
IPSJ Transactions on Programming Vol.14 No.4 4 (Sep. 2021)

Presentation Abstract

PelemayFp: An Efficient Parallelization Library for
Elixir Based on Skeletons for Data Parallelism

Susumu Yamazaki1,a)

Presented: March 17, 2021

In this presentation, we propose Pelemay Fast Parallel map (PelemayFp), which is a library to parallelize Elixir code,
efficiently, based on skeletons for data parallelism. PelemayFp is implemented using only Elixir, like Flow, which is a
library of previous works. In Flow, the order of the list after computation is not guaranteed, while in PelemayFp, the
order of the list is guaranteed because it is sorting while collecting and merging. On the other hand, Pelemay Super
Parallelism (Pelemay), which we proposed, generates native code using SIMD instructions and calls it by NIFs, which
is one of FFIs that Erlang provides, without performing multi-core parallelism, guaranteeing the order of the list. We
evaluated the integer arithmetic performance by logistic mapping of PelemayFp alone, Pelemay alone, the combination
of PelemayFp and Pelemay, Flow, and Enum, which is in the standard library of Elixir. When run on an Intel Xeon
W-2191B CPU with 18 cores and 36 threads, the PelemayFp alone is up to 2.1 times faster than Enum. It is also faster
than Flow without sorting. On the other hand, the combination of PelemayFp and Pelemay is up to 1.27 times faster
than Enum. We also estimated the percentage of parallel execution in the entire code based on Amdahl’s law. That
of PelemayFp is 48–66 percent, while that of the combination of PelemayFp and Pelemay is 21–46 percent. Further
analysis revealed that this experimental results can be explained by assuming that when calling native code from Elixir
with NIFs, the part that is not executed in parallel increases by about 40 percent. Therefore, when generating native
code including SIMD instructions and adopting the approach of parallelizing with Elixir for speeding up, it will be ap-
propriate to incorporate a code optimization mechanism using SIMD instructions into the JIT, which will be released
in the next major version of Erlang, or to use another FFI method, Port, instead of using NIFs.

This is the abstract of an unrefereed presentation, and it should not
preclude subsequent publication.
1 University of Kitakyushu, Kitakyushu, Fukuoka 808–0135, Japan
a) zacky@kitakyu-u.ac.jp

c© 2021 Information Processing Society of Japan 4


