art in Software Development, Kluwer, 2001.

[14] H. Pande, W. Landi, and B. G. Ryder. Interprocedural Def-
Use Associations in C Programs. IEEE Transaction on Soft-
ware Engineering, Vol.20, No.5, pp.385-403, May 1994.

[15] A. S. Parrish, R. B. Borie, and D. W. Cordes. Auto-
mated Flow Graph-Based Testing of Object-Oriented Soft-
ware Modules. Journal of Systems and Software, Vol.20,
pp.95-109, 1993.

[16] S. Rapps and E. J. Weyuker. Selecting Software Test Data
Using Data Flow Information. IEEE Transaction on Software
Engineering, Vol.11, No.4, pp.367-375, April 1985.

[17] C. D. Turner and D. J. Robson. The State-Based Testing
of Object-Oriented Programs. Proc. International Conference
on Software Maintenance, pp.302-310, September 1993.

[18] J. Zhao. Tool Support for Unit Testing of Aspect-oriented
Software. OOPSLA’2002 Workshop on Tools for Aspect-
Oriented Software Development, Seattle, USA, November
2002.

[19] H. Zhu, P. A. V. Hall, and J. H. R. May. Software Unit Test
Coverage and Adequacy. ACM Computing Surveys, Vol.29,
No.4, pp.366-427, December 1997.

研究会Temp
－38－

