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Abstract: Randomized benchmarking (RB) is a widely used method for estimating the average fidelity of
gates implemented on a quantum computing device. The stochastic error of the average gate fidelity estimated
by RB depends on the sampling strategy (i.e., how to sample sequences to be run in the protocol). The
sampling strategy is determined by a set of configurable parameters (an RB configuration) that includes
Clifford lengths (a list of the number of independent Clifford gates in a sequence) and the number of sequences
for each Clifford length. The RB configuration is often chosen heuristically and there has been little research
on its best configuration. Therefore, we propose a method for fully optimizing an RB configuration so that
the confidence interval of the estimated fidelity is minimized while not increasing the total execution time of
sequences. By experiments on real devices, we demonstrate the efficacy of the optimization method against
heuristic selection in reducing the variance of the estimated fidelity.
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1. Introduction

As more and larger quantum computers without fault toler-

ance are physically implemented, there is a growing need for

methods to benchmark their performance. Straightforward

tomography-based methods require measurements that scale

exponentially with the number of qubits [1] and thus are not

scalable. Utilizing advanced techniques, such as, compressed

sensing [2] and samplings [3,4], the scaling bottleneck can be

avoided to obtain the average gate fidelity but such methods

are not robust against state preparation and measurement

(SPAM) errors. Randomized benchmarking (RB) [5, 6] is an

efficient and robust method and widely used in practice for

estimating the average fidelity of a gate set implemented on a

quantum computing device [7–12]. For example, IBM Quan-

tum systems [13] report their 1-qubit and 2-qubit gate error

rates calculated from the estimated average gate fidelity via

RB. Hence it is important to minimize the stochastic error

in the estimated fidelity by RB so that we can sufficiently

track the drift in the gate fidelity over time, which reflects

imperfection of controlling physical devices.

The standard RB is a protocol composed of three steps.

First, it generates sets of sequences with random Clifford

gates such that all sequences in each set have the same Clif-

ford length (the number of independent Clifford gates in a

sequence) but the length varies from set to set. Then, it

executes the sequences to measure the survival rate (i.e., prob-

ability of observing the initial state) for each Clifford length.
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Finally, it estimates the exponential decay rate, which can

be linearly transformed to the average gate fidelity, from

the survival rate data. The protocol has a three-fold sam-

pling structure: sampling Clifford lengths at the estimation

(fitting) step, sampling random sequences at the sequences

generation step, and sampling bit strings at the sequences

execution step. Therefore, the estimated decay rate (or

equivalently, the average gate fidelity) is intrinsically subject

to stochastic errors that depend on the sampling strategy.

The sampling strategy is determined by a set of configurable

parameters that defines how to sample sequences to be run

(we call it an RB configuration), e.g., Clifford lengths and

the number of sequences for each Clifford length.

There are several studies that partially address the prob-

lem of finding an optimal RB configuration. The number

of sequences at each Clifford length that achieves a desired

confidence level was loosely estimated by using Hoeffding

bound [14]. A tighter estimation comparable to the number

used in practice was provided, assuming to use the ordinary

least squares estimator in the fitting step [15]. It was sug-

gested that varying the number of sequences depending on

Clifford length may improve the reliability of estimated decay

rate [16]. Finding the best maximum Clifford length was

also discussed in [17]. However, none of them addressed the

problem of both optimizing Clifford lengths and the number

of sequences at the same time.

In this paper, we provide a method for finding an optimal

sampling strategy (RB configuration) that includes both Clif-

ford lengths and the number of sequences for each Clifford

length. The optimal strategy yields a minimal confidence

interval of the estimated average gate fidelity within a given
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Fig. 1: The standard RB (randomized benchmarking) protocol

time budget for running the sequences (Section 3). To make

it possible, we customize techniques for analyzing statistical

errors of estimated values in RB. First, we construct a simple

model for the variance of average survival rate (Section 3.2)

in order to explain the variance data sampled from real de-

vices, which may vary depending on Clifford length. Based

on the variance model, we derive an explicit expression that

approximates the confidence interval of the estimated decay

rate as a function of the RB configuration (Section 3.3). The

derivation enables us to formulate the optimization of the

RB configuration as a mathematical optimization problem

(Section 3.5). We also experiment on real devices to show

that our method can find a better configuration that achieves

smaller variance in the resulting estimated decay rate than

typical heuristic configurations in practice (Section 4).

2. Preliminaries

We first set some notation and briefly review the standard

RB protocol. We suppose to benchmark a d-qubit quantum

system, which can be represented by the D = 2d dimen-

sional Hilbert space. We assume the initial state is always

set to |0d〉 and the measurement is a projection onto the

computational basis, i.e. |0〉 or |1〉 for each qubit.

The standard RB protocol [6, 14] is described as follows.

Step 1 (Generation) Create ni sequences, each of which

is a sequence of mi + 1 Clifford gates followed by a

measurement as shown in Fig. 1. The first mi gates are

chosen uniformly at random from the d-qubit Clifford

group and the (mi + 1)-th gate is uniquely determined

as the inverse of the composition of the first mi gates.

Step 2 (Execution) Run the ni sequences, measure the

survival rate (i.e., the number of times |0d〉 is observed
divided by ki trials) for each sequence, and average over

the ni survival rates to obtain the average survival rate

yi.

Step 3 (Fitting/Estimation) Repeat Step 1 and 2 for dif-

ferent Clifford lengths [m1,m2, . . . ,mM ] and then fit

the results [y1, y2, . . . , yM ] to the decay model (e.g.

yi ∼ a pmi + b) to estimate the decay rate p, which

provides the average gate fidelity Favg = p+ 1−p
D .

Here, the Clifford group is defined as the normalizer of the

Pauli group. The size of the Clifford group grows superexpo-

nentially with the number of qubits d, e.g., 24 (when d = 1),

11, 520 (when d = 2), and 92, 897, 280 (when d = 3) [18].

The inverse of the composition of Clifford gates is efficiently

(in time polynomial in d) computable on a classical computer

thanks to the tableau representation of d-qubit Clifford group

operations, e.g. [19,20], so the final gate in any sequence is as

well. Each element of the group can be generated by elemen-

tary gates, e.g. the phase, Hadamard and controlled-NOT

(CNOT) gates [20, 21].

The standard RB protocol contains the following three

types of parameter sets that determines its sampling strategy:

• Clifford lengths: m = [m1,m2, . . . ,mM ]. A Clifford

length means the number of independent Clifford opera-

tions in a sequence.

• List of the number of sequences: n = [n1, n2, . . . , nM ].

The number of sequences with Clifford length mi is

denoted by ni.

• List of the number of shots: k = [k1, k2, . . . , kM ]. A

shot means a single execution of a sequence. The num-

ber of shots for each sequence with Clifford length mi is

denoted by ki, which is often fixed to a common constant

k.

We refer to these sets of parameters as an RB configuration.

We denote a function f of variable x with parame-

ter θ by f(x; θ). We consider the simplest decay model

f(m; p, a, b) = a pm + b as a function to be fitted in the

estimation step of RB. Here p represents the decay rate.

The coefficients a and b absorb the state preparation and

measurement (SPAM) errors as well as the error on the final

gate. If there were no such errors, a = 1 − 1
D and b = 1

D

would hold (see e.g. [14] for detailed analysis of the decay

model).

We denote the average survival rate over ni random se-

quences (and ki shots for each sequence) with mi Cliffords
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Fig. 2: Overview of the proposed method for RB configuration optimization

by Ȳi and the standard deviation of Ȳi by σȲi
, respectively.

Because σȲi
depends on an RB configuration (mi, ni, ki),

it may be denoted by σȲi
(mi, ni, ki) explicitly.

3. Method

3.1 Overview of RB Configuration Optimization

We provide an overview of our method for optimizing an

RB configuration in Fig. 2. The three main features of our

method are as follows.

• It requires a variance model of the survival rate and an

execution time model in addition to the decay model. It

also requires prior estimates of some parameters used in

those models.

• It derives the confidence interval of the estimated decay

rate as a function of an RB configuration, assuming the

weighted least squares (WLS) estimator is used in the

fitting step of the RB.

• It formulates a problem of minimizing the confidence in-

terval under the constraint that the predicted execution

time of sequences must be within a given time budget.

Solving the optimization problem determines an optimal

RB configuration.

Our method can be seen as preprocessing of the standard

RB protocol. Once an optimal configuration is computed by

our method, we only run the standard RB protocol following

the configuration, and we obtain the estimated decay rate

with minimal sampling errors.

In the following sections, we will detail our method. First,

we introduce the variance model given that the variance of

the survival rate differs depending on Clifford length (Sec-

tion 3.2). To take the heteroskedasticity into account, we use

the WLS estimator in the fitting. We derive the confidence

interval of the estimated decay rate with the WLS estimator

as a function of an RB configuration and use it as the objec-

tive function to be minimized (Section 3.3). We constrain

the total execution time to avoid increasing the number of

samples (e.g. the number of sequences) infinitely to decrease

the sampling error. For that, we introduce a simple model to

predict execution time (Section 3.4). Finally, we provide a

formulation for the problem of optimizing RB configuration

as a mathematical optimization problem (Section 3.5).

3.2 Variance Model of Survival Rate

Although our method can accept any model of the variance

of the average survival rate, models with fewer parameters

are preferable because the method requires prior estimates of

the parameters. The goal of the variance model is to capture

how the variance of the survival rate varies depending on

Clifford length. Any model of upper, average, or lower bound

is acceptable for this purpose provided that it approximates

the form of the function over the entire region of Clifford

length. However, to the best of our knowledge, there is

no model perfectly suitable for the use in RB configuration

optimization. For example, the upper bound in [22] only

provided analysis of the variance for a specific region of Clif-

ford length. An improved bound without such a restriction

on Clifford length was proposed in [16] for a variant of the

standard RB, however, how well the bound fits to real-world

variance data was not discussed.

We model the variance of the average survival rate σ2
Ȳi

as

follows. First, we assume the sequence sampling error is in-

dependent of the shot sampling error, and the total variance

is given as the sum of those variances:

σ2
Ȳi

=
1

ni
{σ2

seq(i) + σ2
shot(i)} (1)

Then we approximate each of them by, respectively,

σ2
seq(i) ≈ β qmi (1− qmi), (2)

σ2
shot(i) ≈ μi (1− μi)

ki
with μi =

(
1− 1

D

)
p̂mi +

1

D
.

(3)

Note that we expect the parameter q should be close to the

decay rate p. Here, the approximate shot sampling error (3)

is derived under the strong assumptions that the mean of

the survival rate for all the sequences with a Clifford length

mi could be the same μi and that there are no errors in

SPAM or the final Clifford operation. The approximate se-

quence sampling error (2) is empirical, but it can be roughly

explained by the effect of gate-dependent errors. As Clifford

length increases, the variance once increases as the tail of

the distribution of the survival rate widens due to the in-

creased variations of Clifford gates in a sequence. However,

the variance eventually converges to zero as Clifford length

mi approaches infinity because the survival rate is bounded

within 0 to 1 and its average decays exponentially as mi
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grows.

In fact, this model explains real-world variance data very

well (see Fig. 3) even though it has no strong theoretical

justification. (see Appendix A.1 for more examples). In the
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Fig. 3: Sample variance of survival rate for each Clifford

length on a real device and their fitted curve to the variance

model

figure, the sample variance of the survival rate for each Clif-

ford length is plotted as red points, and the blue dashed line

shows the fitted curve to the model ni σ
2
Ȳi

defined by (1)–(3).

The survival rates for each Clifford length are sampled by

running 400 sequences (each with 1,000 shots) on an IBM

Quantum system ibmq athens.

As also shown in Fig. 3, the variance of survival rate is not

uniform regarding Clifford length in general. That suggests

the assumption of uniform variance, which is assumed in the

ordinary least squares (OLS) estimator, is not satisfied as

mentioned in several previous studies, e.g. [16,23]. To take

the heteroskedasticity into accounts, using the iteratively

reweighted least squares estimator was recommended in [16]

and a Bayesian-based estimation algorithm was proposed

in [23]. In this paper, we assume to use the weighted least

squares (WLS) estimator in the fitting. Recall that we are

developing a method for optimizing the RB configuration,

not comparing the performance of other estimators with the

OLS or WLS estimator. The WLS estimator is suitable for

our purpose because it enables us to analytically derive the

confidence interval of the estimated decay rate as shown in

the next section.

3.3 Confidence Interval of Estimated Decay Rate

The confidence interval of the decay rate estimated by the

ordinary least squares (OLS) estimator is explicitly given

in [15]. We extend their analysis to the case of the weighted

least squares (WLS) estimator.

The (1− α) confidence interval of decay rate p at the esti-

mate p̂ of a nonlinear regression model yi = f(mi; p, a, b) =

a pmi + b by the WLS estimator with a weight matrix

W = diag(w1, w2, . . . , wn) is approximately given by

|p− p̂| ≤ tM−3,1−α/2

√
H s2. (4)

This is obtained by replacing yi with
√
wi yi and f(mi) with

√
wi f(mi) in the confidence interval of the estimated decay

rate by the OLS estimator. In the above (4), tM−3,1−α/2

is the (1 − α
2 ) percentile of the t-distribution with M − 3

degrees of freedom, s2 is the weighted sample average of the

squared residuals, i.e.

s2 =

∑M
i=1 wi

∣∣∣yi − (â p̂mi + b̂)
∣∣∣2

M − 3
, (5)

and H is the scaling factor that reflects how far s2 extends

in the p̂ axis, which is defined as

H ≡
[(

J(θ̂)TWJ(θ̂)
)−1

]
p̂p̂

(6)

Here J(θ̂) is the Jacobian matrix of f(mi;θ) (i = 1, . . . ,M)

at θ = θ̂ with θ = [p, a, b], whose i-th row is given by

Ji,∗(θ̂) =
[
âmi p̂

mi−1, p̂mi , 1
]

(7)

Note that H is an element of the inverse of the 3× 3 matrix;

hence, it can be analytically computed (see Appendix A.2

for the details).

The WLS estimator weights the i-th observed value (yi)

of a random variable (Yi) with a weight wi in the estimation,

expecting the weight to make the variance of Yi uniform.

Therefore, the weight is usually chosen to be reciprocal to

the variance, i.e. wi = σ−2
Yi

. We set wi to σ−2
Ȳi

with the

variance model σ2
Ȳi

defined in Section 3.2. Consequently,

the weight matrix W becomes a function of m, n and k

with the variance model parameters (q, β). Note that it may

be explicitly denoted by W (m,n,k; q, β), and thus, H by

H(m,n,k; p̂, â, q, β).

Our goal is finding the RB configuration that minimizes

the right-hand side of (4), so the objective function to be

minimized is defined as

h(m,n,k) ≡ tM−3,1−α/2

√
H ′(m,n,k; p̂, q, β) (8)

by omitting the constant factors on the right-hand side of (4),

where H ′(m,n,k; p̂, q, β) = â2H(m,n,k; p̂, â, q, β). The

replacement of H by H ′ is only for factoring out an ineffec-

tive parameter â. Provided a confidence level α and some

prior estimates of parameters (p̂, q, β) in advance, the ob-

jective function h becomes a function depending only on

(m,n,k). Note that the value of parameter p̂ that we use to

define the objective function may differ from the actual decay

rate estimated by an RB experiment we will run afterwards.

3.4 Execution Time Model

We consider a simple approximated execution time model.

It estimates the time required for the execution of RB se-

quences with a configuration (m,n,k) by

t(m,n,k) ≈
M∑
i=1

ni ki (c1 mi + c0). (9)

Here, c1 is a coefficient that reflects how execution time

increases with Clifford length mi, and c0 is a constant time
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Fig. 4: Confidence interval of estimated decay rate, predicted by the proposed method with different parameters (estimated

decay rate and the dimension of Clifford lengths M) for each heuristic configuration

required for running a sequence independent of Clifford length

mi. In this model, some overhead time such as the loading

time of control instructions due to sequence switching, is not

taken into account. The typical choice for c1 is the average

single Clifford gate time, and that for c0 is the sum of the

average measurement time and the interval time between

shots. Given the time limit T for the execution of an RB

experiment, we optimize the objective function under the

time constraint

t(m,n,k) ≤ T. (10)

3.5 Formulation of Configuration Optimization

Now we can formulate the problem of finding an optimal

RB configuration as a mathematical optimization problem

as follows.

minimize h(m,n,k)

subject to mi ≥ mi−1 + 1, for i = 2, 3, . . . ,M,

t(m,n,k) ≤ T

m,n,k ∈ ZM
+ (positive integer vector).

(11)

Here h(m,n,k) is the confidence interval of the estimated

decay rate defined in (8), t(m,n,k) is the approximate ex-

ecution time described in (9), and T is the available time

budget. We introduce the constraint mi ≥ mi−1 + 1 to re-

move the symmetry in the formulation and make the problem

more easily solvable.

There are two major difficulties in solving the (nonlinear)

optimization problem (11) in practice:

( 1 ) The variability of the dimension of the Clifford lengths

(M may vary): Most of optimization algorithms assume

the dimension of solution space is fixed.

( 2 ) Integer variables (m,n,k ∈ ZM
+ ): Discrete solution

spaces usually prevent the use of descent methods that

performs well in practice.

We overcome the aforementioned difficulties as follows.

( 1 ) We repeatedly solve the problem with a fix M for

M = 4, 5, . . . ,Mmax, and select the best among them.

We do not need to take such a large Mmax in practice

(typically, Mmax ≤ 40), so computation time is not a

concern in solving multiple problem instances.

( 2 ) We relax the integer constraints and consider contin-

uous variables (i.e., m,n,k ∈ RM
+ ). We round the

optimal solution for the relaxed problem and obtain a

near-optimal integer solution for the original problem.

Rounding continous solutions to discrete ones is stan-

dard to obtain approximate solutions of (mixed) integer

programming [24].

4. Experiments

We conducted two experiments: simulating the expected

performance of typical heuristic configurations and evaluat-

ing the effect of configuration optimization on real devices.

The first computational experiment was to show that our

proposed method can be useful to estimate the performance

of a given configuration. The second experiment was to de-

termine if our method can provide an optimal configuration

that yields estimated decay rates with small variance in a real

environment. Throughout both experiments, we investigated

2-qubit RB (D = 4). We implemented our method in Python

and used Qiskit 0.23.5, which is an open-source quantum

computing software development framework [25], to generate

and run sequences. We used IBM Quantum systems [13]

with 5 qubits for experiments on real devices. Hereafter, we

omit the ibmq prefix in the device name for simplicity.

4.1 Computational Experiment

Our method can be useful to predict the confidence interval

of a decay rate estimated by RB under a given configuration.

That also means it can simulate how the change in decay rate

affects the performance (i.e., predicted confidence interval)

of a given configuration. We conducted such a simulation for

the three types of heuristic RB configurations: linear, square,

and exponential. Each configuration designed to have its

own Clifford lengths m, a number of sequences n identical

to the Clifford lengths, and a fixed k = 100. Clifford lengths

of a linear, square and exponential configuration were set to

[10(x−1)+1], [x2] and [2x−1] for x = 1, . . . ,M , respectively.

In the simulation, we fixed the confidence level α to 0.05.

The two parameters (q, β) in the objective function (4) were

fixed as q = p̂ and β = 0.0025. The value of β was obtained

from a preliminary experiment on an IBM Quantum sys-

tem athens. The two parameters (c1, c0) in the execution
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Table 1: Summary of RB configurations used in the experiment on real devices
Configuration M† m n N‡ Estimated exec. time [s]
linear 21 [1, 11, 21, 31, . . . , 201] 5 (identical) 105 3.261
square 17 [1, 4, 9, 16, . . . , 289] 6 (identical) 102 3.193
exponential 10 [1, 2, 4, 8, . . . , 512] 10 (identical) 100 3.114
optimal 16 optimized optimized 99 2.974
optimal-identical-n 33 optimized 3 (identical) 99 2.961

† The dimension of Clifford lengths m, ‡ The total number of sequences, i.e. sum of n

time model (9) were set as c1 = 0.6 [µs] and c0 = 250 [µs],

based on the public properties of athens: The gate time of

CNOT gate is around 0.4µs (one Clifford is composed of 1.5

CNOT gates on average), the default intervals between shots

is 250µs, and the measurement time is around 3µs. We set

the time budget T to 3 seconds.

Figure 4 shows how the predicted confidence interval of

the estimated decay rate varies when changing the estimated

decay rate p̂ and the dimension of Clifford lengths M for each

heuristic configuration. As expected, the optimal M varied

depending on the decay rate for all types of configurations.

Among the three types, exponential was most stable against

the changing decay rate, demonstrating its usefulness when

there is little knowledge on the decay rate in advance. It can

be also seen that linear and square works well in a specific

range of decay rates if we can select the optimal M when

square is more stable than linear. That suggests square is a

good option if we have a good prior estimated decay rate.

In this way, our method can be used to predict the per-

formance of heuristic configurations. Moreover, it can be

used to select the best among candidates of configurations.

For example, let consider any of the above heuristic con-

figurations parameterized by M . The confidence interval

for each M can be computed by fixing the decay rate to a

given prior estimate. Hence, the optimal M that minimizes

the confidence interval can be easily found, e.g., by grid

search. Actually, heuristic configurations compared with an

optimized configuration in the next section are prepared this

way.

4.2 Experiment on Real Devices

The optimal configuration found by our method may de-

viate from the true optimal configuration value due to the

following two gaps. One is the modeling gap, i.e., the mod-

els our method relies on cannot perfectly represent the real

system. The other is the gap between the prior estimates

and true values of the model parameters. These gaps are

inevitable and too difficult to measure in practice. There-

fore, we aim to demonstrate that our method is still useful

in practice even after subtracting the impact of those gaps.

That is, the configuration optimized by our method can yield

the estimated decay rate with smaller variance than those

from heuristic configurations in RBs on real devices.

Therefore, we conducted the experiment as follows.

( 1 ) Preparing five configurations in total to be compared:

Three heuristic configurations with optimized M (linear,

square, exponential; the same as discussed in Section 4.1),

a configuration optimized by our method (optimal),

and a reference configuration optimized by our method

with restricting the number of sequences to be identical

(optimal-identical-n).

( 2 ) Bundling five sets of sequences generated with the five

configurations up into one job. We run 100 jobs on

each of the five devices (athens, quito, bogota, rome and

lima), which corresponds to running 5 configurations ×
5 devices × 100 jobs = 2,500 RBs.

( 3 ) Analyzing the deviation in the decay rates estimated via

100 times of RBs for each device and configuration.

We ran RBs with common configurations on the five devices,

each of which represents a different extent of imperfect prior

estimates of model parameters. By comparing the results

from different devices, we investigated how the imperfections

in model parameters affect the performance of each configu-

ration (i.e. the standard deviation of the resulting estimated

decay rates). Throughout this experiment, we focused on

optimizing m and n, and we fixed the number of shots to

100 (k = 100).

In the first preparation step, we used the same values

as those used in the Section 4.1 for the model parameters

required in our method: α = 0.05, p̂ = q = 0.97, β = 0.0025,

c1 = 0.6 [µs], c0 = 250 [µs], and T = 3 [s]. Note that the

parameters p̂, q, and β are determined by a preliminary

experiment on athens. We used scipy.optimize module to

optimize the relaxed problem discussed in Section 3.5 when

computing optimal and optimal-identical-n (see Appendix A.3

for the details). We set Mmax to 40 for both configurations.

The computation time to optimize each configuration was

within 30 seconds (for all values of M) on a laptop PC with

an Intel Core i7 2.7 GHz and 16 GB memory.

Table 1 summarizes five configurations prepared in the

first step. For the optimized configuration (optimal), m =[1,

2, 19, 21, 23, 24, 25, 26, 27, 28, 29, 51, 52, 105, 195, 369],

n =[8, 5, 5, 5, 6, 6, 5, 6, 6, 7, 5, 5, 5, 5, 8, 12]. For

the optimized configuration with the identical n constraint

(optimal-identical-n), m =[1, 2, 3, 4, 5, 12, 20, 23, 24, 25, 26,

27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 53, 92, 136,

181, 227, 276, 329, 385, 445], n = 3. Note that we allowed

to exceed the time budget constraint (due to rounding) for

heuristic configurations while the optimal ones strictly com-

ply with the constraint. Thus, it ensures that the comparison

does not favor the optimal ones (i.e. our method) unfairly.

It is interesting to note that optimal-identical-n seems to

sample a similar number of neighbor Clifford lengths for each

Clifford length that is heavily sampled in optimal; therefore,
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Table 2: Adjusted standard deviation (raw standard deviation) of estimated decay rates by multiple runs of RBs on different

real devices with different configurations. The best value among the configurations is in bold for each device. Average

estimated decay rates over runs are stated in Avg p̂ column for reference.
Heuristic configurations Optimized configurations (Proposed)

Device Avg p̂ Runs linear square exponential optimal optimal-identical-n
athens 0.9706 98 0.001481 (0.002843) 0.001217 (0.002658) 0.001275 (0.002721) 0.001074 (0.002798) 0.001151 (0.002720)
quito 0.9731 96 0.001469 (0.004673) 0.001268 (0.004245) 0.001378 (0.004419) 0.000967 (0.004357) 0.001190 (0.004310)
bogota 0.9762 96 0.001160 (0.002483) 0.001107 (0.002507) 0.001231 (0.002648) 0.000860 (0.002529) 0.000971 (0.002397)
rome 0.9836 93 0.000886 (0.001017) 0.000774 (0.000953) 0.000914 (0.001088) 0.000911 (0.000919) 0.000849 (0.001089)
lima 0.9858 92 0.000979 (0.001201) 0.000767 (0.000934) 0.000730 (0.000910) 0.000844 (0.001064) 0.000798 (0.000956)

they appear to be sampled from the same distribution.

In the second running step, we ran the sequences on five

IBM Quantum devices with five qubits available to us as of

May 19, 2021*1. We ran 100 jobs for each of the five devices,

and a few of them failed while waiting in the job queue for

unknown reasons. We analyzed the results of 98, 96, 96, 93,

and 92 successful jobs from athens, quito, bogota, rome and

lima, respectively. We used qubit 0 and 1 for all the devices.

Table 2 shows the adjusted standard deviations of decay

rates estimated by the WLS estimator from the survival

rate data obtained by repeated RBs on the five real devices.

Because it took about 24 hours to run all jobs for each device

(including the wait time in the queue), the raw values of

standard deviations described in (·) in the table were af-

fected by the temporal variation in the real decay rate. This

can be observed from the changes of the average estimated

decay rate over five configurations for each job at athens

as shown in Fig. 5 (see Appendix A.4 for similar figures of

other devices). Therefore, the values adjusted to remove the
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Fig. 5: Temporal variation in decay rate at athens: the black

line depicts the average of estimated decay rate over all five

configurations

effect of time fluctuation were described in the table and

used for the evaluation. Specifically, the mean value of the

five configurations minus the bias for each configuration was

used as the expected value of the configuration at the job

execution. The adjusted standard deviation was defined as

the sample deviation calculated by the residual from the

expected value. The bias for each configuration was set to

*1 We tried to run on all six 5-qubit devices, but belem was too
busy at that time and failed to complete all jobs within three
days, so we removed it from the analysis.

the difference between the average of decay rates over all

jobs and configuration, and the average of decay rates over

all jobs for each configuration.

As shown in the table, optimal achieves the least deviation

of the estimated decay rate by RBs on athens, quito, and

bogota. This is the expected result because we used the

values based on athens as the prior estimates for the model

parameters. In particular, we set the prior estimate of the

decay rate to 0.97, while the actual (estimated) decay rate

of athens, quito, and bogota were all close to this value at

0.9706, 0.9731, and 0.9762, respectively. The improvement

rates from square (the best of the heuristic configurations) to

optimal in the standard deviation were quite large at 11.7%

for athens, 23.7% for quito, and 22.3% for bogota. In con-

trast, heuristic configurations achieved slightly less deviation

than the optimal configuration in rome and lima, where the

actual decay rates (0.9836 and 0.9858) were larger than its

prior estimate (0.97). This may be because the errors in

prior estimates were so large that the optimization did not

work as expected. Supporting the results on real devices,

optimal achieves better results on noisy simulators of real

devices: either the best or the second best (see Appendix A.5

for the details of noisy simulation). It is interesting to note

that optimal-identical-n likely provided more stable results

against the errors in prior estimates of decay rate comparing

with optimal. This could be because the identical-n con-

straint mitigated the risk of over-optimization along with

the given model parameters as if the regularization term

prevents overfitting in machine learning.

In summary, our method is capable of finding a better con-

figuration than typical heuristic configurations, at least when

we have sufficiently accurate prior estimates of parameters

required in the method.

5. Discussion

In this paper, we developed a method for minimizing the

confidence interval under the time budget constraint. Our

method can easily be modified so to minimize the execution

time while bounding the confidence interval by replacing the

formulation in (11) with

minimize t(m,n,k)

subject to mi ≥ mi−1 + 1, for i = 2, 3, . . . ,M,

h(m,n,k) ≤ ϵ

m,n,k ∈ ZM
+ (positive integer vector).

(12)
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where ϵ is the feasible upper bound of the confidence interval.

An advantage of our method is that it can be used for

the first RB of a brand new device because the confidence

model used in our method only requires the prior estimate

of parameters, not their learning with training data. In the

subsequent RBs, we could predict a more accurate confidence

interval by using the decay rate estimated in the previous

RB as the prior estimate. Ultimately, we could obtain the

sample data from every RB, which can be used to improve

the confidence model by learning from the data. In that case,

such approaches that use machine learning techniques (as

discussed in [23]) would work well.

In this paper, we focused on the standard RB protocol

and proposed a method for optimizing a sampling strategy

for it. Investigating how our method can be extended to

other benchmarking protocols with random sampling, such

as interleaved randomized benchmarking [26], dihedral bench-

marking [27–29], or other variants [16,30], is left for future

work.

Furthermore, our method may be generalized to be com-

bined with other protocols or algorithms that have the fol-

lowing properties:

• the protocol has a fitting parameter to be estimated in

it (decay rate of RB),

• the protocol requires a fitting model used in it (survival

rate decay model of RB), and

• the protocol repeats experiments to obtain samples to

be fitted (survival rates of RB) with changing sampling

parameters (RB configuration).

For example, an amplitude estimation algorithm proposed

in [31] satisfies the above properties by mapping the fitting

parameter to an angle related to the amplitude to be esti-

mated, the fitting model to Equation (13) in the paper, and

the sampling parameter to the number of repetitions of the

amplifying operation.

6. Conclusion

We addressed the problem of optimizing sampling strate-

gies for the standard RB. We showed how a sampling strategy

is determined by configurable parameters (an RB configu-

ration): Clifford lengths, the number of sequences for each

Clifford length, and the number of shots. We discussed how

the variance of the survival rate may not be uniform with

respect to Clifford length and discussed how to model the

heteroskedasticity in a simple form. We proposed a method

for optimizing an RB configuration, which constructs a math-

ematical optimization problem that minimizes the confidence

interval of the estimated decay rate while keeping the pre-

dicted execution time within a given time budget. The

method does not change the RB protocol itself, so it is easily

utilized as preprocessing. Our experiment on real devices

demonstrated that the proposed method can find a better

configuration, i.e. achieving smaller deviation in the resulting

estimated decay rate, than typical heuristic configurations in

practice. We believe the proposed method would be useful

in practice to reduce the sampling error while maintaining

the execution time, or to reduce the execution time while

maintaining the sampling error.
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Appendix

A.1 Sample Variances of Survival Rate

for each Clifford Length on IBM

Quantum Systems

We provide four more sets of sample variance data ob-

tained from the devices of IBM Quantum systems, quito,

bogota, rome and lima, and the fitted curve for each device

in Fig. A·1. In each figure, the sample variance of survival

rate for each Clifford length is plotted as red points and the

blue dashed line shows the fitted curve to the model ni σ
2
Ȳi

defined by (1)–(3). As shown in the figure, the sample vari-

ance of survival rate is not uniform with respect to Clifford

length for all devices. The model relatively explains the

sample variance well although some divergence in the tail is

observed in several cases.

A.2 Explicit Form of the Confidence In-

terval Function

We provide the explicit expression of H ′ used in the defini-

tion of confidence interval function discussed in Section 3.3.

Recall that

H ′ = â2H = â2
[(

J(θ̂)TWJ(θ̂)
)−1

]
p̂p̂

(A.1)

and J(θ̂)TWJ(θ̂) is a 3x3 matrix in the form of[
A c

cT u

]

where

A =

[
a2

∑
i wi m

2
i p

2mi−2 a
∑

i wi mi p
2mi−1

a
∑

i wi mi p
2mi−1 ∑

i wi p
2mi

]
,

cT =

[
a
∑
i

wi mi p
mi−1,

∑
i

wi p
mi

]
,

and u =
∑

i wi. Here and hereafter, we omit the superscript

‘̂ ‘ of p, a, b for brevity. Using the block matrix inversion

formula [
A c

cT u

]−1

=

[
(A− c cT

u )−1 ∗
∗ ∗

]

and the explicit form of the inverted 2x2 matrix, we obtain

H ′ ≡

[∑
wi p

2mi − (
∑

wi p
mi )2

u

]
[∑

wi p2mi − (
∑

wi p
mi )2

u

] [∑
wi m2

i p
2mi−2 − (

∑
wi mi p

mi−1)2

u

]
−

[∑
wi mi p2mi−1 − (

∑
wi p

mi )(
∑

i wi mi p
mi−1)

u

]2 .
(A.2)

A.3 Solving the Optimization Problem

The optimization problem (11) is obviously nonlinear in m

and n, recalling that the objective function includes the term√
H ′ with H ′ written down in (A.2) and wi is proportional to√
ni because wi is set to σ−2

Ȳi
. Actually, it is even non-convex.

In general, the non-convex optimization problem has multiple

locally optimal solutions and it is often difficult to find the

globally optimal solution. In the experiments in Section 4.2,

we used scipy.optimize.minimize function (using default

parameters except for tol=1.0e-10) to compute one of the

locally optimal solutions. We added extra constraints ni ≥ 5

in order to mitigate the impact of outliers in the formulation

for optimal. We replaced the vector variable n with a scalar

variable n to represent a common number of sequences in

the formulation for optimal-identical-n. We set the initial

guess (x0) to m = [1, 2, 3, . . . ,M ] and ni = 5 for all i (for

optimal) and n = 3 (for optimal-identical-n). Notice that we

may find a better solution by changing the initial guess.
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(b) bogota
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(c) rome
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(d) lima

Fig. A·1: Sample variance of survival rate for each Clifford length on different devices and the fitted curve to the variance

model
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(b) bogota
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(c) rome
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Fig. A·2: Temporal variation in decay rate on different devices: The average estimated decay rate over all five configurations

by job (black line) and the estimated decay rate with square/exponential/optimal by job (blue/green/orange)

Table A·1: Standard deviations of estimated decay rates by 100 runs of RBs with different configurations on noisy simulators

of different real devices. The best value among the configurations is in bold for each device. Average estimated decay rates

over runs are stated in Avg p̂ column for reference.
Heuristic configurations Optimized configurations (Proposed)

Device Avg p̂ Runs linear square exponential optimal optimal-identical-n
athens 0.9758 100 0.001311 0.001125 0.001277 0.001032 0.001104
quito 0.9779 100 0.001188 0.001052 0.001342 0.001028 0.001024
bogota 0.9805 100 0.000927 0.000910 0.000909 0.000860 0.000846
rome 0.9829 100 0.000888 0.000941 0.000992 0.000838 0.000778
lima 0.9825 100 0.001111 0.000946 0.000975 0.000843 0.000792

A.4 Temporal Variation in Decay Rate

We provide four more plots of the temporal variation in

decay rate on IBM Quantum devices, quito, bogota, rome

and lima in Fig. A·2. The estimated decay rate with square,

exponential and optimal for each job are also shown in the

figure (we omit that with linear and optimal-identical-n for

ease of reading). As seen in the figures, square was likely to

estimate slightly higher decay rates than the other configu-

rations for all devices. In fact, the sample average of decay

rates from square was 0.9750, 0.9772, 0.9837, and 0.9870

while those from others were within [0.9723, 0.9728], [0.9757,

0.9762], [0.9825, 0.9828], and [0.9852, 0.9857] for quito, bo-

gota, rome and lima, respectively. This might imply that we

need more investigation on the bias in the estimated decay

rate.

A.5 Results of Noisy Simulation

To confirm RB configurations optimized by our method

performs as expected in a synthetic environment, we con-

ducted the same experiments described in Section 4.2 on

noisy simulators. We utilized NoiseModel.from backend

function in Qiskit to simulate noisy execution of sequences

on each device. We show the results in Table A·1, which
confirm that optimal can achieve better results on noisy

simulators of real devices: either the best or the second best.
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