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コヒーレントノイズ下の表面符号における
フォールトトレラント量子誤り訂正の

サンプリングに基づいたシミュレーション

八角 繁男1,a) 御手洗 光祐1,3,2,b) 藤井 啓祐1,3,4,c)

概要：本研究では、コヒーレントノイズ下でのフォールトトレラント量子誤り訂正のサンプリングに基づ
いたシミュレーション方法を提案する。このシミュレーションでは、過回転に起因するコヒーレントノイ
ズとインコヒーレントノイズの混合ノイズを擬確率分布により Clifford チャンネルに分解する。そして、
適切な後処理を施し Clifford チャンネルをサンプルすることで、論理エラー率の不偏推定量を構成する。
また、チャンネルロバストネスによりサンプリングコストを評価することを通じて、フルベクトルシミュ
レーションでは困難な比較的大きな符号距離を持つ平面表面符号ですら、提案したサンプリングベースの
手法が実行可能であることを示した。デモンストレーションとして、符号距離が 5で 81量子ビットから
なる平面表面符号のノイズのある反復的なシンドローム測定をシミュレーションした。その結果、コヒー
レントエラーにより論理エラーが増加することを示した。これは、擬確率分布シミュレーションを意味の
ある課題に実用化したものであり、近未来の量子デバイス上で実験的に量子誤り訂正を研究する上で有用
である。

Sampling-based quasi-probability simulation
for fault-tolerant quantum error correction
on the surface codes under coherent noise

Hakkaku Shigeo1,a) Mitarai Kosuke1,3,2,b) Fujii Keisuke1,3,4,c)

Abstract: We propose a sampling-based simulation for fault-tolerant quantum error correction under co-
herent noise. A mixture of incoherent and coherent noise, possibly due to over-rotation, is decomposed
into Clifford channels with a quasiprobability distribution. Then an unbiased estimator of the logical error
probability is constructed by sampling Clifford channels with appropriate post-processing. We characterize
the sampling cost via the channel robustness and find that the proposed method is feasible even for planar
surface codes with relatively large code distances intractable for full state-vector simulations. We simulate
repetitive faulty syndrome measurements on the planar surface code of distance 5 with 81 qubits as a demon-
stration. We find that the coherent error increases the logical error rate. This is a practical application of
the quasiprobability simulation for a meaningful task and would be useful to explore experimental quantum
error correction on the near-term quantum devices.
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1. Introduction

Quantum error correction (QEC) is an essential ingre-

dient for developing scalable fault-tolerant quantum com-

puters because quantum information is vulnerable to en-

vironmental noise [1], [2]. QEC counteracts noise by en-

coding quantum information into a subspace of multiple

qubits, which assures computation with arbitrary preci-

sion in quantum computers. Massive experimental efforts

have been devoted to demonstrating small-scale QEC cir-

cuits as testbeds toward large-scale QEC circuits in the

future as well as numerical simulations [3], [4], [5]. It is

thus important to investigate performances of QEC codes

theoretically to establish a plausible goal for experiments.

Most numerical studies for QEC have been conducted

by assuming stochastic Pauli noise to exploit the effi-

cient simulatability of stabilizer states [6], [7]. Specifically,

Ref. [8] numerically calculated the threshold error rate of

the rotated surface code under single- and two-qubit de-

polarizing channels with circuit-level noise and observed

a threshold error rate of 0.57%. This result suggests that

the surface code can cope with the error rate that current

state-of-the-art quantum computers are reaching [5], [9].

While the computational overhead increases when com-

pared to the Pauli noise, we can also efficiently simulate

the Clifford noise such as stochastic Clifford gates and

Pauli projections.

In practice, however, quantum devices often suffer from

noise that cannot be described by Clifford operations. A

major type of such noise is coherent unitary noise which

is caused by the miscalibration of quantum gates which

leads to over- or under-rotations. Ref. [10] has developed

a method to detect over-rotation errors using randomized

benchmarking and detected π/128 over- or under-rotation

errors in their superconducting qubit. While the error has

been calibrated subsequently in Ref. [10], one can expect

that a small amount of such errors beyond the experimen-

tal sensitivity are still present.

Analysis of the performance of QEC in such realistic

situations still remains a challenge. QEC circuits un-

der non-Clifford noise have been investigated either by

brute-force simulations [11], [12] or by exploiting exact

solvability of free fermion dynamics [13], [14]. However,

full state-vector simulations require exponential computa-

tional resource with respect to the code distance and are

currently limited to distance-3 surface code which uses 25

qubits [11]. While the use of approximate simulation us-

ing tensor network [12] has pushed the limit to 153 qubits

with perfect syndrome measurements, it is still difficult to

scale up the simulation. On the other hand, free fermion

simulations can handle coherent errors in a scalable man-

ner. However, their usage is limited to certain cases: one-

dimensional repetition codes with faulty syndrome mea-

surements [13] which can only correct X errors and surface

codes with perfect syndrome measurements [14].

In this work, we propose a sampling-based simulation

method widely applicable for fault-tolerant QEC circuits

under a mixture of coherent and incoherent noise with

multiple rounds of faulty syndrome measurements. The

central idea is to decompose (possibly non-Clifford) noise

channels into the sum of completely stabilizer preserving

(CSP) channels [15]. We simulate the circuits by sam-

pling CSP channels according to quasi-probability dis-

tributions, which is obtained from the decompositions

[15], [16]. Each realization is efficiently simulable since the

simulation of CSP channels involves only stabilizer states.

Note that Bennink et al. have conducted similar simula-

tions for small systems such as Steane’s 7-qubit code [16].

We significantly improve the computational cost required

for the simulation by providing more efficient decomposi-

tion of noise channels than Ref. [16]. This reveals that we

can perform an efficient simulation in the presence of co-

herent errors without any additional overhead for a wide

range of practically interesting parameter region. Fur-

thermore, even outside this region, the proposed quasi-

probability method enables us to simulate a surface code

of distance 5 with 81 qubits on a single workstation within

a reasonable computational time.

As demonstrations, we simulate the planar surface code

under the code capacity coherent noise with distance up

to d = 7 and under the phenomenological coherent noise

with distance up to d = 5. The result shows that such

non-Clifford noise deteriorates the logical error rate as ex-

pected. We also evaluated how many samples are required

to simulate the logical error rate reliably as a function of

the noise parameters and the code distance. This reveals

that the proposed method allows us to simulate the planar

surface code with relatively large code distances, which are

intractable for full state-vector simulations, with a reason-

able computational overhead. The proposed method pro-

vides a benchmark for building small-scale fault-tolerant

quantum computers in the NISQ era.

2. Simulation of QEC circuits under co-

herent noise

In this section, we discuss how to calculate a logical er-
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ror rate of a QEC code by simulating quantum circuits

with a quasi-probability sampling of CSP channels. QEC

requires two types of qubits: data qubits, which consti-

tute logical qubits, and measurement qubits, which are

used for detecting errors on data qubits. The measure-

ments extract eigenvalues of code stabilizers by measur-

ing the latter, and these eigenvalues are called error syn-

dromes. For a distance d code, we repeat such measure-

ments for d rounds. We use a (noisy) Clifford circuit Esynd
for the repetitive syndrome measurements. The measure-

ment qubits of different rounds are to be treated as dif-

ferent qubits to simplify the notation. Let b be the error

syndrome in space and time. When data qubits are initial-

ized to |0L⟩, the probability of obtaining a specific error

syndrome b is given by

p(b) =
〈
b
∣∣Trdata [Esynd(|0L⟩⟨0L| ⊗ |0|b|⟩⟨0|b||

)]∣∣b〉 (1)

where |b⟩ and |0|b|⟩ are final and initial states of the mea-

surement qubits. After the extraction of error syndrome,

we feed b to decoding algorithms such as a minimum-

weight perfect-matching algorithm to find a possible re-

covery operation Rb which corrects errors on data qubits.

To express the logical error probability pL in a closed

form, we define the following infidelity function:

F (ρ) := 1− ⟨0L|Trmeas[ρ]|0L⟩. (2)

Using Eqs. (1) and (2), pL can be written as,

pL =
∑
b

F
(
Rb ◦ Pb ◦ Esynd

(
|0L⟩⟨0L| ⊗ |0|b|⟩⟨0|b||

))
,

(3)

where Pb is the projection onto |b⟩⟨b|. If the noise intro-

duced in Esynd is a stochastic Pauli or Clifford error, one

can simulate Esynd efficiently and can estimate the logical

error rate pL. However, efficient simulatability vanishes if

noise involves non-Clifford channels.

We now describe an idea to deal with more general noise

by a quasi-probability method [15], [16], [17], [18], [19],

[20], [21], [22]. Esynd can be decomposed into (noisy) el-

ementary operations as Esynd = E(L) ◦ · · · ◦ E(1). Here

L is the total number of quantum operations in Esynd.
E(i) can be decomposed over CSP and completely pos-

tive trace-preserving (CPTP) channels S(i)
k in terms of a

quasi-probability distribution c
(i)
k as,

E(i) =
∑
k

c
(i)
k S(i)

k .

This decomposition can alternatively be written as,

E(i) =
∑
k

p
(i)
k R∗

(
E(i)

)
sign

(
c
(i)
k

)
S(i)
k ,

where

R∗(E) := min
{ck}

{∑
k

|ck|; E =
∑
k

ckSk

}
,

p
(i)
k :=

∣∣∣c(i)k

∣∣∣
R∗

(
E(i)

) .
R∗(E) is called channel robustness [15], the square of

which characterizes the sampling cost, as will be seen

later. Using this decomposition for each E(i), Esynd be-

comes,

Esynd =
∑
k⃗

pk⃗R∗totλk⃗Sk⃗, (4)

where the summation is taken over all possible k⃗ =(
k(1), k(2), . . . , k(L)

)
, and

|0⟩⟨0| := |0L⟩⟨0L| ⊗ |0|b|⟩⟨0|b|| ,

pk⃗ :=

L∏
i=1

p
(i)

k(i) ,

λk⃗
:=

L∏
i=1

sign
(
c
(i)

k(i)

)
,

Sk⃗
:= S(L)

k(L) ◦ · · · ◦ S
(1)

k(1) ,

R∗tot :=

L∏
i=1

R∗
(
E(i)

)
.

Finally, combining Eqs. (3) and (4) we conclude,

pL =
∑
b

∑
k⃗

pk⃗R∗totλk⃗F
(
Rb ◦ Pb ◦ Sk⃗(|0⟩⟨0|)

)
.

This implies that, when k⃗ is sampled from pk⃗,

R∗totλk⃗F
(
Rb ◦ Pb ◦ Sk⃗(|0⟩⟨0|)

)
is an unbiased estimator

for pL. Since it is bounded in a range [−R∗tot, R∗tot],

from Hoeffding inequality [23], the number of samples

M needed to estimate pL within additive error ϵ with

probability at least 1− δ is given by

M =
2

ϵ2
R2

∗tot ln

(
2

δ

)
. (5)

Note that, when we only consider Clifford noise, 2
ϵ2 ln

(
2
δ

)
samples suffice to achieve the same accuracy. Therefore,

R2
∗tot quantifies the additional overhead required for in-

cluding the effect of non-Clifford channels.

3. Planar surface codes under coherent

noise

To demonstrate the feasibility of the proposed method,
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図 1 Layout of d = 3 planar surface code. The white and black

circles represent data and measurement qubits, respec-

tively. The light blue square and triangular patches show

X stabilizers. The red square and triangular patches show

Z stabilizers.

we consider the planar surface code introduced in Ref. [24],

which is thought to be one of the most promising can-

didates for an experimental realization of QEC, as they

require only single- and nearest-neighbor two-qubit gates

on two-dimensional arrays of qubits [8], [25]. The planar

surface code with code distance d has a (2d−1)× (2d−1)

square grid of qubits of which d2 + (d − 1)2 data qubits

are used to encode the logical qubit and 2d(d − 1) mea-

surement qubits are used to extract the syndromes. In

Fig. 1, we show the layout of d = 3 planar surface code as

an example.

In numerical simulations, the ideal logical state |0⟩L fol-

lowed by single-qubit noise is prepared as the initial state.

We assume two types of noise model: code-capacity noise

model, where the noise occurs in all data qubits with

perfect syndrome measurements, and phenomenological

noise model, where the noise occurs in all data qubits and

measurement qubits just before the syndrome measure-

ments. The number of rounds of the syndrome measure-

ment in the latter case is d. We also assume that the syn-

drome measurements are performed perfectly at the final

cycle. In both cases, Z-type and X-type errors are un-

correlated, and hence only X-type errors and syndrome

measurements are simulated for simplicity. The specific

noise channel Ncoh simulated in this work is a mixture

of coherent and incoherent noise which is modeled by the

over-rotation noise followed by the bit-flip X error as,

Ncoh := Nbit-flip ◦ Nover-rot,

Nover-rot :=
[
eirθX

]
,

Nbit-flip := (1− p)[I] + p[X],

where [A] is a superoperator defined as [A]ρ := AρA†, and

θ is chosen such that p = sin2 θ. We vary the parameters

(r, p) and evaluate the performance of the code by using

the method described in Sec. 2.

We first examine the sampling cost of our simula-
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図 2 Channel robustness of the coherent noise R*coh(r, p). The

horizontal and vertical axis display the noise coherence r

and physical error rate p, respectively. Numbers in each

cell shows the value of R*coh(r, p).

tion which is characterized by the channel robustness

R*coh(r, p) of Ncoh [15], [19], [20]. The CSP channels em-

ployed to decompose Ncoh are [I], [X],
[
e−i(π/4)X

]
, and[

Xe−i(π/4)X
]
. Figure 2 shows the values of R*coh(r, p).

From Fig. 2, we confirm that the channel robustness in-

creases as the noise coherence becomes larger as expected.

Importantly, for a small r with a sufficiently large p, the

channel robustness decreases and hits 1.0, where an effi-

cient simulation of coherent errors can be performed. This

is because rθ is small in this region, resulting in the low

channel robustness of Nover-rot. Thus, the bit-flip noise

with large p can easily make the channel robustness 1.0.

On the other hand, at p = 0, the channel robustness of

Nover-rot is unity even if r > 0 since we set p = sin2 θ.

Therefore certain mixture of incoherent and coherent er-

rors, for example, with p = 1% (0.1%) and r = 0.10

(r = 0.46), can be efficiently simulated without any addi-

tional overhead, which is in an experimentally important

parameter region. This greatly improves the simulation

cost over Ref. [16] which is a result of decomposing Ncoh

as a whole rather than decomposing Nover-rot and Nbit-flip

individually.

The number of samples needed for accurate results is

determined by R2
∗tot via Eq. (5). In the case of the code

capacity noise, Ncoh is applied for d2 + (d − 1)2 times,

which corresponds to the number of data qubits. There-

fore, R2
∗tot = (R*coh(r, p))

2(d2+(d−1)2). In the case of

the phenomenological noise, Ncoh is applied to each of

d2 + (d − 1)2 data qubits for d times and d(d− 1)
2
mea-

surement qubits for X-type errors for d−1 times since we

assume perfect measurement in the final round. Overall,

Ncoh is applied for d
(
3d2 − 4d+ 2

)
times, which means

R2
∗tot = (R*coh(r, p))

2d(3d2−4d+2) in this case. These for-
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図 3 Logical X error rate of the planar surface code under the

coherent noise as a function of the physical error rate p

and noise coherence r in the case of code capacity (a) and

phenomenological (b) noise. The horizontal axis shows

the physical error rate p, and the vertical axis shows the

logical X error rate pL. The triangles, crosses, and cir-

cles stand for d = 3, 5, 7 respectively. The color shows the

noise coherence.

mulae for R2
∗tot provides us estimates of simulation cost

for a given (p, r, d), based on which we choose the param-

eter range investigated below.

Figure 3 shows the logical error rate pL as a function

of physical error rate p and noise coherence r, where the

parameters are chosen such that our workstation with In-

tel Xeon CPU v4 CPU (E5-2687W), 24 cores, 3.00GHz,

can calculate each point within a few days at most. We

confirmed that the standard error of each data point is

below 10−3. From Fig. 3, the logical error rate increases

as the noise coherence grows, which implies that the im-

pact of the coherent noise on the logical error probability

is not negligible even for a relatively large code distance.

Note that the d = 5 code, which requires 81 qubits, is

well beyond the reach of naive full state-vector simula-

tion. Furthermore, it is the first analysis of this region
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R
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図 4 Scaling of the overhead caused by the quasi-probability

sampling, R2
*tot, as a function of the code distance d.

with faulty syndrome measurements to the best of our

knowledge.

Finally, let us discuss with which parameters and code

distance the proposed method works. Figure 4 shows the

dependence of R2
*tot with respect to d for the phenomeno-

logical noise model. Note that for the parameters where

R*coh(r, p) = 1 in Fig. 2, we can simulate without any

additional overhead as mentioned before. We will be able

to simulate large code distances in that region. Outside

of that, we expect regions with R*tot < 103 are within

reach if a high-performance parallel computer of 106 CPU

cores is available. For example, realistic parameters such

as (p, r, d) = (1.5%, 0.15%, 7) and = (0.2%, 0.05, 13) re-

sult in R*tot < 103. Full state-vector simulation would

not work for these numbers of qubits; we need 169 qubits

for d = 7 and 625 qubits for d = 13.

4. Conclusion

We have proposed the sampling-based method to esti-

mate the logical error rate of QEC codes under coherent

noise such as an over-rotation error. The simulation pro-

tocol is based on the quasi-probability decomposition of

noise channels into Clifford operations. It is interesting to

note that the QEC process is simulated as usual for sam-

pled CSP channels, and hence the probability distribution

for the syndrome measurements is far different from the

true one p(b). However, if we sample whether the decoding

successes or fails with the quasi-probability method we can

estimate the logical error rate. By calculating the channel

robustness for the mixture of coherent and incoherent er-

rors, we reduce the simulation costs substantially, which

allows us to simulate a practically important parameter
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region with a relatively large code distance without any

additional overhead or with a reasonable additional over-

head. While we have only considered the phenomenologi-

cal noise model, it is straightforward to extend our method

to the circuit-level noise model, where each elementary

gate is followed by noise. We leave these problems for fu-

ture works. We believe that this work helps to analyze the

performance of the near-term small-scale QEC in realistic

situations.
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