
Linear Regression by Quantum Amplitude Estimation and its Extension to Convex Optimization

Kazuya Kaneko,1 Koichi Miyamoto,2, 1, ∗ Naoyuki Takeda,1 and Kazuyoshi Yoshino1

1Mizuho-DL Financial Technology Co., Ltd.
2-4-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan

2Center for Quantum Information and Quantum Biology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

Linear regression is a basic and widely-used methodology in data analysis. It is known that some quantum
algorithms efficiently perform least squares linear regression of an exponentially large data set. However, if we
obtain values of the regression coefficients as classical data, the complexity of the existing quantum algorithms
can be larger than the classical method. This is because it depends strongly on the tolerance error ϵ: the best
one among the existing proposals is O(ϵ−2). In this paper, we propose a new quantum algorithm for linear
regression, which has a complexity of O(ϵ−1) and keeps a logarithmic dependence on the number of data points
ND. In this method, we overcome bottleneck parts in the calculation, which take the form of the sum over data
points and therefore have a complexity proportional to ND, using quantum amplitude estimation, and other parts
classically. Additionally, we generalize our method to some class of convex optimization problems.

This is a short version of [1]. All proofs are omitted in this
document but presented in [1].

I. INTRODUCTION

Following the rapid advance of quantum computing tech-
nology, many quantum algorithms have been proposed and
their applications to the wide range of practical problems have
been studied in the recent researches. One prominent example
is linear regression. Linear regression, which is based on the
least squares method in many cases, is a basic and ubiquitous
methodology for many fields in natural and social sciences.
There are some quantum algorithms for linear regression [2–
7] with complexity depending on the number of data points
ND as O(polylog(ND)) 1. This means the exponential speedup
compared with the naive classical method explained in Sec.
II B, whose complexity is proportional to ND.

However, despite this, the existing quantum methods are
not necessarily more beneficial than classical ones, when we
want to obtain the values of the optimized regression coeffi-
cients as classical data, and ND is mid-sized, say O(103−105).
Roughly speaking, in the existing methods such as the first
proposed one [2], which is based on Harrow-Hassidim-Lloyd
(HHL) algorithm [11] for solving systems of linear equations,
the authors create quantum states in which the values of the
coefficients are encoded and read out in classical form. There-
fore, it is inevitable that the estimated coefficients are accom-
panied by errors and high-accuracy estimation leads to large
complexity. As far as we know, the existing method with the
best complexity with respect to the tolerance error ϵ is that
in [4]: the complexity of estimating coefficients with additive
error at most ϵ is

O
(

d5/2κ3

ϵ2 polylog
(

dκ
ϵ

))
, (1)

∗ koichi.miyamoto@qiqb.osaka-u.ac.jp
1 There are also quantum-inspired classical methods [8–10].

where d is the number of the coefficients (or the explana-
tory variables) and κ is the condition number of the design
matrix (defined in Sec. II B). On the other hand, a naive
classical method, which is explained in Sec. II B, has com-
plexity O

(
d2ND

)
. Therefore, assuming the prefactors in these

expressions of complexities are comparable, under an ordi-
nary situation ϵ ∼ 10−3, d ∼ 10, κ ∼ 1, the minimum ND for
which the quantum method is advantageous over classical one
is ND ∼ 106. Although in some problems ND is of such an
order or much larger, cases where ND ∼ 103 or 104 are also
ubiquitous, and in such cases the exiting quantum methods are
inferior to classical ones.

The mid-sized regression problems are often time-
consuming and desired to be sped up, although we might
naively think that such problems can be solved by classical
computers in short time. For example, if such regressions are
repeated in the whole of the calculation flow, the total compu-
tational time can be long. One of such cases is least square
Monte Carlo (LSM) [12]. LSM is a methodology used in pric-
ing financial derivatives2 with an early exercise option, that
is, the contract term stating that either of two parties in the
contract can terminate it before the final maturity3. In Monte
Carlo pricing, we generate many (say, O(104 − 105)) paths
of the random time evolution of underlying assets and esti-
mate the price as the expected cashflow. In the case of early-
exercisable products, we have to determine the optimal exer-
cise time for each path. In LSM, we approximate the contin-
uation value of the derivative at each exercise date by linear
regression using certain functions of underlying asset prices
as explanatory variables, whose number is typically d ∼ 10.
Since regression is done many times in pricing one contract
and banks have numerous contracts, they have huge complex-
ity in total and are meaningful targets of quantum speedup,

2 Financial derivatives, or simply derivatives, are financial contracts in which
two parties exchanges cashflows whose amounts are determined by the
price of some assets. As textbooks for derivatives and pricing of them,
we refer to [13, 14].

3 For the detail of LSM, see [12].

IPSJ SIG Technical Report

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

even though each of them is mid-sized.
Based on the above motivation, in this paper, we present

a new quantum algorithm for linear regression, focusing on
reducing the order of the inverse of ϵ in the expression of
the complexity. In our method, unlike existing methods, we
do not perform all calculation on a quantum computer. In-
stead, we use a quantum computer only to perform a bot-
tleneck part in the naive classical method. That is, we per-
form some intermediate calculation, which is the sum over
ND terms and therefore has the complexity proportional to ND
naively, by quantum algorithm. Then, we classically solve the
d-dimensional system of linear equations, whose coefficients
and constant terms are outputs of the preceding quantum com-
putation, and obtain the regression coefficients. A classical
computer can perform this step in negligible time for d ∼ 10,
without inducing any error. Also note that we naturally obtain
the regression coefficients as classical data.

In order to speed up the bottleneck sums, we use quantum
amplitude estimation (QAE) [15–21], which is also used to
speed up Monte Carlo integration [16, 22]. Then, as discussed
in detail in Sec. III, we can perform the sums with complexity

O
(
max

{
d3/2κ4

ϵ
, dκ2

}
× d2 log(d)

)
,

and the total complexity of the whole of our method is al-
most equal to this. Compared with the naive classical method,
whose complexity is O(d2ND), our method accomplishes
speedup with respect to ND. Besides, compared with the exist-
ing quantum methods, our method improves the dependency
of the complexity on ϵ from ϵ−2 in (1) to ϵ−1. Unfortunately, in
out method, the dependencies on d and κ are worse than those
of (1) and the naive classical method. Therefore, our method
is more suitable to the situation such that

d, κ � 1
ϵ
� ND, (2)

which includes typical mid-sized problems such as LSM.
In addition to linear regression, we generalize our method

to some class of convex optimization. As we see in IV, linear
regression can be considered as an optimization problem of
the sum of quadratic functions solved by Newton’s method.
Inspired by this, we consider a convex optimization problem
where an objective function is written as sums of many terms
similarly to linear regression, and present a quantum algo-
rithm of Newton’s method, in which calculation of the gra-
dient and the Hessian is sped up by QAE. We also estimate
complexity to obtain a solution with desired error level under
some mathematical assumptions which are usually made in
the convergence analysis of Newton’s method.

The remaining parts of this paper are organized as follows.
Sec. II is a preliminary section. In Sec. II A, we present some
notations for the later discussion. In Sec. II B, we briefly
review linear regression and the classical method for it. In
Sec. III, we explain our method for linear regression in detail.
In Sec. IV, we discuss the extension of our method to some
convex optimization problems. Sec. V summarizes this paper.

II. PRELIMINARY

A. Notations

For a vector v⃗ ∈ Rn,
∥∥∥v⃗

∥∥∥ and
∥∥∥v⃗

∥∥∥∞ denotes the Euclidean
norm and the max norm, respectively. For a matrix A ∈ Rm×n,
‖A‖ denotes the spectral norm, which is equal to the maximum
singular value of A. For a full-rank matrix A ∈ Rm×n, κ(A)
denotes its condition number.

B. Linear regression

We here define the problem of linear regression. Assume
that we have ND data points D := {(x⃗i, yi)}i=1,..,ND , each of
which consists of a vector of d explanatory variables4 x⃗i =

(x(1)
i , ..., x(d)

i)T ∈ Rd and an objective variable yi ∈ R. Lin-
ear regression attempts to fit the linear combination of the ex-
planatory variables to the objective variable, that is, finding a⃗
such that

y⃗ ' Xa⃗. (3)

Here, a1, ..., ad ∈ R are model parameters called regression
coefficients and a⃗ := (a1, ..., ad)T ∈ Rd. y⃗ := (y1, ..., yND)T

and

X :=

x(1)

1 · · · x(d)
1

...
. . .

...

x(1)
ND
· · · x(d)

ND

 (4)

is called the design matrix. In this paper, as in many cases, we
determine a⃗ by the least squares method, that is,

a⃗ = argmin
a⃗′

∥∥∥y⃗ − Xa⃗′
∥∥∥2
. (5)

As is well known (see [23] for example), the solution of (5) is
given by

a⃗ =
(
XT X

)−1
XT y⃗, (6)

where we assume that X is full-rank, as stated again in Sec.
III B as Assumption 2.

Here, let us introduce some symbols. We define d×d matrix
W,

W :=
1

ND
XT X, (7)

whose (i, j)-element is

wi j =
1

ND

ND∑
k=1

x(i)
k x(j)

k . (8)

4 If we want to consider the intercept, we include a dummy variable (say x(1)
i)

in each explanatory variable vector and set it to 1: x(1)
1 = ... = x(1)

ND
= 1.

IPSJ SIG Technical Report

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

W is invertible since we assumed that X is full-rank. We also
define the d-dimensional vector z⃗,

z⃗ :=
1

ND
XT y⃗, (9)

whose i-th element is

zi =
1

ND

ND∑
k=1

x(i)
k yk. (10)

In (7) and (9), the prefactor 1/ND is just for the later conve-
nience. Using these, (6) becomes

a⃗ = W−1z⃗. (11)

We here call the following classical computation the naive
classical method: calculate wi j’s and zi’s by simply repeat-
ing multiplications and additions ND times, literally following
the definitions (8) and (10), and then solve the d-dimensional
system of linear equations (11) to find a⃗. Let us discuss the
complexity of this method. Since we are considering the situ-
ation d � ND, we focus only on the major contributions with
respect to ND. Calculating one wi j or zi takes complexity of
O(ND). Since the numbers of wi j’s and zi’s are O(d2) and O(d),
respectively, and their total is O(d2), the total complexity of
calculating all of wi j’s and zi’s is O(d2ND). Then, solving (11)
takes the negligible complexity, since it does not depend on
ND. For example, even if we use the elementary method such
as row reduction, the complexity is O(d3). In summary, the
complexity of the naive classical method is O(d2ND), which
dominantly comes from calculation of wi j’s and zi’s.

III. LINEAR REGRESSION BY QUANTUM AMPLITUDE
ESTIMATION

A. Quantum Amplitude Estimation

In this section, we present our method for linear regression.
Before this, let us review the outline of QAE briefly.

QAE is the algorithm to estimate a probability amplitude of
a marked state in a superposition. Consider the system con-
sisting of some qubits. We set the system to the initial state
where all qubits are set to |0〉 and write such a state as |0〉 for
simplicity. Then, we assume that there exists an unitary trans-
formation A on the system such that

A |0〉 = a |Ψ〉 +
√

1 − a2 |Ψ⊥〉 , (12)

where |Ψ〉 is the ‘marked state’, |Ψ⊥〉 is a state orthogonal to
|Ψ〉 and 0 < a < 1. Typically, |Ψ〉 and |Ψ⊥〉 are the states where
a specific qubit takes |1〉 and |0〉 respectively. In addition to A,
we use the following unitary operators S 0 and SΨ, which are
defined as

S 0 |ϕ〉 =
− |0〉 ; if |ϕ〉 = |0〉
|ϕ〉 ; if |ϕ〉 is orthogonal to |0〉 , (13)

SΨ |ϕ〉 =
− |Ψ〉 ; if |ϕ〉 = |Ψ〉
|ϕ〉 ; if |ϕ〉 is orthogonal to |Ψ〉 . (14)

S 0 can be constructed using a multi-controlled Toffoli gate,
and SΨ is simply a controlled-Z gate if |Ψ〉 is defined as the
state where a specific qubit is |1〉. Then, defining

Q := −AS 0A−1SΨ, (15)

we can construct a quantum algorithm (see [15] for details)
which makes

O
(

1
ϵ

)
(16)

uses of Q (therefore, O(1/ϵ) uses of A) and outputs an estimate
of a with an ϵ-additive error.

We here make a comment on success probability. In the
algorithm of QAE [15], the success probability, that is, the
probability that the algorithm outputs the estimation with the
desired additive error is not 1 but lower-bounded by 8/π2.
However, we can enhance the success probability to an ar-
bitrary level 1 − γ, where γ ∈ (0, 1), by repeating QAE
O

(
log(γ−1)

)
times. That is, taking the median of the results

in the O
(
log(γ−1)

)
runs of QAE, we can obtain the estimation

with the additive error ϵ with probability 1 − γ [22, 24]. Con-
sidering this point, we can write the number of calls to A in
repeating QAE with an ϵ-additive error and a success proba-
bility larger than 1 − γ as

O
(

log(γ−1)
ϵ

)
. (17)

If we set 1 − γ to some fixed value, say 99%, (17) is reduced
to (16).

B. Assumptions

Next, we present some assumptions which are necessary for
the method. The first one is as follows.

Assumption 1. The following oracles Px and Py are avail-
able:

Px : |i〉 |k〉 |0〉 7→ |i〉 |k〉 |x(i)
k 〉 , (18)

Py : |k〉 |0〉 7→ |k〉 |yk〉 , (19)

for any i ∈ {1, ..., d} and k ∈ {1, ...,ND}.

Here and hereafter, for a number x, the ket |x〉 corresponds
to a computational basis state on a quantum register where the
bit string represents the binary representation of x. (18) and
(19) mean that Px and Py output the element of X and y⃗, re-
spectively, for the specified index. Previous papers [2–7] also
assume such oracles. We can construct Px and Py if quantum
random access memories (QRAMs) [25] are available.

The second assumption is just a reproduction.

IPSJ SIG Technical Report

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

Assumption 2. X defined as (4) is full-rank.

Because of this, κ(X), the condition number of X, can be de-
fined, and W defined as (8) is invertible. Hereafter, we simply
write κ(X) as κ.

The third assumption is as follows.

Assumption 3.

0 ≤ x(i)
k ≤ 1, 0 ≤ yk ≤ 1 (20)

for any i ∈ {1, ..., d} and k ∈ {1, ...,ND}.

That is, we assume that the explanatory variables and the
objective variable are bounded by 0 and 1. Besides, we make
the fourth assumption as follows.

Assumption 4. There is a positive number c (say, 1
2), which

is independent of ND, ϵ, κ and d, such that

∀i ∈ {1, ..., d},wii =
1

ND

ND∑
k=1

(
x(i)

k

)2
> c. (21)

Since wii ≤ 1 is immediately derived from Assumption 3,
Assumption 4 means that c < wii ≤ 1.

Although Assumption 3 and 4 are too strong seemingly,
they should be assumed for successful regression, regardless
of whether in the classical or quantum way, for the following
reasons. First, we note that Assumption 3 is satisfied if we
know the bounds for x(i)

k and yk in advance and can rescale
them. That is, for i ∈ {1, ..., d}, although in general x(i)

k ’s are
not in [0, 1], we can redefine

x̃(i)
k :=

x(i)
k − Li

Ui − Li
(22)

as x(i)
k if we know Li,Ui such that

∀k ∈ {1, ...,ND}, Li ≤ x(i)
k ≤ Ui, (23)

Then, redefined x(i)
k ’s are in [0, 1]. Similarly, redefining

ỹk :=
yk − Ly

Uy − Ly
(24)

as yk with Ly,Uy such that

∀k ∈ {1, ...,ND}, Ly ≤ yk ≤ Uy (25)

leads to 0 ≤ yk ≤ 1. Assumption 3 is then satisfied. Besides,
if we know the bounds which are not too far from the typical
scale of the original x(i)

k ’s, that is, if we can take Li,Ui such
that |Li| ∼ |Ui| ∼ |x(i)

k | for most k’s, Assumption 4 is satisfied.
In summary, Assumption 3 and 4 are naturally satisfied if we
know the typical scales of x(i)

k ’s and yk’s. Practically, we must
know the typical scales, since we have to address the prob-
lem of outliers. Data sets often contain points whose explana-
tory and/or objective variables are much larger than those of
others, because of various reasons (for example, misrecord).

Such points are called outliers. It is widely known that outliers
lead to inaccurate regression and so we have to address them.
Typically, we omit them from data points used for regression
or replace the values of the explanatory and/or objective vari-
ables out of some range with the upper or lower bound of the
range. For such a preprocess, we have to know the typical
scales of the variables. In fact, the previous paper [4] makes
assumptions similar to Assumption 3 and 4. Mentioning the
necessity of preprocessing outliers, it assumes that the design
matrix and the objective variable vector do not contain the ex-
traordinarily large elements.

C. Details of our method

We now explain our method in detail. First, we present a
lemma on the error in the solution of a system of linear equa-
tions where coefficients and constant terms contain errors.

Lemma 1. Let Assumptions 2 to 4 be satisfied. For given
symmetric Ŵ ∈ Rd×d and ⃗̂z ∈ Rd, consider a system of linear
equations

Ŵ⃗̂a = ⃗̂z, (26)

where ⃗̂a ∈ Rd. For a given ϵ > 0, if each element of δW :=
Ŵ −W and δ⃗z := ⃗̂z − z⃗ has an absolute value smaller than ϵ′

such that

ϵ′ < min
{

c
dκ2 ,

c2ϵ

2d3/2κ4

}
(27)

then ⃗̂a is uniquely determined by solving Eq. (26), i.e.,
⃗̂a = Ŵ−1⃗̂z, and becomes an O(ϵ)-additive approximation of
a⃗, which means that

‖⃗̂a − a⃗‖∞ = O (ϵ) . (28)

This lemma means that, if we want a solution of a system
of linear equations with an O(ϵ)-additive error, it is sufficient
to calculate coefficients and constant terms with an additive
error ϵ′ satisfying (27).

We therefore propose the following method for linear re-
gression: we first estimate W in (8) and z⃗ in (10) by a quan-
tum method with ϵ′-additive error and then calculate (11) by
some classical method. Since classical methods basically in-
troduces no additional error, we can obtain a solution with
O(ϵ)-additive error.

Then, we state a theorem on the complexity of our method.

Theorem 1. Given ϵ > 0, accesses to oracles Px and Py which
satisfy Assumptions 1, and {x(i)

k } i=1,...,d
k=1,...,ND

, {yk}k=1,...,ND which sat-

isfy Assumption 2 to 4, there is a quantum algorithm that
makes

O
(
max

{
d3/2κ4

ϵ
, dκ2

}
× d2 log(d)

)
(29)

IPSJ SIG Technical Report

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

uses of Px and

O
(
max

{
d3/2κ4

ϵ
, dκ2

}
× d log(d)

)
(30)

uses of Py and, with a probability larger than 99%, outputs an
O(ϵ)-additive approximation of a⃗, which is defined as (11).

We present only the concrete procedure of our algorithm
here, giving the proof on complexity in [1]. The algorithm
consists of the following steps.

1. Estimate the elements of W and z⃗ in (11) using a quan-
tum algorithm based on QAE. Let the matrix and the
vector consisting of the estimation results be Ŵ and ⃗̂z.

2. Solve Ŵa⃗ = ⃗̂z by some classical solver of systems of
linear equations (for example, row reduction). Let the
solution be ⃗̂a. This is an output of our algorithm.

Since the second step is a simple classical calculation, we fo-
cus on the step 1. As we explained in Sec. III A, we can obtain
an estimation ŵi j of wi j by QAE if we construct the following
operators Ai j. Ai j transforms |0〉, a state in which all qubits are
0, to a state in the form of

√
wi j |ψ〉 +

√
1 − wi j |ψ⊥〉 , (31)

where |ψ〉 and |ψ⊥〉 are some orthogonal states. Such an oper-
ator is constructed as follows.

(i) Prepare quantum registers R1, ...,R5, which have
enough qubits, and a single qubit register R6. Set R1,R2
and the others to |i〉 , | j〉 and |0〉, respectively.

(ii) Create 1√
ND

∑ND
k=1 |k〉, that is, an equiprobable superposi-

tion of |1〉 , ..., |ND〉 on R3.

(iii) Apply Px to a block of R1,R3 and R4, which outputs x(i)
k

on R4. Similarly, apply Px to a block of R2,R3 and R5,
which outputs x(j)

k on R5.

(iv) Using x(i)
k on R4 and x(j)

k on R5, transform R6 from |0〉

to
(√

1 − x(i)
k x(j)

k |0〉 +
√

x(i)
k x(j)

k |1〉
)

by some arithmetic

circuits and controlled rotations. Then, the resultant
state is in the form of (31).

Through the steps (i) to (iv), the state is transformed as fol-
lows.

|i〉 | j〉 |0〉 |0〉 |0〉 |0〉
(ii)−−→ |i〉 | j〉

 1
√

ND

ND∑
k=0

|k〉
 |0〉 |0〉 |0〉

(iii)−−→ |i〉 | j〉
 1
√

ND

ND∑
k=0

|k〉 |x(i)
k 〉 |x

(j)
k 〉

 |0〉
(iv)−−→ |i〉 | j〉

 1
√

ND

ND∑
k=0

|k〉 |x(i)
k 〉 |x

(j)
k 〉

⊗
(√

1 − x(i)
k x(j)

k |0〉 +
√

x(i)
k x(j)

k |1〉
)]
(32)

We can obtain an estimation ẑi of zi in the similar way by
replacing one of two Px’s with Py and x(j)

k with yk.

IV. EXTENTION TO A CLASS OF CONVEX
OPTIMIZATION

A. Linear regression as optimization by Newton’s method

In this section, we extend our method for linear regression
to more general optimization problems. Before this, we firstly
present another interpretation of (6), the formula for the so-
lution of linear regression. We regard linear regression as an
optimization problem of

F(a⃗) =
1

2ND
‖y⃗ − Xa⃗‖2 = 1

2ND

ND∑
k=1

 d∑
i=1

aix
(i)
k − yk

2

. (33)

This can be rewritten as

F(a⃗) =
1

ND

ND∑
k=1

f (a⃗; x⃗k, yk), (34)

where

f (a⃗; x⃗k, yk) =
1
2

 d∑
i=1

aix
(i)
k − yk

2

. (35)

The first and second derivatives of F are

∂

∂ai
F(a⃗) =

1
ND

ND∑
k=1

∂

∂ai
f (a⃗; x⃗k, yk) =

1
ND

ND∑
k=1

x(i)
k

 d∑
j=1

a jx
(j)
k − yk

 ,
(36)

∂2

∂ai∂a j
F(a⃗) =

1
ND

ND∑
k=1

∂2

∂ai∂a j
f (a⃗; x⃗k, yk) =

1
ND

ND∑
k=1

x(i)
k x(j)

k ,

(37)
respectively. This means that, W = 1

ND
XT X and −z⃗ = − 1

ND
XT y⃗

are the Hessian matrix and the gradient vector of F at a⃗ =
0⃗, respectively. Besides, the updating formula in Newton’s
method is

a⃗n+1 = a⃗n − H−1
F (a⃗n)g⃗F(a⃗n), (38)

where HF and g⃗F are the Hessian and the gradient of the func-
tion F, respectively, and a⃗n is the optimization variable after
the n-th update. Then, we can interpret (6) as an one-time
update in Newton’s method from the initial point a⃗0 = 0⃗.
Note that Newton’s method gives the exact solution by only
one update from any initial point, if the objective function is
quadratic.

In summary, we can consider our method as optimization
of the objective function (33) by Newton’s method, where
calculation of the gradient and the Hessian, which is time-
consuming in the classical method, are done by the QAE-
based method.

IPSJ SIG Technical Report

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

B. Extension of our method : the QAE-based Newton’s
method

On the basis of the above discussion, it is now straightfor-
ward to extend our method to a more general class of op-
timization problems. That is, keeping the updating formula
(38), we can perform Newton’s method based on the gradient
and the Hessian estimated by QAE.

Concretely, we consider an optimization problem in which
the objective function can be written as a sum of the values of
some function with different inputs:

F(a⃗) =
1

ND

ND∑
k=1

f (a⃗, c⃗k). (39)

Here, f is the real-valued twice-differentiable function, which
are shared by all the terms. Its inputs are the optimization vari-
ables a⃗ ∈ Rd and some parameters c⃗k, which are different in
each term. Some conditions on F necessary for convergence
analysis are given in Sec. IV C. It is obvious that the objec-
tive functions (33) fall into (39). For the objective function
like (39), the gradient g⃗F(a⃗) = (gF,1(a⃗), ..., gF,d(a⃗))T and the
Hessian HF(a⃗) = (hF,i j(a⃗))1≤i≤d

1≤ j≤d
are given as

gF,i(a⃗) =
∂

∂ai
F(a⃗) =

1
ND

ND∑
k=1

fi(a⃗, c⃗k), (40)

hF,i j(a⃗) =
∂2

∂ai∂ai
F(a⃗) =

1
ND

ND∑
k=1

fi j(a⃗, c⃗k), (41)

where we simply write ∂
∂ai

f and ∂2

∂ai∂a j
f as fi and fi j, respec-

tively.
Then, we estimate the gradient and the Hessian as follows.

We assume the availability of the followings:

• Pc, which outputs c⃗k for given k:

Pc : |k〉 |0〉 7→ |k〉 |⃗ck〉 . (42)

This can be constructed by QRAM.

• Pi for i = 1, .., d, which outputs fi(a⃗, c⃗k) for given a⃗ and
c⃗k:

Pi : |⃗a〉 |⃗ck〉 |0〉 7→ |⃗a〉 |⃗ck〉 | fi(a⃗, c⃗k)〉 . (43)

• Pi j for i, j = 1, ..., d, which outputs fi j(a⃗, c⃗k) for given a⃗
and c⃗k:

Pi j : |⃗a〉 |⃗ck〉 |0〉 7→ |⃗a〉 |⃗ck〉 | fi j(a⃗, c⃗k)〉 . (44)

Then, preparing appropriate registers, we can perform the fol-

lowing computation:

|⃗a〉 |0〉 |0〉 |0〉 |0〉

→
 1
√

ND

ND∑
k=0

|⃗a〉 |k〉
 |0〉 |0〉 |0〉

→
 1
√

ND

ND∑
k=0

|⃗a〉 |k〉 |⃗ck〉
 |0〉 |0〉

→
 1
√

ND

ND∑
k=0

|⃗a〉 |k〉 |⃗ck〉
∣∣∣ fi(a⃗; c⃗k)

〉 |0〉
→ 1
√

ND

ND∑
k=0

|⃗a〉 |k〉 |⃗ck〉
∣∣∣ fi(a⃗; c⃗k)

〉
⊗

(√
1 − fi(a⃗; c⃗k) |0〉 +

√
fi(a⃗; c⃗k) |1〉

)
,(45)

where Pc and Pi are used at the second and third arrows, re-
spectively. We then obtain an estimation of gi(a⃗) by estimat-
ing the probability that the last qubit takes 1 by QAE. We
can also estimate hi j(a⃗) similarly, replacing Pi with Pi j and
fi(a⃗, c⃗k) with fi j(a⃗, c⃗k). Again, in order to estimate one gi(a⃗)
or hi j(a⃗) with ϵ-additive error, the number of calling Pi and Pi j
is at most O(1/ϵ), which means the exponential speedup with
respect to ND compared with classical iterative calculation.

Using the gradient and the Hessian estimated as above, we
update a⃗n to a⃗n+1 similarly to (38), that is,

a⃗n+1 = a⃗n − Ĥ−1
F (a⃗n)⃗̂gF(a⃗n), (46)

where ⃗̂gF(a⃗n) and ĤF(a⃗n) are the estimated gradient and Hes-
sian, respectively. After sufficiently many iterations, we ob-
tain the approximated solution of the optimization. Hereafter,
we call this method the QAE-based Newton’s method.

Note that ĤF(a⃗n) must be invertible so that the update (46)
can be defined. Hereafter, we consider the situation where
the original Hessian HF(a⃗n) is positive-definite and therefore
invertible. In order to keep such a property, we have to obtain
ĤF(a⃗n) accurately enough.

C. Convergence analysis of the QAE-based Newton’s method

Then, let us estimate the complexity of the QAE-based
Newton’s method to obtain an approximated solution with
ϵ-additive error. For a mathematically rigorous discussion,
we first make some assumptions on the objective function
F : Rd → R.

Assumption 5. F is twice-differentiable.

This is reproduced since we assumed that f in (39) is twice-
differentiable.

Assumption 6. F is µ-strongly convex, that is, there exists a
positive number µ such that

∀a⃗, b⃗ ∈ Rd, F(a⃗) ≥ F(b⃗) + g⃗F(b⃗) · (a⃗ − b⃗) +
µ

2
‖a⃗ − b⃗‖2. (47)

IPSJ SIG Technical Report

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

This assumption means that the eigenvalues of HF(a⃗) are
greater than or equal to µ for any a⃗ ∈ Rd, that is,

∀a⃗ ∈ Rd,HF(a⃗) � µId, (48)

where Id is the d × d identity matrix and for A, B ∈ Rd, A � B
means that A − B is positive-semidefinite. This immediately
leads to

∀a ∈ Rd, ‖(HF(a⃗))−1‖ ≤ 1
µ
. (49)

Assumption 7. F has an M-Lipschitz Hessian, that is,

∀a⃗, b⃗ ∈ Rd, ‖HF(a⃗) − HF(b⃗)‖ ≤ M‖a⃗ − b⃗‖. (50)

This assumption leads to the following inequality:

∀a⃗, b⃗ ∈ Rd, ‖g⃗F(a⃗)− g⃗F(b⃗)−HF(b⃗)(a⃗− b⃗)‖ ≤ M
2
‖a⃗− b⃗‖2. (51)

Assumptions 5 to 7 are usually made in the discussion on
convergence properties of the ordinary Newton’s method, that
is, cases where the gradient and the Hessian can be exactly
computed in the classical way (see, for example, [26]). We
do not make any additional assumptions for the QAE-based
Newton’s method.

Next, let us define some quantities. Since QAE introduces
errors in the estimated Hessian and gradient, we have to con-
sider Newton’s method in which the update difference con-
tains some error. For a⃗ ∈ Rd, we define ∆⃗F(a⃗) as

∆⃗F(a⃗) := (ĤF(a⃗))−1⃗̂gF(a⃗) − (HF(a⃗))−1g⃗F(a⃗). (52)

Besides, we write the minimum5 that we search as a⃗⋆ :=
argmin

a⃗∈Rd
F(a⃗), the optimization variable after the n-th update

as a⃗n and the difference between a⃗⋆ and a⃗n as δn := ‖a⃗n − a⃗⋆‖.
Then, we can show the following lemma, which is repeat-

edly used.

Lemma 2. Let Assumptions 5 to 7 be satisfied. Then, for any
non-negative number ϵ and any a⃗ ∈ Rd such that

‖∆⃗F(a⃗)‖ ≤ ϵ, (53)

the following inequality holds:

δ′ ≤ M
2µ
δ2 + ϵ, (54)

where δ := ‖a⃗ − a⃗⋆‖, δ′ := ‖a⃗′ − a⃗⋆‖, and a⃗′ = a⃗ −
(ĤF(a⃗))−1⃗̂gF(a⃗). Furthermore, when

2M
µ
ϵ < 1, (55)

5 Since we are considering the convex optimization as stated in Assumption
6, there is only one global minimum.

is satisfied, the following hold:δ′ < δ; if δ− < δ < δ+
δ′ ≤ δ−; if δ ≤ δ−

, (56)

where

δ± :=
µ

M

1 ±
√

1 − 2M
µ
ϵ

 . (57)

Here, let us comment on what Lemma 2 implies. Equation
(54) indicates that, even when the update differences in New-
ton’s method contain errors at most ϵ, the difference δ between
the optimization variables a⃗ and the optimal point a⃗⋆ quadrat-
ically converges like Newton’s method with no error, as long
as ϵ ≲ M

2µδ
2. More strictly, while δ− < δ, δ decreases at every

update, as shown in (56). On the other hand, after δ reaches
δ−, ϵ is not negligible in (54), and therefore δ does not nec-
essarily decreases. Nevertheless, δ does not exceeds δ−, once
it goes below. Since δ− < 2ϵ, we can make a⃗ converge with
desired accuracy if we can suppress ϵ.

Using Lemma 2, we obtain the following lemma, which
shows how many updates are sufficient for δ to reach 2ϵ in
Newton’s method with erroneous update differences.

Lemma 3. Let Assumptions 5 to 7 be satisfied. Suppose that
we repeatedly updates a⃗ ∈ Rd by (46) from some initial point
a⃗0, where we write the result of n-times updates as a⃗n and
define δn := ‖a⃗n− a⃗⋆‖ for n = 0, 1, 2, Then, for any positive
number ϵ satisfying (55) and any a⃗0 such that

‖a⃗0 − a⃗⋆‖ < µ

M
, (58)

if (53) holds for a⃗ = a⃗n, n = 0, 1, 2, ..., there exists a non-
negative integer nit such that

δn ≤ 2ϵ (59)

for any n ≥ nit, where

nit := max

log2

 log
(

2Mϵ
µ

)
2 log

(
Mδ0
µ

)
 + 1, 1

 , (60)

Next, we consider how accurate we should estimate the gra-
dient and the Hessian in order to suppress the error in the
update difference to the order of ϵ. We have the following
Lemma 4.

Lemma 4. Let Assumptions 5 to 7 be satisfied. Besides, sup-
pose that we are given a positive integer n, a positive num-
ber ϵ satisfying (55), and a⃗ ∈ Rd satisfying δ < 2µ

M , where
δ := ‖a⃗ − a⃗⋆‖. Then, in order for ∆F(a⃗) defined as (52) to
satisfy ‖∆⃗F(a⃗)‖ ≤ ϵ, it is sufficient that each component of the
estimated gradient ⃗̂gF(a⃗) and Hessian ĤF(a⃗) has an additive
error ϵ′g and ϵ′H such that

ϵ′g ≤
µϵ

2d1/2 . (61)

IPSJ SIG Technical Report

7ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

and

ϵ′H ≤
µϵ

4δ̃d
, (62)

where δ̃ := max{δ, δ−}, respectively.

This leads to the following Lemma 5.

Lemma 5. Let Assumptions 5 to 7 be satisfied. Besides, sup-
pose that we are given a positive number ϵ satisfying (55) and
an initial point a⃗0 ∈ Rd satisfying δ0 := ‖a⃗0 − a⃗⋆‖ < δ+. Fur-
thermore, let a⃗n ∈ Rd be a vector given by n-times updates
by (46) from the initial point a⃗0. Then, ∆F(a⃗n) defined as (52)
satisfies

‖∆F(a⃗n)‖ ≤ ϵ (63)

for any positive integer n, if each component of ⃗̂gF(a⃗) and
ĤF(a⃗) has an additive error ϵ′g and ϵ′H satisfying (61) and

ϵ′H ≤
µϵ

4δ̃0d
, (64)

where δ̃0 := max{δ0, δ−}, respectively.

Combining Lemma 3 and Lemma 5, we immediately obtain
the following theorem.

Theorem 2. Let Assumptions 5 to 7 be satisfied. Besides,
suppose that we are given a positive number ϵ satisfying (55)
and a⃗0 satisfying (58). Then, using the QAE-based New-
ton’s method which is based on the updating formula (46),
we obtain a 2ϵ-additive approximation of a⃗⋆ by nit-times up-
dates, where nit is given by (60), with a success probability
higher than 99%. In the process, the total number of calls
Pi, i = 1, ..., d is

N1stDer = O
(

d3/2

µϵ
nit log(nitd2)

)
, (65)

that for Pi j, i, j = 1, ..., d is

N2ndDer = O
(
δ̃0d3

µϵ
nit log(nitd2)

)
, (66)

and that for Pc is

Nc = N1stDer + N2ndDer. (67)

V. SUMMARY

In this paper, we proposed a quantum algorithm for linear
regression, or, more concretely, estimation of regression co-
efficients as classical data. Existing algorithms such as [2, 4]
create the quantum state encoding coefficients in its ampli-
tude by the HHL algorithm [11] or its modification and then
read out the coefficients. On the other hand, in our method,
we estimate the elements of W = 1

ND
XT X and z⃗ = 1

ND
XT y⃗,

where X = (x(i)
k) 1≤i≤d

1≤k≤ND

is the design matrix, y⃗ = (y1, ..., yk)T is

the objective variable vector and ND is the number of the data
points, and then find the coefficients by classical computation
of a⃗ = W−1z⃗. Since, as shown in (8) and (10), the elements
have the form of the sum of x(i)

k x(j)
k or x(i)

k yk over data points,
we can estimate them by QAE [15–21], assuming availability
of the oracles Px and Py which output x(i)

k and yk, respectively,
for specified i and k. The query complexity of our method is
given as (29) and (30), which means exponential speedup with
respect to ND compared with the naive classical method, and
improvement with respect to the tolerance error ϵ compared
with the previous quantum methods such as [2, 4].

Finally, we extended our method to more general optimiza-
tion problems, that is, convex optimization with an objective
function consisting of many similar terms like (39). In light
of interpretation of linear regression as Newton’s method, we
proposed the QAE-based Newton’s method, in which the gra-
dient and the Hessian are estimated by QAE. Introducing ef-
fects of estimation errors in the ordinary discussion on con-
vergence of Newton’s method, we derived the convergence
property and the query complexity of the QAE-based New-
ton’s method. Even if there are estimation errors, the method
shows well-known quadratic convergence and reaches the so-
lution in a small number of iterations.

Obtaining the improved dependence of complexity on ϵ,
we expect that we can apply our method to mid-sized but
many-times-repeated regression problems like LSM. Gener-
ally speaking, our method can be better than the previous
quantum methods and the naive classical method when d, κ �
1
ϵ
� ND. On the other hand, since the complexity of our

method depends on d and κ more strongly than the previous
quantum methods, they will be better when 1

ϵ
� d or 1

ϵ
� κ.

Since the naive classical method does not induce any error as
quantum ones, it will be better when ND � 1

ϵ
.

In future work, we will consider implementation of LSM on
quantum computers using our method for linear regression, as
a concrete and practical use case of quantum computing in
financial industry.

ACKNOWLEDGMENT

This work was supported by MEXT Quantum Leap
Flagship Program (MEXT Q-LEAP) Grant Number JP-
MXS0120319794.

IPSJ SIG Technical Report

8ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

[1] K. Kaneko et al., “Linear regression by quantum amplitude es-
timation and its extension to convex optimization”, Phys. Rev.
A 104, 022430 (2021)

[2] N. Wiebe et al., “Quantum Data Fitting”, Phys. Rev. Lett. 109,
050505 (2012)

[3] M. Schuld et al., “Prediction by linear regression on a quantum
computer”, Phys. Rev. A 94, 022342 (2016)

[4] G. Wang, “Quantum Algorithm for Linear Regression”, Phys.
Rev. A 96, 012335 (2017)

[5] C.-H. Yu et al., “Quantum algorithms for ridge regression”,
IEEE Transactions on Knowledge and Data Engineering 29,
37491 (2019)

[6] S. Chakraborty, “The power of block-encoded matrix powers:
improved regression techniques via faster Hamiltonian simula-
tion”, Proceedings of the 46th International Colloquium on Au-
tomata, Languages, and Programming (ICALP), pp. 33:1-33:14
(2019)

[7] I. Kerenidis and A. Prakash, “Quantum gradient descent for
linear systems and least squares”, Phys. Rev. A 101, 022316
(2020)

[8] N.-H. Chia, et al., “Sampling-based sublinear low-rank matrix
arithmetic framework for dequantizing quantum machine learn-
ing”, Proceedings of the 52nd ACM Symposium on the Theory
of Computing (STOC), 387 (2020)

[9] A. Gilyen et al., “An improved quantum-inspired algorithm for
linear regression”, arXiv:2009.07268

[10] C. Shao and A. Montanaro, “Faster quantum-inspired algo-
rithms for solving linear systems”, arXiv:2103.10309

[11] A. W. Harrow et al., “Quantum algorithm for solving linear sys-
tems of equations”, Phys. Rev. Lett. 103, 150502 (2009)

[12] F. A. Longstaff and E. S. Schwartz, “Valuing American Options
by Simulations: A Simple Least-Squares Approach”, Review of

Financial Studies, 14, 113 (2001)
[13] J. C. Hull, “Options, Futures, and Other Derivatives”, Prentice

Hall (1995)
[14] S. Shreve, “Stochastic Calculus for Finance I & II”, Springer

(2004)
[15] G. Brassard et. al., “Quantum amplitude amplification and esti-

mation”, Contemporary Mathematics, 305, 53 (2002)
[16] Y. Suzuki et. al., “Amplitude Estimation without Phase Estima-

tion”, Quantum Information Processing, 19, 75 (2020)
[17] S. Aaronson and P. Rall, “Quantum approximate counting,

simplified”, Symposium on Simplicity in Algorithms”, 24-32,
SIAM (2020)

[18] D. Grinko et al., “Iterative quantum amplitude estimation”,
arXiv:1912.05559

[19] K. Nakaji, “Faster Amplitude Estimation”, arXiv:2003.02417
[20] E. G. Brown et al., “Quantum Amplitude Estimation in the Pres-

ence of Noise”, arXiv:2006.14145
[21] T. Tanaka, et al., “Amplitude estimation via maximum likeli-

hood on noisy quantum computer”, arXiv:2006.16223
[22] A. Montanaro, “Quantum speedup of Monte Carlo methods”,

Proc. Roy. Soc. Ser. A, 471, 2181 (2015)
[23] G. H. Golub and C. F. Van Loan, “Matrix Computations”, Johns

Hopkins University Press (1983)
[24] M. Jerrum et al., “Random generation of combinatorial struc-

tures from a uniform distribution”, Theoretical Computer Sci-
ence, 43, 169 (1986)

[25] V. Giovannetti et al., “Architectures for a quantum random ac-
cess memory”, Phys. Rev. A78, 052310 (2008)

[26] Y. Nesterov, “Introductory lectures on convex optimization: a
basic course (Applied Optimization (87))”, Springer (2004)

IPSJ SIG Technical Report

9ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-4 No.1
2021/10/14

