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Abstract: Various types of helmets exist, including industrial protective helmets, motorcycle helmets, sports helmets,
and military/police helmets. By identifying individuals wearing a helmet, their name, affiliation, and qualification can
be presented on a display mounted on the helmet, and sensor data collected through the helmet, such as acceleration,
video, and eye-tracking data, can be labeled with the user’s ID. In this paper, we propose a user identification method
based on head shape using a helmet equipped with 32 pressure sensors. Our method has two functions: user identi-
fication and authentication. User identification is based on the assumption that a single helmet is shared by multiple
individuals. The goal of this method is to identify which of the registered people is the person wearing the helmet.
User authentication determines whether the individual wearing the helmet is the individual with the ID when the ID
is provided to the system. In the evaluation, we obtained sensor values for 2 seconds 20 times from nine subjects as
head shape data. The accuracy was evaluated using 5-fold cross-validation, and we achieved 100% accuracy with five
sensors and 92% with two sensors for user identification and an average equal error rate of 0.076 with 32 sensors for
user authentication.
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1. Introduction

There are various types of helmets, such as industrial protec-
tive helmets, motorcycle and bicycle helmets, sports helmets (for
American football, baseball, ice hockey, etc.), and military/police
helmets. These are all worn to protect the head in the event of an
accident [1]. From a safety point of view, it is important that there
is no gap between the head and the helmet.

Workers in factories and disaster sites must also often wear hel-
mets. Wearing a helmet can allow individuals who do not know
each other to be identified by displaying their names and work
division on their helmets. Helmets can also allow wearers to be
identified from a distance or overhead even if their faces cannot
be clearly seen. Identifying individuals also serves as a deterrent
to trespassers. In addition, displaying qualifications, such as a
hazardous materials engineer’s license and a heavy machinery li-
cense, can help create a safe work environment. In many cases,
this information is written directly on the helmet, or an identifi-
able sticker is attached to the helmet. However, such an analog
system makes it possible for trespassers to easily disguise them-
selves by forging or stealing a sticker. In addition, a worker can
put on another worker’s helmet without being aware of it, and
incorrect information will be displayed. If helmets are shared
among workers, they are not marked with identifiable informa-
tion.
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In this paper, we propose a method that identifies users based
on the shape of their heads by installing pressure sensors inside
a helmet. We implemented a prototype helmet with 32 pres-
sure sensors. Our method calculates the similarity between the
wearer’s data and registered users’ data, and outputs the user with
the most similar data.

The prototype helmet has a display to indicate the user’s name
and credentials based on the identification results; therefore, in-
correct information is not displayed on the helmet if a helmet
belonging to someone else is used. One advantage of this sys-
tem is that identification information is automatically displayed
on a shared helmet, allowing workers to identify each other. An-
other advantage of user identification is data annotation. Data
collected by sensors attached to the helmet or wearer’s body,
such as a camera, eye tracker, and accelerometer, can be auto-
matically annotated with the wearer’s ID. By attaching a Global
Positioning System (GPS) module or an antenna to localize the
user [2], the name and location of a worker can be determined in
real time, allowing the foreperson to have a better understanding
of the overall situation in the field. Furthermore, from the pres-
sure data between the helmet and the head, it is possible to verify
whether the shape of the head matches the helmet, as a zero pres-
sure value signifies that there is a gap between the helmet and
head. Another potential use of the proposed helmet is to serve as
a key to a room whose access is restricted based on one’s position
or qualifications.

The proposed method has two functions: user identification
and authentication. User identification is based on the assump-
tion that a single helmet is shared by multiple individuals. The
pressure sensor data of an individual who may wear a helmet
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are registered in advance, and an individual wearing a helmet
is identified as one of the registered persons. Personal identifi-
cation does not take into account that a non-registered individual
may wear the helmet; if a non-registered individual wears the hel-
met, the identification result will be a registered user who has the
most similar data to the wearer. User authentication determines
whether the individual wearing the helmet is in fact the individual
with the ID when the ID is provided to the system. We assume an
environment in which all individuals have their own helmets (as
in smartphone authentication). In addition, we assume an envi-
ronment in which the user ID is entered when using a shared hel-
met (as in automated teller machine [ATM] authentication). Even
if an intruder wears a helmet and enters a stolen ID, he or she
can be identified as an intruder (authentication denied) because
the head shape differs from that of the individual with the ID.
This helps avoid the risk of motorcycle theft. For example, the
helmet and the motorcycle are paired in advance using RFID [3],
then theft of the motorcycle can be prevented by authenticating
the user when riding.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces related work, Section 3 describes the proposed
method, Section 4 evaluates the proposed method, Section 5 de-
scribes limitations of the proposed method, and Section 6 con-
cludes the paper.

2. Related Work

In this section, we introduce research on user identification and
head state recognition.

2.1 User Authentication Method
There are several methods for identifying individuals: pass-

word, personal identification number (PIN), and stroke pattern;
physical characteristics, such as face, fingerprint, voice print, and
iris; and behavioral characteristics, such as handwriting and gait.
However, passwords, PINs, and stroke patterns that can be freely
set by individuals have a risk of spoofing by shoulder hacking,
brute force attacks, and password duplication.

For physical characteristics, Chen et al. [4] proposed an authen-
tication method using video images of the user’s face and finger-
tips captured from the front and rear cameras of a mobile device.
Siddharth et al. [5] proposed an authentication system based on
the palm print and palm vein. The system uses visible and in-
frared light to acquire images of the palm print and palm vein,
and authentication is performed by verifying the data against reg-
istration data in the database. Sayo et al. [6] proposed an authenti-
cation method based on a camera image that captures the shape of
a user’s lips (physical characteristic) and the movement of the lips
during speech (behavioral characteristic). Another authentication
method involving the mouth proposed by Kim et al. [7] combines
dental images and voice. Bednarik et al. [8] proposed an identi-
fication system that uses eye movements, such as pupil size and
variation, gaze velocity, and the distance of the infrared reflection
of the eye. Barros Barbosa et al. [9] showed that images of the
fingernail plate can be used as a transient biometric with a useful
life-span of less than 6 months. Using a camera-based approach
such as the ones described above, a camera can be mounted on

the outside of the helmet, and individuals can be identified by
facing the camera before putting on the helmet. However, taking
a picture of one’s own face with the camera is complicated. Using
the palm print and palm vein method, users would have to hold
the camera each time before putting on the helmet, which is also
complicated. In addition, this approach is not practical because
helmets are sometimes used in the rain. In the case of authenti-
cation methods that use images from a camera, the accuracy may
be degraded if the camera lens is covered with water droplets or
dust.

Nogueira et al. [10] used convolutional neural networks for fin-
gerprint authentication and achieved high classification accuracy.
However, fingerprint authentication requires the user to touch the
sensor for each authentication. In contrast, our method does
not require any specific behavior. Schneegass et al. [11] pro-
posed a biometric user identification method using the fact that
the way sound is transmitted through the head differs from per-
son to person. They played white noise from a bone conduc-
tion speaker attached to the side of the head, received signals
using a microphone, and identified the subjects based on their
characteristics. As a result, they achieved 97.0% accuracy. Dai
et al. [12] proposed SpeakPrint, a human speech authentication
scheme for smartphones which is resistant to attacks such as
spoofing, based on the user’s mouth movements and the voice
changes. Jian et al. [13] proposed the process of voiceprint recog-
nition with Gaussian mixture model (GMM) which is a kind of
probability and statistics model. Zhang et al. [14] constructed a
voiceprint recognition model using DNN to achieve higher recog-
nition performance. However, the experiment showed that the
DNN-based voiceprint recognition system still had a low accu-
racy rate of rejection of counterfeiters. For this reason, the trust
degree and label distance were introduced, and the two-order
judgment structure based on the DNN-RLIANCE algorithm was
proposed. These are studies on authentication methods that use
sound. The helmet may be used in noisy environments such as
construction sites, so these authentication methods are not suit-
able.

With respect to behavioral characteristics, the authors proposed
a method that authenticates smartphone users using acceleration
sensor data derived from taking a smartphone out of their pock-
ets [15]. Guerra-Casanova et al. [16] proposed a method for au-
thenticating users from the gestures of their hands using a mobile
device with an embedded accelerometer. For motion-based au-
thentication using accelerometers, it is possible to use the accel-
eration characteristics of motions before the helmet is put on for
authentication by mounting an accelerometer on the helmet. We
think that the helmet-wearing motion is not highly reproducible.
As for the motion of taking the smartphone out of the pocket,
the reproducibility is high because the movement is restricted to
some extent. However, the helmet is worn in a different direction,
or hurry up, and there are a variety of actions from picking up
the helmet to putting it on. Therefore, it is not practical to collect
data from all individuals in various situations.

2.2 User Authentication Method with Pressure Sensors
Chen et al. [17], [18] proposed a user authentication method
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based on the driver’s grasping pattern using a pressure sensor
sheet attached to the handlebars of a bicycle. In Ref. [17], the
authentication decision was made using the features of the grasp
data obtained from the pressure sensor sheet. The experimental
results obtained in this study show that the mean acceptance rates
of 78.15% and 78.22% for the trained subjects and the mean re-
jection rates of 93.92% and 90.93% for the un-trained ones are
achieved in two trials, respectively. In Ref. [18], authentication
was performed using a time series data of pressure values. The
experimental results obtained in this study show that mean accep-
tance rates of 85.4% for the trained subjects and mean rejection
rates of 82.65% for the un-trained ones are achieved by the clas-
sifier in the two batches of testing. Iso et al. [19] proposed a user
authentication method by using a pressure sensor array mounted
on the side of a mobile phone to identify the grasping state of
the phone during use. The authors proposed a user authentication
method using pressure sensors mounted on the side and back of a
mobile phone, based on a pre-registered gripping method [20].

These are all researches on authentication methods based on
behavioral characteristics such as grasping using a pressure sen-
sor. On the other hand, we use a pressure sensor to obtain physical
characteristics for user authentication.

3. Proposed Method

In this section, we present the details of the proposed method.

3.1 Overview
The proposed method assumes that a user wears a helmet

equipped with pressure sensors. It then acquires the shape of the
wearer’s head and determines whether the wearer is a registered
user. The proposed method has two functions: user identification
and authentication.
• User identification assumes that a single helmet is shared

by multiple people and that no other information, such as
the ID, is provided to the system; the user simply puts on
the helmet. Users’ pressure sensor data are registered in ad-
vance, and a user who puts on a helmet is identified as one
of the registered users. User identification does not consider
that a non-registered person may put on the helmet. If a non-
registered person puts on the device, the identification result
will be an individual with the closest data among the regis-
tered users.

• User authentication determines whether the individual
wearing the helmet is the correct individual when his/her ID
or username is provided. We assume two cases in which
authentication is used: (i) each individual has his/her own
helmet and only the individual’s pressure sensor data have
been registered (single user; username is preset on device, as
in smartphone authentication); and (ii) a helmet is shared
among multiple users, and a username is entered when
putting on the helmet (multiple users; usernames are input
manually, as in ATM authentication). The pressure sensor
data are registered in advance, and a user who puts on the
helmet is accepted or rejected by calculating the similarity
between the input data and the data corresponding to the ID.
Even if the ID is leaked, an intruder can be rejected if his/her

Fig. 1 Process of user identification and authentication.

Fig. 2 Structure of device.

Fig. 3 Appearance of the prototype device.

head shape differs from the data corresponding to the ID.
The flow of our system is illustrated in Fig. 1. A total of 32

pressure sensors are attached to the inner side of the helmet to ac-
quire data, producing one-dimensional 32-channel pressure data.
Pressure data of individuals who are expected to wear helmets are
registered in the system in advance and are called training data in
this paper. In user identification, the proposed system uses a sup-
port vector machine (SVM) to build a recognition model from
the feature values extracted from the training data and outputs the
identification results from the features of the input data of an un-
known registrant. In user authentication, the system calculates the
Mahalanobis distance between the training and input data of the
user, including non-registrants, and authenticates the user if the
distance is less than the threshold; otherwise, the user is rejected.

3.2 Hardware
We developed a helmet equipped with 32 pressure sensors.

Figure 2 presents the configuration of the device, and Fig. 3 pro-
vides an image of the device. The head of the user must be
in close contact with the sensors to obtain the correct pressure
values; therefore, we used a commercially available free size
(57∼60 cm) full-face helmet (BB100 manufactured by B&B ≈
4,000 JPY). The pressure sensors were FSR402 (≈ 500 JPY) and
FSR402 Short Tail (≈ 550 JPY) manufactured by Interlink Elec-
tronics, Inc. The Arduino MEGA2560 R3 (≈ 6,000 JPY) was
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Fig. 4 Interior of the prototype device.

Fig. 5 Pressure sensor mounted in the helmet using urethane sponge.

Fig. 6 Position of pressure sensors.

used as a microcomputer. This is equipped with the 10-bit ADC,
and the value of the pressure sensor is acquired in the range of
0–5 V. Because it was difficult to attach and remove the interior
of the helmets, we removed the interior of the top of the helmet
and installed a thick urethane sponge, as illustrated in Fig. 4. The
urethane sponge was cut and a pressure sensor was inserted into
the cut line, as illustrated in Fig. 5.

Four pressure sensors were placed at the top of the head, 16
sensors were placed around the top of the head, six sensors were
placed at the back of the head, and six sensors were placed at the
cheek pads on both sides. A total of 32 sensors were installed at
the points, as displayed in Fig. 6. The wiring for the pressure sen-
sors passed through a hole drilled at the top of the helmet and was
then connected to a 5 V power supply port, GND, and analog in-
put port, which was on the Arduino MEGA2560 R3 via a printed
circuit board (PCB) with a 10 KΩ resistor that was mounted out-
side the helmet. The PCB and a display to show ID attached
to the exterior of the helmet are illustrated in Fig. 7 and Fig. 8.
They were bolted to both of the cheek areas using a threaded hole
drilled to secure the helmet shield, and were fixed and removable.

The size of the helmet is shown in Fig. 9. The height, width,
and depth of the helmet are 260 mm, 213 mm, and 282 mm, re-
spectively, and the weight including a PCB and a LCD display is

Fig. 7 Printed circuit board connected to 32 pressure sensors.

Fig. 8 LCD display to show name.

Fig. 9 Size of the prototype device.

1,456 g.
The straps should be tightened until it is snug, so that no more

than one or two fingers fit under the strap [21]. However, it is not
necessary to tighten the straps so tightly that the neck becomes
tight. We did not use the straps in the prototype device because
we thought the effect of the straps tightening on the sensor value
would be small.

3.3 User Identification Method
3.3.1 Preprocessing

Data acquisition begins when a user puts on the helmet. Data
from 32 pressure sensors p(t) = [p1(t), · · · , p32(t)] are acquired
at time t. The voltage values of all pressure sensors are almost
5 V when the helmet is not worn, then the sum of the data shows∑32

i=1 pi(t) ≈ 160[V]. When the helmet is put on, pi(t) decreases,
and if

∑32
i=1 pi(t) < Vwakeup[V], the system enters the detection

state. The user decides in advance the pressure Vwakeup[V] to wake
up the system. The system segments the data over a 2-second
window starting from t = Ts after the values are stabilized. Time
t = Ts is the time at which the change of the sum of 32 dimensions
per sample is less than Vstart[V] for Nstart consecutive samples
(≈ Nstart/30 second as the sampling rate is approximately 30 Hz),
i.e.,
∑32

i=1 |pi(t)− pi(t − 1)| < Vstart[V] (i = Ts, · · · ,Ts − Nstart − 1).
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The user decides in advance the sample number Nstart and the
pressure Vstart[V]. When Nstart is small or Vstart[V] is large,
the authentication process starts quickly, but it may be more
prone to false recognition. The average value over the window
xi(t) = 1

N

∑TS+N−1
t=TS

pi(t) for sensor channel i (i = 1, · · · , 32) is cal-
culated, where N is the number of samples in the window. We
then obtain a 32-dimensional vector x(t) = [x1(t), . . . , x32(t)] as
a feature. Once the data is segmented, the preprocessing is sus-
pended until

∑32
i=1 pi(t) > 159[V] is met.

3.3.2 Identification
Given training data [xm, ym] (m = 1, . . . ,M) from users who

are expected to use the helmet by wearing the helmet a total of
M times in advance, the SVM is trained with the training data,
where ym is the registrant label, such as the registrant’s name and
number. The input data xtest collected by the user to be identified
are fed into the SVM and the classification result ŷtest is obtained.

3.4 User Authentication Method
3.4.1 Preprocessing

In user authentication, data from 32 pressure sensor data p(t) =
[p1(t), · · · , p32(t)] and the average x(t) = [x1(t), . . . , p32(t)] are
obtained as a feature in the same manner as for user identifica-
tion.
3.4.2 Similarity calculation

In user authentication, there are two cases for using training
data: data of a single user are used and data of multiple users
are used. For single-user data, data of only a single user (e.g.,
owner of the helmet) are registered or data of multiple users are
registered; however, the data of only one of the users whose ID
is provided are used. For multiple-user data, data of multiple
users who are expected to use the helmet are used. With training
data [xm, ym] (m = 1, . . . ,M) obtained from user(s) wearing the
helmet M times in advance, the proposed method calculates the
Mahalanobis distance, where ym is the registrant label, such as
the registrant’s name and number.

The Mahalanobis distance is a method for calculating the dis-
tance between multiple variables, and can be normalized consid-
ering the distribution of the data. The mean vector µ and the
variance-covariance matrix Σ of the training data are calculated
by Eqs. (1) and (2).

µ =
1
M

M∑

m=1

xm (1)

Σi, j =
1
M

M∑

m=1

(xi − µ)(x j − µ)T (2)

The Mahalanobis distance between the training data xm (m =
1, . . . ,M) and input data xtest can be calculated by Eq. (3).

d(x,xm) =
√

(x − xm)TΣ−1(x − xm) (3)

If the input data are collected from a pre-registered user, the in-
put data xinput follow the probability distribution of the variance-
covariance matrix Σ.
3.4.3 Authentication decision

Letting θ be the threshold value, a user is authenticated if
Eq. (4) is satisfied and is rejected if Eq. (4) is not satisfied.

θ ≥ min
m

(d(xinput,xm)) (m = 1, · · · ,M) (4)

3.5 Software
The Arduino MEGA program was implemented by Arduino

IDE, and a computer program that received data from Arduino
MEGA and saved it in comma-separated values format was im-
plemented in Python. A computer program to analyze the data
was also implemented in Python.

In user identification, for the SVM, sklearn.svm.SVC
of the scikit-learn *1 library, which is an implementation
of the standard soft margin SVM, was used. We also
used sklearn.model selection.cross val score for cross-
validation and sklearn.model selection.GridSearchCV for
grid search and evaluation.

In user authentication, the system computed the variance-
covariance matrix using sklearn.covariance.MinCovDet.
For calculation of the Mahalanobis distance, scipy.spatial.
distance was used. The minimum covariance determi-
nant (MCD) is an algorithm that is robust to outlier val-
ues for estimating a variance-covariance matrix. sklearn.

covariance.MinCovDet is a scikit-learn library that implement
Fast-MCD [22], a faster version of MCD. scipy.spatial.
distance is a SciPy *2 library that implements functions for cal-
culating various distances.

4. Evaluation

This section describes the experiments conducted to evaluate
the effectiveness of the proposed method.

4.1 Data Collection
We instructed nine subjects (A∼I, all male, mean age 23 years

old) to wear the helmet implemented in Section 3 and collected
sensor data. Head photographs of the nine subjects are shown in
Fig. 10. The sampling rate was approximately 30 Hz. The sub-
jects put the helmet on for 2 seconds to collect data, then took
it off and put it on again for 2 seconds to collect data, through
which a set of two samples was obtained. By collecting data of
10 sets (20 samples) from each subject, a total of 180 samples
(2 seconds, 20 samples × 9 subjects) were collected. Up to four
sets of data were collected per person per day. To collect data for
various positions of the sensors and head, a rest period of at least
30 minutes was provided between sets.

Fig. 10 Head photographs of the nine subjects.

*1 https://scikit-learn.org
*2 https://scipy.org
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Table 1 Identification accuracy with a full-face helmet, where the number
of sensors was reduced from 32 to 1.

Sensors used Accuracy
32 sensors 1.000
31 sensors 1.000
.
.
.

.

.

.
5 sensors 1.000
#0, #3, #5, #16 0.994
#3, #11, #24 0.972
#3, #25 0.922
#10 0.617

Table 2 Identification accuracy with a half helmet, where the number of
sensors was reduced from 20 to 1.

Sensors used Accuracy
20 sensors 1.000
19 sensors 1.000
.
.
.

.

.

.
5 sensors 1.000
#0, #3, #5, #16 0.994
#0, #3, #13 0.983
#3, #16 0.928
#10 0.617

4.2 User Identification Method
4.2.1 Evaluation Environment

We evaluated the proposed method using 5-fold cross-
validation in which 80% of the data (16 samples) collected from
each subject were trained and 20% (four samples) were tested. To
investigate the effect of the number of sensors used, the identifica-
tion accuracy for all combinations of sensors from 1–32 sensors
was measured.

To simulate a half helmet, which is commonly used at con-
struction sites, the identification accuracy for all combinations of
sensors from 1 to 20 sensors limited in the top half out of 32
sensors were measured. These 20 sensors are sensors #0–#19 in
Fig. 6. In this evaluation, two types of sensor configurations were
tested: a full-face helmet with 32 sensors and a half helmet with
20 sensors.
4.2.2 Results and Discussion

The accuracy of user identification with a full-face helmet and
half helmet is presented in Table 1 and Table 2. The numbers
listed in the “Sensors used” column are the number of sensors in
Fig. 6. For a full-face helmet, when the number of sensors was 32,
the number of sensor combinations was 1 (32C32 = 1), and when
the number of sensors was 31, the highest accuracy of 32C31 = 32
combinations is presented in the table. For a half helmet, when
the number of sensors was 20, the number of sensor combina-
tions was 1, and when the number of sensors was 19, the highest
accuracy of 20 combination is presented in the table. For one to
four sensors, the regularization parameter of the SVM was set to
C = 1.0, and the sensor combination with the highest accuracy
was recorded. Then, the best C was determined by grid search
for the sensor combination, and the highest accuracy is presented
in the tables.

We determined that the accuracy was 1.000 when 32 and 31
sensors were used for the full-face helmet and 20 and 19 sen-
sors were used for the half helmet. Therefore, we measured the
accuracy from one sensor until the accuracy reached 1.000 and
skipped the measurement of the accuracy for additional sensors.

For the full-face helmet, nine subjects were identified with
100% accuracy when five sensors were used. The accuracy was
99.4% using four sensors, 97.2% using three sensors, and 92.2%
using two sensors. However, the accuracy significantly decreased
to 61.7% using one sensor.

For the half helmet, nine subjects were identified with 100%
accuracy when five sensors were used. The accuracy was 99.4%
using four sensors, 98.3% using three sensors, and 92.8% using
two sensors. However, the accuracy decreased significantly to
61.7% when only one sensor was used.

Both the full-face helmet and half helmet achieved 100% ac-
curacy with at least five sensors for the dataset used in this exper-
iment. However, the number of sensors required to achieve high
accuracy may increase as the number of registrants increases. The
half-helmet model showing slightly higher accuracies in some
cases in Table 1 and Table 2, but this is probably due to the ran-
dom division of the cross validation set, which resulted in slight
differences in accuracy between the full-face and half-helmet
models.

For the sensors used for the full-face helmet, most were num-
bered under #20, indicating that sensors in the top half were sig-
nificant. For #20 and above, #24 and #25 are shown as effec-
tive sensors in Table 1. In fact, no difference in performance ex-
ists between #20–#25, but they may have been selected because
they were particularly close to the subject’s head. #26–#31 were
placed around the cheeks, so the face and the sensor were in con-
tact but not in strong contact for some people. Figure 11 shows
the 2-second time series values obtained from the 32 sensors of
subjects A and B wearing the helmet. The horizontal axis is time,
and the vertical axis is the sensor value. The sensor value is a
voltage value in the range of 0–5 V. The more the head is pressed
against the sensor, the closer the value is to 0 V. On the other
hand, when the head is not touching the sensor, the value is al-
most 5 V. From Fig. 11, we can see that the sensor values of
#26–#31 of subject B hardly changed. The values of #26–#31 did
not differ greatly from one wearer to another, and the effect was
small.

4.3 User Authentication Method
4.3.1 Evaluation Environment

One subject was considered the individual to be authenticated
(i.e., owner) while the remaining eight subjects were considered
strangers. The authentication accuracy of the owner was mea-
sured using 5-fold cross-validation, where 80% of the owner’s
data (16 samples) were registered as training data and the re-
maining 20% of the data (four samples) were used as test data.
In addition, the authentication accuracy for strangers was mea-
sured using data from all eight strangers (160 samples). All 160
samples were tested in each fold of the cross-validation, and all
nine subjects were evaluated on a rotation basis.

In user authentication, the false rejection rate (FRR), false ac-
ceptance rate (FAR), and equal error rate (EER) were used as in-
dicators of authentication accuracy. The FRR is the rate at which
a registered user is mistakenly considered a stranger and rejected,
whereas the FAR is the rate at which a stranger is mistakenly
considered a registered user and authenticated. The smaller the
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Fig. 11 The 2-second time series values obtained from the 32 sensors for
subjects A and B wearing the helmet.

threshold value θ in Eq. (4) in Section 3.4.3 is set, the stricter the
authentication decision becomes, resulting in an increased FRR.
In contrast, the larger the threshold value θ is set, the looser the
authentication decision becomes, resulting in an increased FAR.
There is thus a trade-off between the FRR and FAR, and the value
at which the FRR and FAR are equal is called the EER. The
EER value is commonly used as an indicator to evaluate the per-
formance of authentication methods, and a small EER indicates
better performance.
4.3.2 Results and Discussion

The EER of each subject is presented in Table 3. In this ta-
ble, “Average” represents the average EER of all subjects. The
FRR and FAR values for each subject by varying the thresholds
from 0 to 60 by 1 are presented in Fig. 12. In this figure, “Av-
erage” represents the average FRR and FAR of all subjects. The
EER of subjects A, E, G, and I was approximately 0.01 or lower,
which signifies that the owner failed authentication less than once
in 100 times and that strangers broke the authentication less than
once in 100 times. An EER of 0.0097 for user authentication us-
ing ear acoustics was reported in Ref. [23]; therefore, our method
achieved a comparable performance for four of nine subjects.

The next most accurate subjects were C, D, and H, with an

Table 3 Equal error rate (EER) for subjects in user authentication.

Subject EER
A 0.002
B 0.095
C 0.050
D 0.055
E 0.006
F 0.094
G 0.012
H 0.050
I 0.000

Average 0.076

Fig. 12 False rejection rate (FRR) and false acceptance rate (FAR) for sub-
jects in user authentication.

EER of approximately 0.05. To determine the cause of the de-
cline in accuracy compared with subjects A, E, G, I, all collected
data were compressed to the first principal component and sec-
ond principal component by principal component analysis (PCA).
The results of the data plotted on a two-dimensional plane are pre-
sented in Fig. 13. The plots for subject C indicate that one sample
of the data of subject C was close to the data of subject I and the
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Fig. 13 Principal component distribution of 32-dimensional features com-
pressed into two dimensions by principal component analysis.

variance in the first principal component was large, which would
reduce the accuracy. Furthermore, the data for subjects D and H
significantly overlapped with each other, which affected the accu-
racy of both subjects.

The least accurate subjects were B and F, with an EER of ap-
proximately 0.095. Data for subject B was some overlap with the
data of subject I. However, the EER of subject I was 0, which
indicates perfect authentication. Therefore, the overlap of these
data groups was likely due to the loss of data when they were
compressed into two dimensions by PCA. On the other hand,
subject F’s data did not exhibit any overlap with other subjects’
data; however, there was a large variance in both directions for the
first and second principal components. Considering the effect of
data compression by PCA, duplication with other subjects’ data
groups can be inferred in the 32-dimensional data. The accuracy
for subjects B and C, who had data groups located close to subject
F’s data groups, may have been affected by the scattered data of
subject F. In particular, the accuracy of subject B was likely to be
lower than that of subject C because the two samples of subject B
were located in close proximity to subject F’s data group.

The data of subject E were located at the rightmost points. In
addition, the variance was small, and the data were thus consid-
ered distinct. For subject E in Fig. 12, the FRR and FAR crossed
at a threshold of approximately 60, which was greater than for
the other subjects. This is because the data were quite different
from the others, and the FAR did not increase by increasing the
threshold.

In summary, the mean EER of all subjects in user authentica-
tion was approximately 0.076. An authentication method with
grip gestures using pressure sensors [20] reported the average
EER of 0.02. Our method is not as accurate as this method.

5. Limitations

From the results in Section 4, it can be seen that we were able
to identify the subjects with high accuracy in the experimental en-
vironment. This section discusses the limitations of the proposed
method.

5.1 Restrictions on Subjects and Helmets
In this method, the strength of the contact between the head

and the helmet is obtained as the feature values using a pressure
sensor. Therefore, if there is no change in the shape of the head,
it can always be identified correctly regardless of age, gender, or
body size. On the other hand, if the hairstyle changes, the strength
of the contact between the head and the helmet will change, and
the system will not be able to correctly identify the user. If the
sensor mounting position is moved, the accuracy may decrease
because the feature values changes. For the same reason, it is not
possible to use the same registration data for different helmets,
because the feature values are affected by the size and weight of
the helmet. User registration phase is required for each helmet. In
the future, it is necessary to consider a calibration method based
on helmet size and weight data.

5.2 Helmet Size Adjustment
In this experiment, the helmet size was not adjusted for each

subject, and all subjects used the same helmet to collect data. We
think that when helmets are shared, the size is not adjusted for
each user. On the other hand, if multiple sizes of helmets are
given, such as S/M/L, the data with the helmet to be used must be
registered. In the case of a personal helmet, the evaluation should
be done by preparing a helmet that fits each wearer individually.
However, only one type of helmet was used in this experiment. If
the best helmet is used for each subject, the system will be able to
obtain accurate data on the head shape of the registrant, and the
system will not be able to obtain accurate data on the head shape
of the non-registrant (e.g. thief) whose helmet size does not fit.
Therefore, we think that the performance of the proposed method
will be improved. In the future, we will evaluate the proposed
method in these environments.

5.3 Identifiable Scale
In a large construction site, approximately 1,000 workers may

work together. Zhuang et al. [24] reported that they could classify
1,169 people with 90% accuracy using 50 data points obtained
from 3D head data. Therefore, if we use a large number of pres-
sure sensors, we may be able to classify nearly 1,000 people. The
number of sensors can be increased because there is enough space
between the pressure sensors in the prototype device. To find ef-
fective sensor positions, it is necessary to increase and verify the
data.

5.4 Comparison with Common Authentication Methods
An authentication method based on individual differences in

the head [11] reported an EER of 6.9%. The average EER of
our method was 0.076 (7.6%), which is roughly equivalent to the
accuracy of the previous method. In the previous method, they
played white noise from a bone conduction speaker attached to
the side of the head, received signals using a microphone, and
identified the subjects based on their characteristics. However,
the helmet may be used in noisy environments such as construc-
tion sites, so this authentication method may be affected by noise.
On the other hand, since our method is based on the shape of
the head, it is not susceptible to noise from sound. A fingerprint
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authentication method using geometric features [25] reported an
EER of 0.8%. It can be seen that our method is inferior to fin-
gerprint authentication in terms of accuracy and robustness. An
authentication method based on the features of three-dimensional
shapes is difficult to break through by replication, but the repro-
ducibility of the data is low.

5.5 Determination of the Threshold
In an actual environment, the data of multiple users should be

obtained in advance at the development stage. Then, the thresh-
old value at which the EER is obtained can be calculated when
the user’s data is registered multiple times. However, the thresh-
old value in a real environment should be determined based on the
purpose of its use, just like any other biometric authentication. In
the “User authenticate when riding motorcycle” example, vehicle
theft needs to be firmly prevented. In this case, the FAR needs to
be reduced, so the threshold should be determined to be small.

6. Conclusion

In this study, we proposed a method to identify individuals
based on differences in head shape, which was measured by wear-
ing a helmet with pressure sensors. We implemented the pro-
totype device and evaluated our proposed method. The proto-
type device was a commercially available full-face helmet, and
we attached 32 pressure sensors inside the helmet. In the evalua-
tion, we obtained sensor values for 2 seconds 20 times from nine
subjects as head shape data. Using the acquired data, we evalu-
ated the user identification accuracy to determine which user was
wearing the helmet among the registrants. In addition, we eval-
uated the user authentication accuracy to determine whether the
helmet wearer was the registrant.

As the accuracy was 100% with 32 sensors in user identifica-
tion, we tested how the accuracy changed by decreasing the num-
ber of sensors. The results indicated that the smallest number of
sensors producing 100% accuracy was five. The EER of four out
of nine subjects was less than 0.012, and the average EER in au-
thentication was 0.076. These results suggest that our method is
effective as a user identification method. In the future, we will
collect additional data and evaluate the proposed method in a real
environment.
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