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Abstract: Randomized benchmarking (RB) is a widely used method for estimating the average fidelity of
gates implemented on a quantum computing device. The stochastic error of the average gate fidelity estimated
by RB depends on the sampling strategy (i.e., how to sample sequences to be run in the protocol). The
sampling strategy is determined by a set of configurable parameters (an RB configuration) that includes
Clifford lengths (a list of the number of independent Clifford gates in a sequence) and the number of sequences
for each Clifford length. The RB configuration is often chosen heuristically and there has been little research
on its best configuration. Therefore, we propose a method for fully optimizing an RB configuration so that
the confidence interval of the estimated fidelity is minimized while not increasing the total execution time of
sequences. By experiments on real devices, we demonstrate the efficacy of the optimization method against
heuristic selection in reducing the variance of the estimated fidelity.
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1. Introduction

As more and larger quantum computers without fault toler-
ance are physically implemented, there is a growing need for
methods to benchmark their performance. Straightforward
tomography-based methods require measurements that scale
exponentially with the number of qubits [1] and thus are not
scalable. Utilizing advanced techniques, such as, compressed
sensing [2] and samplings [3,4], the scaling bottleneck can be
avoided to obtain the average gate fidelity but such methods
are not robust against state preparation and measurement
(SPAM) errors. Randomized benchmarking (RB) [5,6] is an
efficient and robust method and widely used in practice for
estimating the average fidelity of a gate set implemented on a
quantum computing device [7-12]. For example, IBM Quan-
tum systems [13] report their 1-qubit and 2-qubit gate error
rates calculated from the estimated average gate fidelity via
RB. Hence it is important to minimize the stochastic error
in the estimated fidelity by RB so that we can sufficiently
track the drift in the gate fidelity over time, which reflects
imperfection of controlling physical devices.

The standard RB is a protocol composed of three steps.
First, it generates sets of sequences with random Clifford
gates such that all sequences in each set have the same Clif-
ford length (the number of independent Clifford gates in a
sequence) but the length varies from set to set. Then, it
executes the sequences to measure the survival rate (i.e., prob-
ability of observing the initial state) for each Clifford length.
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Finally, it estimates the exponential decay rate, which can
be linearly transformed to the average gate fidelity, from
the survival rate data. The protocol has a three-fold sam-
pling structure: sampling Clifford lengths at the estimation
(fitting) step, sampling random sequences at the sequences
generation step, and sampling bit strings at the sequences
execution step. Therefore, the estimated decay rate (or
equivalently, the average gate fidelity) is intrinsically subject
to stochastic errors that depend on the sampling strategy.
The sampling strategy is determined by a set of configurable
parameters that defines how to sample sequences to be run
(we call it an RB configuration), e.g., Clifford lengths and
the number of sequences for each Clifford length.

There are several studies that partially address the prob-
lem of finding an optimal RB configuration. The number
of sequences at each Clifford length that achieves a desired
confidence level was loosely estimated by using Hoeffding
bound [14]. A tighter estimation comparable to the number
used in practice was provided, assuming to use the ordinary
least squares estimator in the fitting step [15]. It was sug-
gested that varying the number of sequences depending on
Clifford length may improve the reliability of estimated decay
rate [16]. Finding the best maximum Clifford length was
also discussed in [17]. However, none of them addressed the
problem of both optimizing Clifford lengths and the number
of sequences at the same time.

In this paper, we provide a method for finding an optimal
sampling strategy (RB configuration) that includes both Clif-
ford lengths and the number of sequences for each Clifford
length. The optimal strategy yields a minimal confidence
interval of the estimated average gate fidelity within a given
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Fig. 1: The standard RB (randomized benchmarking) protocol

time budget for running the sequences (Section 3). To make
it possible, we customize techniques for analyzing statistical
errors of estimated values in RB. First, we construct a simple
model for the variance of average survival rate (Section 3.2)
in order to explain the variance data sampled from real de-
vices, which may vary depending on Clifford length. Based
on the variance model, we derive an explicit expression that
approximates the confidence interval of the estimated decay
rate as a function of the RB configuration (Section 3.3). The
derivation enables us to formulate the optimization of the
RB configuration as a mathematical optimization problem
(Section 3.5). We also experiment on real devices to show
that our method can find a better configuration that achieves
smaller variance in the resulting estimated decay rate than
typical heuristic configurations in practice (Section 4).

2. Preliminaries

We first set some notation and briefly review the standard
RB protocol. We suppose to benchmark a d-qubit quantum
system, which can be represented by the D = 2¢ dimen-
sional Hilbert space. We assume the initial state is always
set to |04) and the measurement is a projection onto the
computational basis, i.e. |0) or |1) for each qubit.

The standard RB protocol [6,14] is described as follows.
Step 1

is a sequence of m; + 1 Clifford gates followed by a

(Generation) Create n; sequences, each of which

measurement as shown in Fig. 1. The first m; gates are
chosen uniformly at random from the d-qubit Clifford
group and the (m; 4+ 1)-th gate is uniquely determined
as the inverse of the composition of the first m; gates.
Step 2
survival rate (i.e., the number of times |04) is observed

(Execution) Run the n; sequences, measure the

divided by k; trials) for each sequence, and average over
the n; survival rates to obtain the average survival rate
Yi-

Step 3 (Fitting/Estimation) Repeat Step 1 and 2 for dif-
ferent Clifford lengths [m1,ma,...,my] and then fit

the results [y1,y2,...,ym] to the decay model (e.g.
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yi ~ ap™ +b) to estimate the decay rate p, which
provides the average gate fidelity Favg = p + lpr.
Here, the Clifford group is defined as the normalizer of the
Pauli group. The size of the Clifford group grows superexpo-
nentially with the number of qubits d, e.g., 24 (when d = 1),
11,520 (when d = 2), and 92,897,280 (when d = 3) [18].
The inverse of the composition of Clifford gates is efficiently
(in time polynomial in d) computable on a classical computer
thanks to the tableau representation of d-qubit Clifford group
operations, e.g. [19,20], so the final gate in any sequence is as
well. Each element of the group can be generated by elemen-
tary gates, e.g. the phase, Hadamard and controlled-NOT
(CNOT) gates [20,21].
The standard RB protocol contains the following three
types of parameter sets that determines its sampling strategy:
;mar]. A Clifford

length means the number of independent Clifford opera-

e C(lifford lengths: m = [mi, ma,...

tions in a sequence.

e List of the number of sequences: n = [n1,n2,...,numl.
The number of sequences with Clifford length m; is
denoted by n;.

e List of the number of shots: k = [ki,k2,...,kn]. A
shot means a single execution of a sequence. The num-
ber of shots for each sequence with Clifford length m; is
denoted by k;, which is often fixed to a common constant
k.

We refer to these sets of parameters as an RB configuration.

We denote a function f of variable x with parame-

ter 6 by f(x;0). We consider the simplest decay model

f(m;p,a,b) = ap™ + b as a function to be fitted in the
estimation step of RB. Here p represents the decay rate.

The coefficients a and b absorb the state preparation and

measurement (SPAM) errors as well as the error on the final

gate. If there were no such errors, a = 1 — % and b = %
would hold (see e.g. [14] for detailed analysis of the decay
model).

We denote the average survival rate over n; random se-

quences (and k; shots for each sequence) with m; Cliffords
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Fig. 2: Overview of the proposed method for RB configuration optimization

by Y; and the standard deviation of Y; by oy., respectively.
Because oy, depends on an RB configuration (mi, ni, ki),
it may be denoted by oy, (M, ns, ki) explicitly.

3. Method

3.1 Overview of RB Configuration Optimization

We provide an overview of our method for optimizing an
RB configuration in Fig. 2. The three main features of our
method are as follows.

e [t requires a variance model of the survival rate and an
execution time model in addition to the decay model. It
also requires prior estimates of some parameters used in
those models.

e [t derives the confidence interval of the estimated decay
rate as a function of an RB configuration, assuming the
weighted least squares (WLS) estimator is used in the
fitting step of the RB.

e [t formulates a problem of minimizing the confidence in-
terval under the constraint that the predicted execution
time of sequences must be within a given time budget.
Solving the optimization problem determines an optimal
RB configuration.

Our method can be seen as preprocessing of the standard
RB protocol. Once an optimal configuration is computed by
our method, we only run the standard RB protocol following
the configuration, and we obtain the estimated decay rate
with minimal sampling errors.

In the following sections, we will detail our method. First,
we introduce the variance model given that the variance of
the survival rate differs depending on Clifford length (Sec-
tion 3.2). To take the heteroskedasticity into account, we use
the WLS estimator in the fitting. We derive the confidence
interval of the estimated decay rate with the WLS estimator
as a function of an RB configuration and use it as the objec-
tive function to be minimized (Section 3.3). We constrain
the total execution time to avoid increasing the number of
samples (e.g. the number of sequences) infinitely to decrease
the sampling error. For that, we introduce a simple model to
predict execution time (Section 3.4). Finally, we provide a
formulation for the problem of optimizing RB configuration
as a mathematical optimization problem (Section 3.5).
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3.2 Variance Model of Survival Rate

Although our method can accept any model of the variance
of the average survival rate, models with fewer parameters
are preferable because the method requires prior estimates of
the parameters. The goal of the variance model is to capture
how the variance of the survival rate varies depending on
Clifford length. Any model of upper, average, or lower bound
is acceptable for this purpose provided that it approximates
the form of the function over the entire region of Clifford
length. However, to the best of our knowledge, there is
no model perfectly suitable for the use in RB configuration
optimization. For example, the upper bound in [22] only
provided analysis of the variance for a specific region of Clif-
ford length. An improved bound without such a restriction
on Clifford length was proposed in [16] for a variant of the
standard RB, however, how well the bound fits to real-world
variance data was not discussed.

We model the variance of the average survival rate af;i as
follows. First, we assume the sequence sampling error is in-
dependent of the shot sampling error, and the total variance
is given as the sum of those variances:

2 1.9 2
oy, = E{Useq(i) + Ochot(i) } 1)

Then we approximate each of them by, respectively,

CTSQeq(i) ~Bq™ (1—q™), (2)
i (1 —pi) . 1\ . 1
0ot (i) % with 1; = (1 - 5) "+ 5

3)
Note that we expect the parameter g should be close to the
decay rate p. Here, the approximate shot sampling error (3)
is derived under the strong assumptions that the mean of
the survival rate for all the sequences with a Clifford length
m; could be the same p; and that there are no errors in
SPAM or the final Clifford operation. The approximate se-
quence sampling error (2) is empirical, but it can be roughly
explained by the effect of gate-dependent errors. As Clifford
length increases, the variance once increases as the tail of
the distribution of the survival rate widens due to the in-
creased variations of Clifford gates in a sequence. However,
the variance eventually converges to zero as Clifford length
m; approaches infinity because the survival rate is bounded

within 0 to 1 and its average decays exponentially as m;
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In fact, this model explains real-world variance data very
well (see Fig. 3) even though it has no strong theoretical
justification. (see Appendix A.1 for more examples). In the
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Fig. 3: Sample variance of survival rate for each Clifford
length on a real device and their fitted curve to the variance
model

figure, the sample variance of the survival rate for each Clif-
ford length is plotted as red points, and the blue dashed line
shows the fitted curve to the model n; Jf;l defined by (1)—(3).
The survival rates for each Clifford length are sampled by
running 400 sequences (each with 1,000 shots) on an IBM
Quantum system ibmg_athens.

As also shown in Fig. 3, the variance of survival rate is not
uniform regarding Clifford length in general. That suggests
the assumption of uniform variance, which is assumed in the
ordinary least squares (OLS) estimator, is not satisfied as
mentioned in several previous studies, e.g. [16,23]. To take
the heteroskedasticity into accounts, using the iteratively
reweighted least squares estimator was recommended in [16]
and a Bayesian-based estimation algorithm was proposed
in [23]. In this paper, we assume to use the weighted least
squares (WLS) estimator in the fitting. Recall that we are
developing a method for optimizing the RB configuration,
not comparing the performance of other estimators with the
OLS or WLS estimator. The WLS estimator is suitable for
our purpose because it enables us to analytically derive the
confidence interval of the estimated decay rate as shown in
the next section.

3.3 Confidence Interval of Estimated Decay Rate

The confidence interval of the decay rate estimated by the
ordinary least squares (OLS) estimator is explicitly given
in [15]. We extend their analysis to the case of the weighted
least squares (WLS) estimator.

The (1 — ) confidence interval of decay rate p at the esti-
mate p of a nonlinear regression model y; = f(ms;p,a,b) =
ap™ + b by the WLS estimator with a weight matrix

W = diag(wi, w2, ..., wy) is approximately given by

Ip— Dl <tpm—31-a/2 VH 2. (4)

This is obtained by replacing y; with \/w; y; and f(m;) with
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Vwi f(m;) in the confidence interval of the estimated decay
rate by the OLS estimator. In the above (4), tpr—31—-a/2
is the (1 — §) percentile of the t-distribution with M — 3
degrees of freedom, s2 is the weighted sample average of the

squared residuals, i.e.

ZM Wi __(A Ami+l;)2
9 i=1 Wi |Yi ap
s = M —3 ) (5)

and H is the scaling factor that reflects how far s? extends
in the p axis, which is defined as

R A\ —1
H= [(J(@)TWJ(G)) ] (6)
PP
Here J(6) is the Jacobian matrix of f(m;; @) (i =1,..., M)
at @ = @ with @ = [p, a, b], whose i-th row is given by

Jie(6) = [amip™ ", ™, 1] (7)

Note that H is an element of the inverse of the 3 X 3 matrix;
hence, it can be analytically computed (see Appendix A.2
for the details).

The WLS estimator weights the i-th observed value (y;)
of a random variable (Y;) with a weight w; in the estimation,
expecting the weight to make the variance of Y; uniform.
Therefore, the weight is usually chosen to be reciprocal to
We set w; to U{;f with the
variance model af;i defined in Section 3.2. Consequently,

. . —92
the variance, i.e. w; = oy.°.
f

the weight matrix W becomes a function of m, n and k
with the variance model parameters (g, 3). Note that it may
be explicitly denoted by W(m,n, k;q, ), and thus, H by
H(m,n,k;p,a,q,p).

Our goal is finding the RB configuration that minimizes
the right-hand side of (4), so the objective function to be
minimized is defined as

h(mvn)k) EtM—S,l—oz/Q \/H/(m7n7k;ﬁ7q)/8) (8)

by omitting the constant factors on the right-hand side of (4),
where H'(m,n,k;p,q,8) = a’H(m,n,k;p,a,q,3). The
replacement of H by H’ is only for factoring out an ineffec-
tive parameter a. Provided a confidence level o and some
prior estimates of parameters (p,q, 3) in advance, the ob-
jective function h becomes a function depending only on
(m,n, k). Note that the value of parameter p that we use to
define the objective function may differ from the actual decay

rate estimated by an RB experiment we will run afterwards.

3.4 Execution Time Model

We consider a simple approximated execution time model.
It estimates the time required for the execution of RB se-
quences with a configuration (m, n, k) by

M
t(m,n, k) ~ Z n; ki (c1 m; + o). (9)
i=1

Here, c1 is a coefficient that reflects how execution time
increases with Clifford length m;, and co is a constant time
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Fig. 4: Confidence interval of estimated decay rate, predicted by the proposed method with different parameters (estimated

decay rate and the dimension of Clifford lengths M) for each heuristic configuration

required for running a sequence independent of Clifford length
m;. In this model, some overhead time such as the loading
time of control instructions due to sequence switching, is not
taken into account. The typical choice for ¢; is the average
single Clifford gate time, and that for cg is the sum of the
average measurement time and the interval time between
shots. Given the time limit T" for the execution of an RB
experiment, we optimize the objective function under the
time constraint

ttm,n, k) <T. (10)

3.5 Formulation of Configuration Optimization

Now we can formulate the problem of finding an optimal
RB configuration as a mathematical optimization problem
as follows.

h(m,n, k)

subject to m; > mi—1+1, fori=2,3,..., M,

ttm,n, k) <T

m,n, ke Zﬂ\f (positive integer vector).
(11)

Here h(m,n, k) is the confidence interval of the estimated

minimize

decay rate defined in (8), t(m, n, k) is the approximate ex-

ecution time described in (9), and T is the available time

budget. We introduce the constraint m; > m;_1 + 1 to re-
move the symmetry in the formulation and make the problem
more easily solvable.

There are two major difficulties in solving the (nonlinear)
optimization problem (11) in practice:

(1) The variability of the dimension of the Clifford lengths
(M may vary): Most of optimization algorithms assume
the dimension of solution space is fixed.

(2) Integer variables (m,n,k € Z4): Discrete solution
spaces usually prevent the use of descent methods that
performs well in practice.

We overcome the aforementioned difficulties as follows.

(1) We repeatedly solve the problem with a fix M for
M =4,5,..., Mmax, and select the best among them.
We do not need to take such a large Mmax in practice
(typically, Mmax < 40), so computation time is not a
concern in solving multiple problem instances.

(2) We relax the integer constraints and consider contin-

(© 2021 Information Processing Society of Japan

uous variables (i.e., m,n,k € Rf) We round the
optimal solution for the relaxed problem and obtain a
near-optimal integer solution for the original problem.
Rounding continous solutions to discrete ones is stan-
dard to obtain approximate solutions of (mixed) integer
programming [24].

4. Experiments

We conducted two experiments: simulating the expected
performance of typical heuristic configurations and evaluat-
ing the effect of configuration optimization on real devices.
The first computational experiment was to show that our
proposed method can be useful to estimate the performance
of a given configuration. The second experiment was to de-
termine if our method can provide an optimal configuration
that yields estimated decay rates with small variance in a real
environment. Throughout both experiments, we investigated
2-qubit RB (D = 4). We implemented our method in Python
and used Qiskit 0.23.5, which is an open-source quantum
computing software development framework [25], to generate
and run sequences. We used IBM Quantum systems [13]
with 5 qubits for experiments on real devices. Hereafter, we
omit the ibmq_ prefix in the device name for simplicity.

4.1 Computational Experiment

Our method can be useful to predict the confidence interval
of a decay rate estimated by RB under a given configuration.
That also means it can simulate how the change in decay rate
affects the performance (i.e., predicted confidence interval)
of a given configuration. We conducted such a simulation for
the three types of heuristic RB configurations: linear, square,
and exponential. Each configuration designed to have its
own Clifford lengths m, a number of sequences n identical
to the Clifford lengths, and a fixed k = 100. Clifford lengths
of a linear, square and exponential configuration were set to
[10(z — 1)+ 1], [2%] and [2*~ ] for & = 1,..., M, respectively.
In the simulation, we fixed the confidence level a to 0.05.
The two parameters (g, 3) in the objective function (4) were
fixed as ¢ = p and 8 = 0.0025. The value of 8 was obtained
from a preliminary experiment on an IBM Quantum sys-
tem athens. The two parameters (c1,co) in the execution
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Table 1: Summary of RB configurations used in the experiment on real devices

Configuration MT m n NT  TEstimated exec. time [s]
linear 21 [1,11,21,31,...,201] 5 (identical) _ 105 3.261
square 17 [1,4,9,16,...,289] 6 (identical) 102 3.193
exponential 10 [1,2,4,8,...,512] 10 (identical) 100 3.114
optimal 16 optimized optimized 929 2.974
optimal-identical-n 33 optimized 3 (identical) 99 2.961

T The dimension of Clifford lengths m, ¥ The total number of sequences, i.e. sum of n

time model (9) were set as ¢1 = 0.6 [us] and co = 250 [us],
based on the public properties of athens: The gate time of
CNOT gate is around 0.4 pus (one Clifford is composed of 1.5
CNOT gates on average), the default intervals between shots
is 250 pus, and the measurement time is around 3 pus. We set
the time budget T' to 3 seconds.

Figure 4 shows how the predicted confidence interval of
the estimated decay rate varies when changing the estimated
decay rate p and the dimension of Clifford lengths M for each
heuristic configuration. As expected, the optimal M varied
depending on the decay rate for all types of configurations.
Among the three types, exponential was most stable against
the changing decay rate, demonstrating its usefulness when
there is little knowledge on the decay rate in advance. It can
be also seen that linear and square works well in a specific
range of decay rates if we can select the optimal M when
square is more stable than linear. That suggests square is a
good option if we have a good prior estimated decay rate.

In this way, our method can be used to predict the per-
formance of heuristic configurations. Moreover, it can be
used to select the best among candidates of configurations.
For example, let consider any of the above heuristic con-
figurations parameterized by M. The confidence interval
for each M can be computed by fixing the decay rate to a
given prior estimate. Hence, the optimal M that minimizes
the confidence interval can be easily found, e.g., by grid
search. Actually, heuristic configurations compared with an
optimized configuration in the next section are prepared this

way.

4.2 Experiment on Real Devices
The optimal configuration found by our method may de-
viate from the true optimal configuration value due to the
following two gaps. One is the modeling gap, i.e., the mod-
els our method relies on cannot perfectly represent the real
system. The other is the gap between the prior estimates
and true values of the model parameters. These gaps are
inevitable and too difficult to measure in practice. There-
fore, we aim to demonstrate that our method is still useful
in practice even after subtracting the impact of those gaps.
That is, the configuration optimized by our method can yield
the estimated decay rate with smaller variance than those
from heuristic configurations in RBs on real devices.
Therefore, we conducted the experiment as follows.
(1) Preparing five configurations in total to be compared:
Three heuristic configurations with optimized M (linear,
square, exponential; the same as discussed in Section 4.1),
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a configuration optimized by our method (optimal),
and a reference configuration optimized by our method
with restricting the number of sequences to be identical
(optimal-identical-n).

(2) Bundling five sets of sequences generated with the five
configurations up into one job. We run 100 jobs on
each of the five devices (athens, quito, bogota, rome and
lima), which corresponds to running 5 configurations x
5 devices x 100 jobs = 2,500 RBs.

(3) Analyzing the deviation in the decay rates estimated via
100 times of RBs for each device and configuration.

We ran RBs with common configurations on the five devices,

each of which represents a different extent of imperfect prior

estimates of model parameters. By comparing the results
from different devices, we investigated how the imperfections
in model parameters affect the performance of each configu-
ration (i.e. the standard deviation of the resulting estimated
decay rates). Throughout this experiment, we focused on
optimizing m and n, and we fixed the number of shots to

100 (k = 100).

In the first preparation step, we used the same values
as those used in the Section 4.1 for the model parameters
required in our method: o = 0.05, p = ¢ = 0.97, 8 = 0.0025,
c1 = 0.6[us], co = 250 [us], and T = 3[s]. Note that the
parameters p, ¢, and 8 are determined by a preliminary
experiment on athens. We used scipy.optimize module to
optimize the relaxed problem discussed in Section 3.5 when
computing optimal and optimal-identical-n (see Appendix A.3
for the details). We set Mmax to 40 for both configurations.
The computation time to optimize each configuration was
within 30 seconds (for all values of M) on a laptop PC with
an Intel Core i7 2.7 GHz and 16 GB memory.

Table 1 summarizes five configurations prepared in the
first step. For the optimized configuration (optimal), m =[1,
2,19, 21, 23, 24, 25, 26, 27, 28, 29, 51, 52, 105, 195, 369],
n =[8, 5,5, 5,6, 6,5 6,6, 7 5 5 5 5 8 12]. For
the optimized configuration with the identical n constraint
(optimal-identical-n), m =[1, 2, 3, 4, 5, 12, 20, 23, 24, 25, 26,
27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 53, 92, 136,
181, 227, 276, 329, 385, 445], n = 3. Note that we allowed
to exceed the time budget constraint (due to rounding) for
heuristic configurations while the optimal ones strictly com-
ply with the constraint. Thus, it ensures that the comparison
does not favor the optimal ones (i.e. our method) unfairly.
It is interesting to note that optimal-identical-n seems to
sample a similar number of neighbor Clifford lengths for each
Clifford length that is heavily sampled in optimal; therefore,
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Table 2: Adjusted standard deviation (raw standard deviation) of estimated decay rates by multiple runs of RBs on different

real devices with different configurations. The best value among the configurations is in bold for each device. Average

estimated decay rates over runs are stated in Avg p column for reference.

Heuristic configurations Optimized configurations (Proposed)
Device Avgp Runs linear square exponential optimal optimal-identical-n
athens 0.9706 98 | 0.001481 (0.002843) 0.001217 (0.002658) 0.001275 (0.002721) 0.001074 (0.002798)  0.001151 (0.002720)
quito 0.9731 96 | 0.001469 (0.004673) 0.001268 (0.004245) 0.001378 (0.004419) 0.000967 (0.004357)  0.001190 (0.004310)
bogota  0.9762 96 | 0.001160 (0.002483) 0.001107 (0.002507) 0.001231 (0.002648) 0.000860 (0.002529)  0.000971 (0.002397)
rome 0.9836 93 | 0.000886 (0.001017)  0.000774 (0.000953) 0.000914 (0.001088) 0.000911 (0.000919) 0.000849 (0.001089)
lima 0.9858 92 | 0.000979 (0.001201) 0.000767 (0.000934) 0.000730 (0.000910) 0.000844 (0.001064) 0.000798 (0.000956)

they appear to be sampled from the same distribution.

In the second running step, we ran the sequences on five
IBM Quantum devices with five qubits available to us as of
May 19, 2021*!. We ran 100 jobs for each of the five devices,
and a few of them failed while waiting in the job queue for
unknown reasons. We analyzed the results of 98, 96, 96, 93,
and 92 successful jobs from athens, quito, bogota, rome and
lima, respectively. We used qubit 0 and 1 for all the devices.

Table 2 shows the adjusted standard deviations of decay
rates estimated by the WLS estimator from the survival
rate data obtained by repeated RBs on the five real devices.
Because it took about 24 hours to run all jobs for each device
(including the wait time in the queue), the raw values of
standard deviations described in (-) in the table were af-
fected by the temporal variation in the real decay rate. This
can be observed from the changes of the average estimated
decay rate over five configurations for each job at athens
as shown in Fig. 5 (see Appendix A.4 for similar figures of
other devices). Therefore, the values adjusted to remove the
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Fig. 5: Temporal variation in decay rate at athens: the black
line depicts the average of estimated decay rate over all five

configurations

effect of time fluctuation were described in the table and
used for the evaluation. Specifically, the mean value of the
five configurations minus the bias for each configuration was
used as the expected value of the configuration at the job
execution. The adjusted standard deviation was defined as
the sample deviation calculated by the residual from the
expected value. The bias for each configuration was set to

*1 We tried to run on all six 5-qubit devices, but belem was too

busy at that time and failed to complete all jobs within three
days, so we removed it from the analysis.
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the difference between the average of decay rates over all
jobs and configuration, and the average of decay rates over
all jobs for each configuration.

As shown in the table, optimal achieves the least deviation
of the estimated decay rate by RBs on athens, quito, and
bogota. This is the expected result because we used the
values based on athens as the prior estimates for the model
parameters. In particular, we set the prior estimate of the
decay rate to 0.97, while the actual (estimated) decay rate
of athens, quito, and bogota were all close to this value at
0.9706, 0.9731, and 0.9762, respectively. The improvement
rates from square (the best of the heuristic configurations) to
optimal in the standard deviation were quite large at 11.7%
for athens, 23.7% for quito, and 22.3% for bogota. In con-
trast, heuristic configurations achieved slightly less deviation
than the optimal configuration in rome and lima, where the
actual decay rates (0.9836 and 0.9858) were larger than its
prior estimate (0.97). This may be because the errors in
prior estimates were so large that the optimization did not
work as expected. Supporting the results on real devices,
optimal achieves better results on noisy simulators of real
devices: either the best or the second best (see Appendix A.5
for the details of noisy simulation). It is interesting to note
that optimal-identical-n likely provided more stable results
against the errors in prior estimates of decay rate comparing
with optimal. This could be because the identical-n con-
straint mitigated the risk of over-optimization along with
the given model parameters as if the regularization term
prevents overfitting in machine learning.

In summary, our method is capable of finding a better con-
figuration than typical heuristic configurations, at least when
we have sufficiently accurate prior estimates of parameters
required in the method.

5. Discussion

In this paper, we developed a method for minimizing the
confidence interval under the time budget constraint. Our
method can easily be modified so to minimize the execution
time while bounding the confidence interval by replacing the
formulation in (11) with

t(m,n, k)

mi; >mi—1+ 1, fori=23,..., M,

h(m,n, k) <e

m,n, k € Z} (positive integer vector).
(12)

minimize

subject to
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where € is the feasible upper bound of the confidence interval.

An advantage of our method is that it can be used for
the first RB of a brand new device because the confidence
model used in our method only requires the prior estimate
of parameters, not their learning with training data. In the
subsequent RBs, we could predict a more accurate confidence
interval by using the decay rate estimated in the previous
RB as the prior estimate. Ultimately, we could obtain the
sample data from every RB, which can be used to improve
the confidence model by learning from the data. In that case,
such approaches that use machine learning techniques (as
discussed in [23]) would work well.

In this paper, we focused on the standard RB protocol
and proposed a method for optimizing a sampling strategy
for it. Investigating how our method can be extended to
other benchmarking protocols with random sampling, such
as interleaved randomized benchmarking [26], dihedral bench-
marking [27-29], or other variants [16,30], is left for future
work.

Furthermore, our method may be generalized to be com-
bined with other protocols or algorithms that have the fol-
lowing properties:

e the protocol has a fitting parameter to be estimated in

it (decay rate of RB),

e the protocol requires a fitting model used in it (survival

rate decay model of RB), and

e the protocol repeats experiments to obtain samples to

be fitted (survival rates of RB) with changing sampling

parameters (RB configuration).
For example, an amplitude estimation algorithm proposed
in [31] satisfies the above properties by mapping the fitting
parameter to an angle related to the amplitude to be esti-
mated, the fitting model to Equation (13) in the paper, and
the sampling parameter to the number of repetitions of the
amplifying operation.

6. Conclusion

We addressed the problem of optimizing sampling strate-
gies for the standard RB. We showed how a sampling strategy
is determined by configurable parameters (an RB configu-
ration): Clifford lengths, the number of sequences for each
Clifford length, and the number of shots. We discussed how
the variance of the survival rate may not be uniform with
respect to Clifford length and discussed how to model the
heteroskedasticity in a simple form. We proposed a method
for optimizing an RB configuration, which constructs a math-
ematical optimization problem that minimizes the confidence
interval of the estimated decay rate while keeping the pre-
dicted execution time within a given time budget. The
method does not change the RB protocol itself, so it is easily
utilized as preprocessing. Our experiment on real devices
demonstrated that the proposed method can find a better
configuration, i.e. achieving smaller deviation in the resulting
estimated decay rate, than typical heuristic configurations in
practice. We believe the proposed method would be useful

in practice to reduce the sampling error while maintaining
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the execution time, or to reduce the execution time while
maintaining the sampling error.
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Appendix

A.1 Sample Variances of Survival Rate
for each Clifford Length on IBM
Quantum Systems

We provide four more sets of sample variance data ob-
tained from the devices of IBM Quantum systems, quito,

J

H =
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bogota, rome and lima, and the fitted curve for each device
in Fig. A-1. In each figure, the sample variance of survival
rate for each Clifford length is plotted as red points and the
blue dashed line shows the fitted curve to the model n; Uf;i
defined by (1)—(3). As shown in the figure, the sample vari-
ance of survival rate is not uniform with respect to Clifford
length for all devices. The model relatively explains the
sample variance well although some divergence in the tail is
observed in several cases.

A.2 Explicit Form of the Confidence In-
terval Function

We provide the explicit expression of H' used in the defini-
tion of confidence interval function discussed in Section 3.3.
Recall that

H =d*H =& [(J(é)TWJ(é))_l} (A1)

pp

and J(8)TW.J(8) is a 3x3 matrix jn the form of

A e
o
where
2 2 2m;—2 2m;—1
A-| @ > wimg p= a Yy, wimgp T
- 2m;—1 2m,; ’
a;wim;p~™ > wipT™

T _ m;—1 en
c = |a Wi M4 P ) wip )
7 2

and v = ), w;. Here and hereafter, we omit the superscript

¢ of p, a, b for brevity. Using the block matrix inversion

—1
A ¢ _

and the explicit form of the inverted 2x2 matrix, we obtain

formula

[Z wi p”™ — W}

[ wiprm — Gt ] [0 m? o2

A.3 Solving the Optimization Problem

The optimization problem (11) is obviously nonlinear in m
and n, recalling that the objective function includes the term
V H' with H' written down in (A.2) and w; is proportional to

. 2 ..
\/n; because w; is set to o5 “. Actually, it is even non-convex.

Y;
In general, the non-convex optimization problem has multiple
locally optimal solutions and it is often difficult to find the

globally optimal solution. In the experiments in Section 4.2,
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u

(5w ms pmrl>2} - [Z wimy pami=1 — (Cwip ), wims p,,,,,,l)]

3"

(A2)

we used scipy.optimize.minimize function (using default
parameters except for tol=1.0e-10) to compute one of the
locally optimal solutions. We added extra constraints n; > 5
in order to mitigate the impact of outliers in the formulation
for optimal. We replaced the vector variable n with a scalar
variable n to represent a common number of sequences in
the formulation for optimal-identical-n. We set the initial
guess (x0) to m = [1,2,3,..., M] and n; =5 for all ¢ (for
optimal) and n = 3 (for optimal-identical-n). Notice that we
may find a better solution by changing the initial guess.
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Fig. A-1: Sample variance of survival rate for each Clifford length on different devices and the fitted curve to the variance
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Table A-1: Standard deviations of estimated decay rates by 100 runs of RBs with different configurations on noisy simulators
of different real devices. The best value among the configurations is in bold for each device. Average estimated decay rates

over runs are stated in Avg p column for reference.

Heuristic configurations Optimized configurations (Proposed)
Device Avgp Runs linear square exponential optimal optimal-identical-n
athens  0.9758 100 | 0.001311 0.001125 0.001277 0.001032 0.001104
quito 0.9779 100 | 0.001188  0.001052 0.001342 0.001028 0.001024
bogota  0.9805 100 | 0.000927  0.000910 0.000909 0.000860 0.000846
rome 0.9829 100 | 0.000888  0.000941 0.000992 0.000838 0.000778
lima 0.9825 100 | 0.001111  0.000946 0.000975 0.000843 0.000792

A.4 Temporal Variation in Decay Rate

We provide four more plots of the temporal variation in
decay rate on IBM Quantum devices, quito, bogota, rome
and lima in Fig. A-2. The estimated decay rate with square,
exponential and optimal for each job are also shown in the
figure (we omit that with linear and optimal-identical-n for
ease of reading). As seen in the figures, square was likely to
estimate slightly higher decay rates than the other configu-
rations for all devices. In fact, the sample average of decay
rates from square was 0.9750, 0.9772, 0.9837, and 0.9870
while those from others were within [0.9723, 0.9728], [0.9757,
0.9762], [0.9825, 0.9828], and [0.9852, 0.9857] for quito, bo-

(© 2021 Information Processing Society of Japan

gota, rome and lima, respectively. This might imply that we
need more investigation on the bias in the estimated decay
rate.

A.5 Results of Noisy Simulation

To confirm RB configurations optimized by our method
performs as expected in a synthetic environment, we con-
ducted the same experiments described in Section 4.2 on
noisy simulators. We utilized NoiseModel.from backend
function in Qiskit to simulate noisy execution of sequences
on each device. We show the results in Table A-1, which
confirm that optimal can achieve better results on noisy
simulators of real devices: either the best or the second best.
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