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エラー抑制法を組み込んだ量子計測
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概要：Quantum metrology has a potential for achieving high sensitivity by harnessing quantum effects

and can be applied in various areas ranging from material science to biology. Because the sensitivity is

reduced by decoherence, many efforts have been made to recover the sensitivity under the effect of the

decoherence. However, most of the researches have considered only statistical errors: reducing general

systematic errors remains almost unexplored. Actually, systematic errors could nullify the advantage of

the quantum strategy over the classical one. Here, we propose error-mitigated quantum metrology, a

protocol to mitigate systematic errors by combining quantum metrology with quantum error mitigation.

We demonstrate that our protocol mitigates systematic errors and recovers the superclassical scaling in

a practical situation under time-inhomogeneous noise. Our results pave the way for hybrid structures

with quantum computing and quantum metrology.

Error-mitigated quantum metrology

1. Introduction

Quantum metrology aims to improve the sensitivity to

estimate unknown parameters by harnessing quantum ef-

fects such as entanglement [1–6]. Such precise sensing

technology has various applications such as a measure-

ment of atomic frequency [7, 8], magnetometry [9–16],

thermometry [17–19], an electrometer [20,21],and electron

spin resonance [22–24].

A qubit based sensing is particularly promising for prac-

tical applications. A typical protocol is as follows: (1)

preparing the probe qubits in a specific quantum state:

(2) exposing the state to the target magnetic field: (3)

performing a measurement for the readout: (4): Repeat-

ing (1)-(3) many times: (5) post-processing the measure-
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ment data with a theoretical model to estimate the target

magnetic field.

A quantum strategy has a scaling advantage over the

classical strategy for sensing. For given L qubits, a vari-

ance of the estimation scales as O(L−1) with separable

states for the probe qubits, which is called the standard

quantum limit (SQL). On the other hand, a variance of

the estimation can scale as O(L−2) with entangled qubits,

and this scaling is called the Heisenberg limit.

Since an entangled state is fragile against decoherence,

it is not trivial whether the entangled sensors can surpass

the separable sensors under realistic conditions. For spe-

cific noise such as local Markovian dephasing, the vari-

ance shows the same scaling as the SQL even when we

use entanglement for the probe qubits. To surpass the

SQL under the decoherence, several efforts have been de-

voted: using quantum superclassical effect [25, 26], im-

plementing quantum teleportation [27, 28], and applying

quantum error correction [29–38]. However, most of the

previous works have considered only reducing statistical

errors; techniques to suppress systematic errors remain

almost unexplored.

Systematic errors are fatal for quantum metrology. Un-
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図 1 A schematic illustration on the present work. (a) No sys-

tematic noise happens with a correct estimation. (b) Sys-

tematic noises happen with a wrong estimation. (c) Error-

mitigated quantum metrology exponentially reduces the

systematic noise and recovers the estimation uncertainty

of the target value ω.

like statistical errors, systematic errors are not reduced

even when the number of samples increases, thus seri-

ously limiting the sensitivity [22, 39] [Fig. 1(b)]. In quan-

tum metrology, systematic errors usually result from a

difference between a theoretical model adopted by the ex-

perimentalists and the actual one. To estimate the target

parameter, we fit the experimental data with a theoret-

ical model, and an inaccuracy of the theoretical model

induces a bias in the estimation. If we had perfect knowl-

edge about the noise model by using process tomography,

systematic errors would not occur [Fig. 1(a)]. Such an

inaccuracy of the theoretical model typically comes from

drift noise; for example, a fluctuation of the coherence

time has been observed [40, 41]. Such fluctuations pre-

vent us to estimate the correct amplitude of the noise.

Although some experimental works have been carried out

to reduce specific systematic errors, a general approach is

missing.

Quantum error mitigation (QEM) [42], which is devel-

oped for noisy intermediate-scale quantum computers [43],

can be a solution to reduce systematic noises. QEM uses

post-processing of the measurement outcome to recover

the error-free expectation value at the expense of the sam-

pling cost, but requires less qubit overhead than the quan-

tum error correction. Such an increasing sampling cost

allows QEM to reduce not statistical errors but system-

atic errors. Many kinds of error-mitigation techniques has

been proposed such as extrapolation or probabilistic error

cancellation [44, 45]. However, most of the methods are

useless for quantum metrology due to the noise fluctua-

tion.

In the present letter, we propose error-mitigated quan-

tum metrology, a protocol to exponentially mitigate sys-

tematic errors and improve the sensitivity even under fluc-

tuating noise [Fig. 1(c)]. Our protocol includes the idea

of a recent-proposed error-mitigation technique, the vir-

tual distillation [46, 47], to mitigate unknown stochastic

errors. We carefully extend this idea in constructing our

protocol to deal with fluctuating noise. We apply our pro-

tocol to entanglement sensor under Markovian and time-

inhomogeneous noise and demonstrate that our protocol

exponentially reduces the systematic error and ’recover’

the scaling without systematic errors. Our result paves

the way for applying error mitigation to quantum metrol-

ogy to enhance the sensitivity.

2. Quantum metrology with systematic

errors

Here, we describe a general theory for systematic er-

rors in quantum metrology [48]. In a typical quantum-

metrology setup, we prepare an initial state, expose this

to the target fields characterized by a parameter ω, and

obtain a state ρc. Then, on this state, we implement a

measurement described by a projection operator P̂ to pro-

vide a binary outcome. The measurement probability is

given as

Pc = Tr[P̂ ρc] = xc + ycω, (1)

where xc and yc are some scalars. Here, we assume

that ω is small, and we can ignore higher order terms.

Based on the probability Eq. (1), we obtain the measure-

ment outcome mj ∈ {−1, 1}. Repeating the measure-

ment Nsamp times, we obtain the average value, SN =∑Nsamp

j=1 mj/Nsamp. To estimate the parameter ω, we need

to fit this experimental data with a theoretical model. If

we have imperfect knowledge about the probe qubits, the

theoretical model that we have should be different from

the true one. We assume that the probability based on

such an inaccurate theoretical model is given as

Pe = Tr[P̂ ρe] = xe + yeω, (2)

where ρe, xe, and ye denote the estimated values of ρc, xc,

and yc, respectively: they can be different from the actual

values. The average values of measurement outcome SN

and Eq. (2) give the estimated ω as ωest = (SN − xe)/ye.

Systematic errors require us to consider the estimation

uncertainty of the target quantity [48]. The estimation un-

certainty of ω is defined as δ2ω =
〈
(ωest − ω)2

〉
with the

bracket denoting the ensemble average, and calculated as

δ2ω =
1

y2e

[
δ2Pc + (xe − xc)

2
]
, (3)
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図 2 The estimation uncertainty of ω as a function of the num-

ber of qubits L for several combinations of Te and Tc,

where the total measurement time is set to be T = 100.

When we estimate a coherence time correctly, Te = Tc,

δ2ω follows the standard quantum limit for the Markovian

noise in (a), while it follows the superclassical scaling for

the time-inhomogeneous noise in (b). When Te ̸= Tc, δ2ω

is constant for the Markovian noise in (a), while it follows

the standard quantum limit for the time-inhomogeneous

noise in (b).

where δ2Pc is the variance of Pc, which is typically δ2Pc ≃
Pc(1−Pc)/Nsamp, and we neglected (ye− yc)2ω2+2(xe−
xc)(ye − yc)ω because ω is small. The second term in

Eq. (3) comes from a systematic error xe − xc induced

by the wrong estimation of the probability Pc ̸= Pe. As

Nsamp increases, the first term in Eq. (3), which comes

from a statistical error, decreases whereas the second term

remains. Most of the previous theoretical studies have fo-

cused on the statistical error by assuming Pc = Pe. In the

following, we investigate how the systematic error xe −xc
affects the scaling of the variance δ2ω against L when we

adopt the Ramsey interferometry measurement under the

effect of Markovian and time-inhomogeneous noise.

3. Ramsey interferometry measure-

ment under Markovian and time-

inhomogeneous noise

Here, we investigate how systematic errors affect the

estimation uncertainty of ω using Ramsey interferom-

etry measurement [5] under the Markovian and time-

inhomogeneous local amplitude damping. We assume

that we do not precisely know the coherence time of

the system, and this induces the systematic error. The

measurement protocol is as follows. Firstly, we prepare

the L-qubits Greenberger–Horne–Zeilinger (GHZ) state:

ρ0 = |GHZ⟩ ⟨GHZ| where |GHZ⟩ = (|0...0⟩ + |1...1⟩)/
√
2.

Subsequently, the initial state undergoes local amplitude

damping as follows: E(L) ◦ E(L−1) ◦ · · · E(1)(ρ0), where

E(i)[ρ] = K
(i)
0 ρK

(i)
0 + K

(i)
1 ρK

(i)
1 is the error map of the

amplitude damping on ith qubit with

K
(i)
0 =

(√
1− ϵ 0

0 1

)
,K1 =

(
0 0
√
ϵ 0

)
(4)

being Klaus maps on the ith qubit and ϵ being an error

rate. The resulted initial density matrix is

E(ρ) = 1

2

[
(1− ϵ)L |1...1⟩ ⟨1...1|+ (1 + ϵL) |0...0⟩ ⟨0...0|

+(1− ϵ)L/2(|1...1⟩ ⟨0...0|+ |0...0⟩ ⟨1...1|)
]

+
1

2

2L−1∑
k=1

pk |ψk⟩ (5)

=
1

2
[λ+ |λ+⟩ ⟨λ+|+ λ− |λ−⟩ ⟨λ−|]

+
1

2

2L−1∑
k=1

pk |ψk⟩ , (6)

where λ± = 1+ϵL+(1−ϵ)L±E
2 are eigenvalues with

E =
√

[1 + ϵL − (1− ϵ)L]2 + 4(1− ϵ)L, and |λ+⟩ =

cos θ |1...1⟩ + sin θ |0...0⟩ and |λ−⟩ = − sin θ |1...1⟩ +

cos θ |0...0⟩ are corresponding eigenstates with cos 2θ =

[(1− ϵ)L − (1 + ϵL)]/E and sin 2θ = 2(1− ϵ)L/2/E. Here

|ψk⟩ is the computational basis that is orthogonal to |0...0⟩
and |1...1⟩ (e.g. |010...0⟩ , |011...0⟩) and pk = ϵk(1− ϵ)L−k

with k being the number of 0 in |ψk⟩. Then the GHZ

state evolves under the Hamiltonian Ĥ =
∑L

j=1 ωσ̂
(j)
z /2

for a time t, where ω is the energy difference between

|0...0⟩ and |1...1⟩. Throughout of our paper, we set ℏ = 1.

Since the unitary time-evolution commutes with the noise

process, we can consider the case that the noise occurs

before the unitary evolution without loss of generality. Fi-

nally, we implement a projective measurement with P̂y =

|GHZy⟩ ⟨GHZy|, where |GHZy⟩ = (|0...0⟩ − i |1...1⟩)/
√
2.

The probability of the measurement is

P = Tr[ρ(t)P̂y] =
1 + ϵL + (1− ϵ)L

4
+

(1− ϵ)L/2

2
Ltω

≡ x+ yω (7)

where we used sinωt ≃ ωt due to small ωt.

We now turn our attention to the uncertainty of ω.

In what follows, the quantities with the subscript c(e)

denote the actual (estimated) values and are calculated

with the actual (estimated) error rate ϵc(e). In quantum

metrology, we usually choose the interaction time to min-

imize the uncertainty. However, since we do not know

the actual error rate, we can only estimate the variance,

δ2ωe = Pe(1−Pe)/(y
2
eNsamp). Then we minimizes the es-

timated variance, δ2ωe, with respect to t under the total

measurement time T = Nsampt and obtain the ’optimal’

time topte . In fact, the estimation uncertainty of ω is cal-

culated as δ2ωc(t = topte ).
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To demonstrate the effect of bias noise, we calculate

δ2ωc(t = topte ) using the actual (estimated) error rate be-

ing ϵc(e) = 1 − exp(−t/Tc(e)) for Markovian noise and

ϵc(e) = 1 − exp(−t2/T 2
c(e)) for time-inhomogeneous noise,

where Tc(e) being the actual(estimated) coherence time

of the noise. The ’optimal’ measurement interval is nu-

merically found to be t = topte ∼ O(L−1) for Markovian

noise and t = topte ∼ O(L−1/2) for time-inhomogeneous

noise. The result is shown in Fig. 2(a)[(b)] for Markovian

(time-inhomogeneous) noise. For both the noises, since

the correct estimation of the coherence time, Tc = Te [the

green line in Fig. 2], provides the true uncertainty, the un-

certainty of ω follows the conventional scaling: standard

quantum limit, δ2ω ∼ O(L−1) for the Markovian noise

and the superclassical scaling, δ2ω ∼ O(L−3/2), for the

time-inhomogeneous noise [25, 26]. On the other hand,

the wrong estimation of the coherence time (Tc ̸= Te)

significantly limits the advantage of the quantum strat-

egy; the estimation uncertainty scales as δ2ω ∼ O(L0) for

the Markovian noise, and δ2ω ∼ O(L−1) (SQL) for the

time-inhomogeneous noise. This is explained as follows.

The ’optimal’ time topte scales as O(L−1) [O(L−1/2)] for

Markovian (time-inhomogeneous) noise. The term com-

ing from the systematic noise in Eq. (3), (xe − xc)
2/y2e ,

scales as O(L0) [O(L−1)] because xc(e) ∼ O(L0) for both

the noises and ye ∼ O(L0) [ye ∼ O(L−1)]. Since this scal-

ing is poorer than that comes from the statistical error

(the first term in Eq. (3)), the systematic noise is dom-

inant, resulting in the constant (the SQL) scaling of the

estimation uncertainty. In general, the scaling of the bias

term (xe − xc)
2 is worse than that of δ2Pc/Nsamp, and

therefore the former spoils the latter.

4. Error-mitigated quantum metrology

So far, we have demonstrated that systematic errors

spoil the scaling relation between δ2ω and L. Here, to

reduce systematic errors, we propose a protocol of error-

mitigated quantum metrology [Fig. 3(a)]. In the following,

we describe our protocol step by step: note that the nota-

tions are the same as those above without error mitigation.

The protocol before the projective measurement is the

same as the aforementioned protocol except for prepar-

ing n copies of the GHZ states as the initial state. Af-

ter the time evolution, the states are put to a quantum

circuit shown in the error-mitigation part in Fig. 3(a).

This circuit enables us to obtain Tr[ρn] with Ô = Î and

Tr[ρnP̂y] with Ô = Ŷ [46]; see App. A for the virtual distil-

lation. The aforementioned Ramsey interferometry model

enables the analytical calculation of Tr[ρn] and Tr[ρnP̂y]

as follows:

Tr[ρn] =
1

2n

[
λn+ + λn− +

L−1∑
k=1

(
L

k

)
ϵnk(1− ϵ)n(L−k)

]
(8)

and

Tr[ρnP̂y] =
1

2

λn+ + λn−
2n

+
1

2

λn+ − λn−
2n

sin 2θLωt. (9)

These quantities provide an error-mitigated probability as

Pn = Tr[ρnP̂y]/Tr[ρ
n] = xn + ynω, where

xn =
1

2

1 +
(

λ−
λ+

)n
1 +

(
λ−
λ+

)n
+
∑L−1

k=1

(
L
k

) ( ϵk(1−ϵ)(L−k)

λ+

)n , (10)

yn =
1

2

[
1−

(
λ−
λ+

)n]
Lt sin 2θ

1 +
(

λ−
λ+

)n
+
∑L−1

k=1

(
L
k

) ( ϵk(1−ϵ)(L−k)

λ+

)n . (11)

Here, xn and yn are error-mitigated values of x and y in

Eq. (7), respectively. The estimation uncertainty in our

protocol is calculated to be δ2ω = [δ2Pn + (xe − xc)
2]/y2e ,

where δ2Pn is the variance of Pn calculated using the prop-

agation of error as [46]

δ2Pn = δ2

(
Tr[ρnP̂y]

Tr[ρn]

)

=
1− (Tr[ρnP̂y])

2

(Tr[ρn])2N ′
samp

+
(1− (Tr[ρn])2)(Tr[ρnP̂y])

2

(Tr[ρn])4N ′
samp

,

(12)

where we assumed the same number of sampling for

the numerator and the denominator. Here, N ′
samp =

Nsamp/(2n) because our protocol requires 2n times more

sampling than the standard protocol: twice for the nu-

merator and denominator, and n times for the error miti-

gation. The optimization protocol for the estimation un-

certainty is the same as that without error mitigation ex-

cept for using error-mitigated quantities. We firstly find

the ’optimal’ time t = topte,n that minimize the estimated

variance, δ2ωe,n = δ2Pe,n/y
2
e,n under the total measure-

ment time T = Nsampt. By substituting t = topte,n for

δ2ωn = [δ2Pc,n+(xc,n−xe,n)2]/y2e,n, we obtain the estima-

tion uncertainty of ω for the error-mitigated protocol. Our

protocol enables both xe,n and xc,n to exponentially con-

verge to 1/2 as n increases, and thus the systematic noise,

xe,n − xc,n, exponentially approaches zero (see Eq. (??)).

In this way, our protocol mitigates the systematic error.

To show the performance of our protocol, we numeri-

cally find the ’optimal’ time t = topte,n and plot δ2ωn(t =

topte,n ) as a function of L in Fig. 3(b) [Fig. 3(c)] for lo-

cal Markovian (time-inhomogeneous) amplitude damping
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図 3 (a) A quantum circuit for the error-mitigated quantum metrology. (b)[(c)] The

estimation uncertainty δ2ωn for Markovian (time-inhomogeneous) local amplitude

damping as a function of the number of qubits L with Te = 0.8 and Tc = 1.0 for

n = 2, 3, where the total measurement time is set to be T = 100. The red and

green lines shows that the virtual distillation can recover standard quantum limit

(the superclassical scaling) even when Te ̸= Tc.

noise. As shown with the blue line in Fig. 3(b) [Fig. 3(c)],

δ2ωn follows the constant (the SQL) for the Markov (time-

inhomogeneous) noise without error mitigation due to

the systematic error. Importantly, our protocol recov-

ers the SQL (the superclassical) scaling, δ2ω ∼ O(L−1)

[δ2ω ∼ O(L−3/2)], as the red (for n = 2) and green (for

n = 3) lines show. Although the performance of the vir-

tual distillation under coherent errors seems limited [?],

our demonstration suggests that our protocol is resilient

for a local amplitude damping (T1 noise), which is a typ-

ical coherent error in quantum metrology.

5. Possible experimental realization

Finally, we propose a possible experimental realization

of our scheme using a hybrid structure of quantum sen-

sor and quantum computer. Superconducting flux qubits

(FQs) are promising candidates for both quantum metrol-

ogy and quantum computation. The FQs have a strong

coupling with the magnetic fields, and are suitable for

quantum magnetic field sensing. Moreover, since the FQs

are artificial atoms, there are many degrees of freedom

for the circuit design, and so they have advantage in the

scalability, which is prerequisite for a quantum computer.

Moreover, the long coherence time of the FQ are useful

for both quantum metrology and quantum computation.

Therefore, we could use the FQ not only for the conven-

tional Ramsey measurements but also for our scheme to

utilize the entanglement generation and virtual distilla-

tion where high-fidelity quantum operations are required.

6. Conclusions and discussions

In conclusion, we have pointed out that systematic er-

rors spoil a scaling relation between δ2ω and L, and il-

lustrated this by considering Ramsey measurements un-

der Markovian and time-inhomogeneous local amplitude

damping. To mitigate the systematic error, we have pro-

posed error-mitigated quantum metrology, a protocol in-

cluding error mitigation using the quantum circuit shown

in Fig. 3(a). We have found that our protocol exponen-

tially reduces the systematic errors and recovers the scal-

ing without systematic errors. Our results have suggested

that error mitigation can be useful for quantum metrol-

ogy under systematic errors, which typically appear with

estimation errors. Notably, our protocol can be applied

to the case with any stochastic and fluctuating noise. In

contrast, quantum metrology with quantum error correc-

tion can be applied to specific cases such as bit-flip errors.

Thus, our protocol will pave the way to achieve high sen-

sitivity in quantum metrology under general stochastic

errors.
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[4] Tóth, G. and Apellaniz, I.: Quantum metrology from
a quantum information science perspective, J. Phys. A:
Math. Theor., Vol. 47, No. 42, p. 424006 (online), DOI:
10.1088/1751-8113/47/42/424006 (2014).

[5] Degen, C. L., Reinhard, F. and Cappellaro, P.: Quantum
sensing, Rev. Mod. Phys., Vol. 89, p. 035002 (online),
DOI: 10.1103/RevModPhys.89.035002 (2017).
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付 録
A.1 Virtual distillation

The virtual distillation is a recent-proposed error-

mitigation technique [46,47] and can exponentially reduce

stochastic unknown errors as follows. Suppose we want

the expectation value of an observable Ô with an (error-

free) ideal state |psi⟩ideal, but unexpected errors causes a

noisy density matrices

ρnoisy = (1− ϵ) |ψideal⟩ ⟨ψideal|+ ϵ
D∑

k=2

pi |ψk⟩ ⟨ψk| ,

(A.1)

where ϵ is an error rate, D is a dimension of a system

that we consider, |ψ⟩k is an erroneous state with ϵpk be-

ing a corresponding error probability. We assume that

(1 − ϵ) ≫ ϵpi. We want
〈
Ô
〉
ideal

=
〈
ψideal

∣∣∣ Ô ∣∣∣ψideal

〉
,

but the noisy density matrix gives

Tr[ρnoisyÔ] = (1− ϵ) ⟨Ô⟩ideal + ϵ

D∑
k=2

pk ⟨Ô⟩k , (A.2)

where ⟨Ô⟩k = ⟨ψk|Ô|ψk⟩ is the expectation value of Ô

with the erroneous state |ψk⟩. In the virtual distilla-

tion, we calculate Tr[(ρnoisy)
nÔ]/Tr[(ρnoisy)

n] as the error-

mitigated expectation value of Ô:

⟨Ô⟩mit =
Tr[(ρnoisy)

nÔ]

Tr[(ρnoisy)n]
=

⟨O⟩ideal +
(

ϵ
1−ϵ

)n∑D
k=2(pk)

n ⟨Ô⟩k

1 +
(

ϵ
1−ϵ

)n∑D
k=2(pk)

n

(A.3)

= ⟨Ô⟩ideal +
(

ϵ

1− ϵ

)n
[

D∑
k=2

(pk)
n(⟨Ô⟩k − ⟨Ô⟩ideal)

]

+O

( ϵ

1− ϵ

)2n
(

D∑
k=2

(pk)
n

)2
 (A.4)

This equation shows that ⟨Ô⟩mit exponentially approaches
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⟨Ô⟩ideal as n increases. To calculate ⟨Ô⟩mit, we prepareM

copies of ρnoisy, and implement a specific type of SWAP

operations (derangement [46]) on them, and measure the

ancilla qubit in the quantum circuit shown in Fig. 3(a)

with Ô and without Ô: the probabilities of getting 0 as

the measurement outcome with Ô and without Ô are de-

noted as pnum and pdenom, respectively. These probabili-

ties allows us to calculate ⟨Ô⟩mit as

2pnum − 1

2pdenom − 1
=

Tr[(ρnoisy)
nÔ]

Tr[(ρnoisy)n]
= ⟨Ô⟩mit . (A.5)
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