
Improve Counterfactual Regret Minimization
Agents Training by Setting Limitations of

Numbers of Steps in Games

Cheng Yi1,a) Tomoyuki Kaneko1,b)

Abstract:
Counterfactual Regret Minimization (CFR) has been one of the most famous algorithms to learn decent
strategies of imperfect information games. Because CFR requires traversing the whole or part of game
tree every iteration, it is infeasible to handle games with repetition where the game tree is not finite. In
this paper, we introduce two abstraction techniques, one of which is to make the game tree finite and the
other one is to reduce the size of game trees. Our experiments are conducted in an imperfect information
card game called Cheat and we introduce the notion of “Health Points” a player has in each game to
make the game length finite thus easier to handle. We utilize the information sets abstraction technique
to speedup the training and evaluate how results from smaller games can improve training in larger ones.
We also show Ordered Abstraction can help us increase the learning efficiency of specific agents.

Keywords: Imperfect Information Games, Counterfactual Regret Minimization, Abstraction technique,
Curriculum Learning, Card Game Cheat

1. Introduction
In the Artificial Intelligence research area, we often see

games as our challenging problems and solving them repre-
sents the research benchmarks and breakthroughs. There
are two kinds of games, perfect information games and
imperfect information games. In imperfect information
games, such as bridge, Mahjong and most poker games,
players do not know everything about their opponents.
The hidden information of the play is what makes imper-
fect information games more challenging. One of the most
important concepts in Game Theory is called Nash Equi-
librium. A Nash Equilibrium is a strategy profile where no
player can achieve a better result through converting their
strategy unilaterally. The goal of most of the researches in
this area is to approximate or reach the Nash equilibrium.

Counterfactual Regret Minimization (CFR) has lately
become one of the most famous and widely-used algo-
rithms when dealing with imperfect information games.
The main idea is to converge to a Nash Equilibrium based
on the counterfactual regret calculation of every state on
the game tree for the players. One of the shortages of this
algorithm is that Vanilla CFR requires a traversal of the
whole game tree on each iteration as it becomes infeasible
when we are facing extremely large or infinite games. As
a result, researchers have been looking for a better way

1 Graduate School of Arts and Sciences, the University of Tokyo
a) yi-cheng199@g.ecc.u-tokyo.ac.jp
b) kaneko@acm.org

A part of this work was supported by JSPS KAKENHI
21H03570.

to save computing costs in order to deal with these condi-
tions.

In this paper, we introduce a new approach to create and
adjust the training environment of CFR agents to serve our
purpose. We limit the number of total steps thus the total
length of the game for simplification and aim at using re-
sults from simpler games in the larger games to speed up
the learning and achieve a better result. We also use an-
other abstraction technique to help us save time and space
costs. In the next chapter we will talk about some back-
ground knowledge, then Chapter 3 will cover some of the
related previous works. Chapters 4 and 5 talk about our
proposed methods, details of experiment conduction and
the results. In the last chapter, we summarize the whole
paper and claim our expectation of the future direction of
our research.

2. Background
In this chapter, we will introduce the background knowl-

edge which is important in our study, including the nota-
tion and terminology of extensive-form games and Nash
Equilibrium, the basic rules of the card game Cheat and
the main algorithm of our experiments, Counterfactual Re-
gret Minimization.

2.1 Extensive-form Games
We followed a standard notation in game theory [5]. A

finite extensive game with imperfect information is com-
posed of the following elements:
• A finite-size set of players, P. For player i, −i rep-

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -117-

resents all the players other than i. There is also a
Chance player c, representing the actions that are not
controlled by any player. In this paper, we only focus
on two-player games. Therefore, i is either 1 or 2, and
−1 (−2) is 2 (1).

• A history h ∈ H is a node on the game tree, made
up of all the information at that exact game state. A
terminal history z ∈ Z ⊆ H is where there are no
more available actions and each player will get a pay-
off value for what they have done following the game
tree respectively.

• We use A to denote the action space of the whole game
and A(h) is the set of all the legal actions for players
at the history h. If history h′ is reached after a player
chooses action a ∈ A(h) at history h, we can write
h · a = h′ or h ⊑ h′.

• An information set (infoset) is a set of histories that
for a particular player, they cannot distinguish which
history they are in between one another. Ii represents
the finite set of all the infosets for player i. Inherently,
∀h, h′ ∈ I, A(h) = A(h′) = A(I). Note that any his-
tory h ∈ H must belong to exactly one of the infosets.

• For each player i ∈ P, there is a payoff function
ui : Z → R and especially in two-player zero-sum
games, u1 = −u2.

In a game, a strategy for player i is σi which assigns a
distribution over their action space to each infoset of player
i, particularly, σti(I, a) for player i maps the infoset I and
the action a ∈ A(I) to the probability that player i will
exactly choose action a in the infoset I on iteration t. Σi

denotes the set of all strategies of player i. A strategy pro-
file σ = (σ1, . . . , σn) is a tuple of all the players’ strategies
with one entry for each player where σ−i represents the
strategies in σ except σi. Let πσ(h) denote the reach prob-
ability of reaching the game history h while all the players
follow the strategy profile σ. The contributions of player
i and all the players other than i to this probability are
denoted by πσi (h) and πσ−i(h) respectively.

2.2 Nash Equilibrium
One of the most important concepts in Game Theory is

Nash Equilibrium. A Nash equilibrium (NE) is a strategy
profile where no player can achieve a better result through
converting their strategy unilaterally. It means that when
one is playing following the NE strategy, they can be seen
as “no lose”. If we can find the exact NE of a game, then
we can say the game is strongly solved. Let (Σ, u) be a
game with n players, where Σ = Σ1 × Σ2 × · · · × Σn is
the set of strategy profiles and u(σ) = (u1(σ), . . . , un(σ))

is its payoff function defined over σ ∈ Σ. So Nash equi-
librium can be now expressed as a strategy profile σ∗, in
which every player is playing the best response. Formally,
a strategy profile σ∗ ∈ Σ is a Nash Equilibrium if,

∀i, σi ∈ Σi : ui(σ
∗
i , σ

∗
−i) ≥ ui(σi, σ

∗
−i) (1)

2.3 The Game Cheat
Cheat is a card game of lying and bluffing while also de-

tecting opponents’ deception. This game is often played
among three or more players. At the beginning of the
game, all the cards are well shuffled and dealt to the play-
ers as equally as possible. There are two phases in one
turn of this game, the Discard phase and the Challenge
phase. The first player to discard is chosen randomly and
the “current rank” which all the players share is set to be
Ace.

In the Discard phase, the discard player discards card(s),
puts them facing down on the table and makes a claim, in-
cluding the number of cards they just discarded and the
current rank. Players are supposed to discard cards only of
the current rank but they can lie about their cards - either
bluffing it out when they do not hold any correct cards
or choosing other cards even if they have the correct ones.
Then in the Challenge phase, if any other player thinks the
discard player is lying, they can challenge them by saying
“Cheat!”. When there is a challenge, the last discarded
card(s) will be revealed to all players to see whether they
are consistent with the claim. If the accused player did
lie then they must take all the cards on the table back to
their hands, otherwise, the challenger takes the pile. If no
one challenges, the card(s) remain(s) in the pile.

After the challenge phase, we move to the discard phase
in the next turn. The current rank increases by one (K is
followed by Ace) and the player sitting right to the former
discard player is then supposed to discard card(s). The
one who first discards all the cards from their hand and
survives the last challenge wins the game.

2.4 Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) was first

proposed in 2008 by Zinkevich et al. in the study [6]
where the idea that claims minimizing overall regret can
be used for approximating a Nash equilibrium in exten-
sive games with incomplete information was demonstrated
and proved. The basic steps of one iteration of Vanilla
CFR are the following: first, it keeps a record of the re-
gret values, Rt(I, a), for all actions a ∈ A(I) (all zeros at
the beginning) in each infoset I ∈ Ii where t denotes itera-
tion; second, the values are used to generate strategies, s.t.,
σt+1(I, a) ∝ max(Rt(I, a), 0); third, the regret values are
updated based on the new strategies. After all iterations,
the average strategy σ̄(I, a) =

∑
t π

σt
−iσt(I, a) obtained by

normalizing overall actions belonging to the action space of
this infoset, weighted by counterfactual reach probability,
is proved to converge to the best strategy as time tends to
infinity.

Vanilla CFR requires traversals of the whole game tree in
every iteration. The game length of the original Cheat (one
deck of poker cards played between 2 players) is possibly
infinite and the game still has about 10120 decision points
even we ignore the possibility of repetitions, so travers-
ing the entire game tree even once is impossible and the

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -118-

computation is beyond the calculation power of ordinary
computers. Another variant called Chance-sampled CFR
(CS-CFR) is more common in practice, especially when
dealing with poker or cards games. We see the results
of dealing cards as Chance player’s actions, and on each
iteration, we only sample the action of the Chance player.

3. Related Works
There have been many methods to help us tackle large

games. For example, the Blueprint strategy is introduced
in Libratus [3] and then improved in Pluribus [4]. First, an
abstraction of the whole game is defined and the solution
to this abstraction is called Blueprint strategy. This strat-
egy only has specific details for the early stage of the game
and an approximation for later parts. The approximation
will then be refined at the runtime of the game and after
the agent gets to know more about the opponents’ actions.

Most of the technique helps us save time and space for
the whole game but remains unchanged at the early stage
of the game. In 2015, Brown et al. first propounded an
algorithm called simultaneous abstraction and equilibrium
finding (SAEF) [1] which does not rely on any domain
knowledge but is only applicable in specific conditions.
Then in 2016, a refined version of SAEF called Strategy-
Based Warm Starting was introduced in the study [2]. The
new method expands the power of SAEF and is capable to
skip the early expensive iterations of the game. Although
warm starting and our curriculum learning have some simi-
larities, our method is simpler because both initial strategy
and regret are transferred while warm starting involves a
sophisticated procedure to recover substitute regret from
a given strategy.

4. Proposed Methods
4.1 Limitations on Numbers of Steps in Games

The rule states that cards are discarded and taken back
during the game and it might lead to repetitions of game
states and thus infinite game lengths, which is one of the
difficulties we have to overcome when dealing with this
game. We will now introduce our main contribution of
this paper called Ordered Abstraction.
4.1.1 Ordered Abstraction for training

To handle a subset of infinite games with CFR, we
present Ordered Abstraction. The basic idea is to make
a finite variant of an original game by introducing a con-
dition to terminate the game in a finite number of steps.
Then, we run CFR to obtain a strategy in this finite variant
with the abstraction. We hope that the learned strategy
would also work well in the original game, but it crucially
depends on the design of the abstraction. To remedy such
difficulties, we present an effective heuristic of a curriculum
learning with an abstraction with numbering. We design
our curriculum learning as follows:
(1) design a finite variant, Gn, of a game, associated with

integer n such that
- a variant with a smaller n is easier thus a stronger

restriction (i.e., having a shorter game length and a
smaller subset of infosets), and it asymptotically re-
covers the original game as n→∞.
We assume that for all n < n′, HGn ⊆ HGn′ and
|IGn

i | ≤ |I
Gn′
i | for each player i ∈ P and that any

non-terminal history is also non-terminal in a larger
game, ((HGn \ ZGn) ∩ ZGn′) = ∅. Usually, there
are some histories that are terminal in Gn and non-
terminal in Gn′ to make variant Gn strictly smaller.
We use superscript XGn to denote property X in
variant Gn.

- each infoset for a variant with n + 1 is included in
exactly one infoset with n. Note that the inclusion
is well-defined because an infoset is defined as a set
of histories. That is, for all n > 0, for all I ∈ IGn+1

i

there exists unique I ′ ∈ IGn

i such that I = I ′.
(2) run CFR T iterations in the easiest variant, G1, to ob-

tain a decent strategy profile σ̄t=T,G1(I, ·) and regrets
Rt=T,G1(I, ·) for each infoset I,

(3) run CFR with variant Gn after completing CFR
with variant Gn−1, initializing the strategy as well
as regret for each infoset by using the results ob-
tained for variant Gn−1 to speed up learning, i.e.,
σt=1,Gn(I, a)← σ̄t=T,Gn−1(I ′, a) and Rt=1,Gn(I, a)←
Rt=T,Gn−1(I ′, a) where I = I ′ for I ∈ IGn

i and
I ′ ∈ IGn−1

i .
Because CFR with a sequence of variants, (G1, G2, . . .)

is enhanced by the initialization using the former results
in step 3, we call our method a curriculum learning. A
primary advantage of the ordered approach is in iterative
improvement. Usually, we cannot expect how well a strat-
egy learned for Gi behaves in the original game before any
enhancement. Therefore, it is effective to start the small-
est variant G1, gradually improve the strategy along with
a larger Gn, and stop once a sufficient variant is obtained.
4.1.2 Application to Cheat

We explain an example of our method in the application
to Cheat.

By analyzing the game rule, we can see that in order to
win the game, we want to not only keep as few cards as we
can in our hand, but also win more challenges. In other
words, we want to challenge when we are more confident
and discard cards more cleverly. Based on this thought,
we bring “Health Point” (HP) into this game.

In the original game, there is no restriction on how many
times a player can lose challenges as long as no one dis-
cards all their cards. Now suppose each player has n HP,
which means they only has n chances to lose the chal-
lenge. More specifically, when HP equals 1, it means if
a player loses in the challenge once, the HP becomes 0
thus they loses the entire game (even if their opponent
has not discarded all the cards). We call Cheat with n

HP, Cheat-n. Through this, we introduce a sequence of
smaller variants of Cheat, Cheat-k, where Cheat-1 is the
smallest and Cheat-∞ equals the original Cheat.

By limiting HP, we created a technique of the Ordered

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -119-

Abstraction. We propose to compute a smaller and easier
version of the game, solve this game then map the strate-
gies into a larger game, i.e. sequentially solve Cheat-1,
Cheat-2, …, to get the strategy for the original Cheat,
Cheat-∞.

When evaluating the playing performance of a strategy
trained with Cheat-n in Cheat-n′ where n′ > n, an agent
may face with an unknown situation, i.e., an infoset with
health point n′′ where n′ ≥ n′′ > n. For such cases, we
use the strategy learned in case n′′ = n. In this sense, we
argue that our method is a kind of abstraction.

4.2 Training Agents
We test four variations of our methods in the experi-

ments: (1) General: there is no abstraction in the informa-
tion that this agent can obtain during the game and at the
same time, it is the baseline of all variations; (2) History-
Aware (HA): it is aware of the game history but not the
Health Points; (3) HP-Aware (HPA), which is aware of the
Health Points but not the game history; (4) Memoryless
(M), which does not include either the game history or HP
information in its infosets.

In Section 4.3, we will introduce Infosets Abstraction
and in our experiments, there are more variants when we
combine these four types of agents with different abstrac-
tion methods.

4.3 Infosets Abstraction
To avoid confusion of the word ‘Abstraction’, we will

specify the more widely-known Abstraction method as In-
fosets Abstraction. There are two Infosets Abstractions
we use in our experiment, Card Abstraction and History
Abstraction.
• History Abstraction

This Abstraction only can be applied to agents which
include history information in their infosets, i.e.
History-Aware and General Agent. Due to the prop-
erty of the game, the ranks are played repeatedly, it is
natural to consider the former history from last round
less important than the current round. As a result,
when we apply History Abstraction, if we are playing
with k ranks, we only save the history of the last k

rounds of the game instead of the whole game history
from the beginning.

• Cards Abstraction
We design the Cards Abstraction especially for card
games like Cheat. In every turn, we are more willing
to deal the cards of the current rank so we introduce
the idea of relative position representation which is
based on this rule. Since the shared rank forms a cir-
culation (we begin with rank Ace, rise to rank K then
from Ace again...), at each rank what players really
care about is the relative position of the current rank.
By “relative”, we mean that we do not store the spe-
cific ranks players share or those of the cards, but how
many steps they are away from the current rank.

For example, if we have cards Ace, 2, 4, 5 in our
hands, and the current rank is 4, the game uses 6
ranks in total, the abstracted cards representation will
be [3, 4, 0, 1] ([0, 1, 3, 4] in the memory storage). Simi-
larly, if we have cards 2, 3, 5, 6 and the current rank is
5, the representation of our cards after the Cards Ab-
straction will also be [0, 1, 3, 4]. Although the cards we
are holding are different, they have the “same” power
when facing the conditions we mentioned above re-
spectively.
With the help of this abstraction technique, we can
further combine similar situation during the game
play. Moreover, unlike the History Abstraction, Cards
Abstraction can be applied to all the four agents.

We will compare the effects of these abstractions on the
four agents in the next chapter.

5. Experiments
5.1 Mini-Cheat

The whole experiments were conducted in a simplified
version of Cheat, naming Mini-Cheat. In Mini-Cheat, we
use cards of 3 ranks and 2 cards for each rank, i.e. 6 cards
in total. There are 2 players in the game and we deal 2
cards to each player to eliminate the possibility of perfect
information. Although only a subset of cards is used in
Mini-Cheat, it inherits an important property of infinite
game length with repetition from the original.

In the following paragraph, “Cheat-n” means Mini-
Cheat with n health points for each player, unless stated
otherwise. Moreover, we found that the average number
of challenges in one game without any restriction is about
3.5, so we will start with Cheat-3, a simple but still strate-
gically complex version of the game. Similar to the naming
of game environments, we call Memoryless agents trained
in Cheat-n, Memoryless-n. The same thing works for all
the other agents.

5.2 Testing bots
To evaluate how our agents perform in different environ-

ments under various ways of training, we built two testing
bots: Random bot and Heuristic-perfect bot. The Random
bot chooses all actions randomly with equal probability.
On the other hand, the Heuristic bot was built based on
human knowledge. It memorizes all the cards that were re-
vealed in the game and keeps a record of where they go if
someone takes the pile on the table. As a result, it is quite
strong and more accurate when challenging other players.
As a result it behaves as the perfect player once all the
cards are memorized.

5.3 Results
We compare all the agents in four aspects: the first one

is cost, including time consumption and storage space; the
second one is winning rates against the two testing bots;
the third one is its generalization ability in different game
environments; the fourth is the effect of its results on other

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -120-

agents’ training process. We will include the results of
agents with and without Infoset Abstraction in the first
and second part, then in the rest two parts, we only show
the results of ones with Infoset Abstraction method.
5.3.1 Time and Space Cost

Table 1 and 2 show the cost of four agents without and
with Infoset Abstraction after 100 iterations of training
with Chance-Sampled CFR. We can see that the time costs
of four agents all increase exponentially as the Health Point
increases. Time costs of agents with Infoset Abstraction
are a bit larger than those without abstraction. We believe
this comes from the calculation of Cards Abstractions.

The numbers of infosets of Memoryless agents stay con-
stant. The growth of numbers of infosets of HP-Aware
agent is exponential in powers of 2 while those of History-
Aware and General agents are almost in power of 10. We
also find that although Infoset Abstraction does not save
much time, the numbers of infosets decrease and the more
complex the game, the larger the difference becomes.

Table 1 Time and Space Costs of four agents
without Infoset Abstraction

Agent
Game Environment

Cheat-3 Cheat-4 Cheat-5

Memoryless
Time 60 860 17887

Space 292 292 292

HP-Aware
Time 52 1057 19034

Space 1331 2557 4257

History-Aware
Time 171 5514 18371

Space 10689 113331 1209336

General
Time 224 5054 20315

Space 11433 120512 1523174

Table 2 Time and Space Costs of four agents
with Infoset Abstraction

Agent
Game Environment

Cheat-3 Cheat-4 Cheat-5

Memoryless†
Time 60 1238 20759

Space 100 100 100

HP-Aware†
Time 80 1346 21208

Space 604 1063 1660

History-Aware†
Time 159 4031 14428

Space 3668 46827 528371

General†
Time 187 4231 17891

Space 4220 52723 659312
1,4 To make it distinguishable, we add † to mark the name

of the agents with Infoset Abstraction.
2 Time is in seconds in wallclock time.
3 Space is represented in the number of infosets.

5.3.2 Winning Rates
To evaluate the learning efficiency and performance, we

measure the winning rate of Heuristic bot against Random
bot as our baseline which is approximately 80% (slightly
varies in different game environments). The baseline will

0 20 40 60 80 100
Game Environment

0.5

0.6

0.7

0.8

0.9
Winning rates against Random Bot

Baseline
M3
HPA3
HA3
G3

(a) Agents Without Abstraction v.s. Random

0 20 40 60 80 100
Game Environment

0.2

0.3

0.4

0.5

0.6

0.7

Winning rates against Heuristic Bot

M3
HPA3
HA3
G3

(b) Agents Without Abstraction v.s. Heuristic

0 20 40 60 80 100
Game Environment

0.5

0.6

0.7

0.8

0.9

Winning rates against Random Bot

Baseline
M3
HPA3
HA3
G3

(c) Agents With Abstraction v.s. Random

0 20 40 60 80 100
Game Environment

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Winning rates against Heuristic Bot

M3
HPA3
HA3
G3

(d) Agents With Abstraction v.s. Heuristic

Fig. 1 Winning rates of four variants against two testing bots:
x-axis is the number of training iterations. The red line
represents the baseline.

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -121-

be represented in the red line in the following graphs.
We first test our agents against two testing bots ev-

ery 5 iterations and then compare among different agents.
Fig. 1(a) and 1(b) reveal the trends of winning rates of
four agents in Cheat-3 respectively. The x-axis is the num-
ber of training iterations, while the y-axis is the winning
rate. We notice that after 100 iterations, most agents
become strong enough to exceed the baseline and espe-
cially, Memoryless-3 reaches almost 90%. Meanwhile,
agents even beat Heuristic bot with winning rates over
60% while Memoryless-3 reaches 75%. We also notice that
most agents have a much steeper learning efficiency at the
beginning of the training and is more steady in the later
iterations.

On the other hand Fig. 1(c) and 1(d) show the winning
rates of agents with Infosets Abstraction. We can see three
in four agents have exceeded the baseline against Random
bot. The winning rates of all agents when playing against
Heuristic Bot are about 5-10% higher than those without
Infoset Abstraction. As a result, this abstraction technique
not only helps us save space cost but also improves the per-
formance of four agents. In the following experiments, we
only focus on the agents with Infosets Abstraction.

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-10 C-100
Game Environment

0.5

0.6

0.7

0.8

0.9

W
in

ni
ng

 R
at

e

Winning rates of Agents in different game environments

M3
HPA3
HA3
G3

(a) Against Random Bot

C-1 C-2 C-3 C-4 C-5 C-6 C-7 C-10 C-100
Game Environment

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
in

ni
ng

 R
at

e

Winning rates of Agents in different game environments

M3
HPA3
HA3
G3

(b) Against Heuristic Bot

Fig. 2 Generalization ability of four agents in different variants
of Cheat

5.3.3 Generalization Ability
Fig. 2 demonstrates how agents perform in different

game environments, from Cheat-2 to Cheat-100 (repre-
sented in C-2 to C-100 for abbreviation) of Mini-Cheat.

We can see that the Memoryless and History-Aware agents
can perform better in the games that have larger numbers
of HP while the HP-Aware and General agents only ex-
cel in the game environment that it was trained. This
is because they involve Health Point information in their
infosets while in larger games, they hardly face the state
they used to face during training process. The generaliza-
tion ability of Memoryless player is best of the four while
General player appears much weaker.
5.3.4 Effect on curriculum learning

We then test the effect of agents trained in smaller
games on those trained in larger games. Lighter lines
represent agents trained from nothing while darker lines
represent agents trained in Cheat-n based on the infosets
data from Cheat-(n − 1). For example, the darker blue
line in Fig. 3(a) is the winning rate of Memoryless-4 us-
ing Memoryless-3’s final strategy profile at the beginning
of the training. In other words, instead of starting from
scratch where the initial strategy and regret of each infoset
are zero, we use the data from Memoryless-3’s infosets at
the beginning of Memoryless-4’s training.

From Fig. 3 we can see that, abstractions provided by
Ordered Abstraction training with a smaller game serves
as a good approximation of that with a larger game for
Memoryless, History-Aware and General agents since the
darker lines start at higher winning rates and always higher
than the lighter ones. On the other hand, it is less use-
ful for HP-Aware agents because the trends of lines of the
same type are almost the same.

6. Conclusion
Hereby, we introduce Ordered Abstraction, an abstrac-

tion of limiting game length effectively in imperfect infor-
mation games with a large or possibly infinite game length,
such as Cheat. It generates a variant where the game is
forced to terminate in a finite number of steps and en-
able us to train in a much smaller and simpler version of
the game. Also, by relaxing the condition of forced ter-
mination, we design a curriculum learning with a series
of variants; from the most abstracted variant toward the
original game.

In Cheat, we introduced a new term called “Health
Point” which is used to limit the number of challenges
a player can lose in one game. With help of this method,
we first designed smaller variants of Cheat so that training
of Chance-sampled CFR agents becomes feasible. We also
use Infosets Abstraction to further speed up the learning
and save memory storage. We see four agents perform dif-
ferently when playing against testing bots and in various
game environments. Moreover, we also demonstrated that
we can utilize strategy profiles obtained in smaller games
in the training of larger ones and the experiments show
that there is an increase in the learning efficiency of spe-
cific agents.

For the future, we are also interested in including Monte
Carlo Sampling methods to further improve learning effi-

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -122-

ciency especially training time, to tackle the original Cheat
between two and even more players. Theoretical founda-
tion and the generalizability to other games would also be
an interesting line of further research.

References
[1] Brown, N. and Sandholm, T.: Simultaneous abstraction and

equilibrium finding in games, Twenty-fourth international
joint conference on artificial intelligence (2015).

[2] Brown, N. and Sandholm, T.: Strategy-based warm starting
for regret minimization in games, Thirtieth AAAI Conference
on Artificial Intelligence (2016).

[3] Brown, N. and Sandholm, T.: Superhuman AI for heads-
up no-limit poker: Libratus beats top professionals, Science,
Vol. 359, No. 6374, pp. 418–424 (2018).

[4] Brown, N. and Sandholm, T.: Superhuman AI for multiplayer
poker, Science, Vol. 365, No. 6456, pp. 885–890 (online), DOI:
10.1126/science.aay2400 (2019).

[5] Myerson, R. B.: Game theory: Analysis of Confllict, Harvard
University Press (1997).

[6] Zinkevich, M., Johanson, M., Bowling, M. and Piccione, C.:
Regret minimization in games with incomplete information,
Advances in neural information processing systems, pp. 1729–
1736 (2008).

0 20 40 60 80 100
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Memoryless-4

M4 vs Random
M4 based on M3
M4 vs Heuristic
M4 based on M3

(a) Memoryless-4

0 20 40 60 80 100
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

HP-Aware-4

HPA4 vs Random
HPA4 based on HPA3
HPA4 vs Heuristic
HPA4 based on HPA3

(b) HP-Aware-4

0 20 40 60 80 100
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

History-Aware-4

HA4 vs Random
HA4 based on HA3
HA4 vs Heuristic
HA4 based on HA3

(c) History-Aware-4

0 20 40 60 80 100
Iterations

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
General-4

G4 vs Random
G4 based on G3
G4 vs Heuristic
G4 based on G3

(d) General-4

Fig. 3 Effect on curriculum learning of four agents: Blue lines
represent winning rates against Random bots; Green lines
represent winning rates against Heuristic bots. Lighter
lines show training from scratch while darker lines show
training based on former data.

The 26th Game Programming Workshop 2021

© 2021 Information Processing Society of Japan -123-

