
Electronic Preprint for Journal of Information Processing Vol.29

Regular Paper

Rumpfr: A Fast and Memory Leak-free Rust Binding
to the GNU MPFR Library

TomoyaMichinaka1,a) Hideyuki Kawabata1,b) Tetsuo Hironaka1,c)

Received: February 16, 2021, Accepted: May 27, 2021

Abstract: The GNU MPFR library for arbitrary-precision floating-point arithmetic is widely used, and its Foreign
Function Interface bindings to various languages have been developed. For the Rust programming language, existing
bindings to the MPFR library include gmp-mpfr-sys (a low-level binding) and Rug (a binding that utilizes gmp-mpfr-
sys to provide a more user-friendly interface). However, neither has sufficient descriptiveness and performance as
bindings for general users of Rust, which is a programming language featuring high memory safety and high speed.
We have developed a Rust binding, Rumpfr, to the MPFR library, that offers an easy way to write programs that per-
form high-speed multiple-precision floating-point computation. Rumpfr provides an interface that follows that of the
MPFR library but hides the complexity of managing the mantissa area of floating-point numbers from the user. Rumpfr
uses Rust’s variable-length arrays to allocate mantissa areas, making it easy to handle without compromising Rust’s
high memory safety. In this paper, we describe the design and implementation of Rumpfr and present the results of
numerical experiments demonstrating that Rumpfr can be used to write programs with low overhead.

Keywords: MPFR library, arbitrary-precision arithmetic, Rust bindings

1. Introduction

Scientific and technical computations by computer are gener-
ally accomplished by using floating-point representations of nu-
merical values and floating-point operations on those values. Ma-
jor general-purpose microprocessors are equipped with hardware
capable of high-speed single- and double-precision floating-point
arithmetic based on the IEEE 754 standard, and numerical types
based on floating-point representation are treated as one of the
basic types in many general-purpose programming languages.
However, floating-point representation and floating-point arith-
metic based on that representation often suffer from computa-
tional errors due to the approximation of numerical values on the
basis of finite word lengths.

In floating-point representation, a real number is approximated
by a triple of sign, mantissa, and exponent. Of these, the man-
tissa determines the upper limit on the number of significant
digits of the numerical value obtained as a result of an arith-
metic operation. To perform higher precision floating-point arith-
metic, arbitrary-precision arithmetic can be used as it enables the
length of the mantissa to be set arbitrarily. The GNU MPFR li-
brary (hereinafter referred to as MPFR) [1], [5] is widely used
for arbitrary-precision numerical computation. Further, bindings
for using it with various programming languages such as C++,
Haskell, OCaml, Java, and Rust have been developed by third
parties [4], [6], [12], [13], [14].

In MPFR, the mantissa of the floating-point representation is

1 Hiroshima City University, Hiroshima 731–3194, Japan
a) michinaka@ca.info.hiroshima-cu.ac.jp
b) kawabata@hiroshima-cu.ac.jp
c) hironaka@hiroshima-cu.ac.jp

managed by a pair of an array of type mp_limb_t *1 and the man-
tissa length to be used. Therefore, floating-point arithmetic using
MPFR requires allocating and deallocating the mantissa of each
floating-point number to and from the heap area, and the user
is responsible for doing so appropriately. Bindings to languages
with garbage collection, such as OCaml, Haskell, and Java, have
been designed with interfaces that free users from the need to be
aware of heap area management during programming. However,
gmp-mpfr-sys [13] and Rug [12], which are bindings to Rust, do
not have sufficient descriptiveness and performance as bindings
for general users of Rust [2], a programming language that fea-
tures both high memory safety and high speed.

We have developed Rumpfr, a Rust binding to MPFR that
enables users to write efficient programs utilizing MPFR with-
out the bother of heap area management. While using the stan-
dard variable-length array Vec<T> in Rust for the mantissa area,
Rumpfr enables arithmetic operations with MPFR functions out-
side the Foreign Function Interface (FFI) boundary to be per-
formed without causing problems. Unlike gmp-mpfr-sys, Rumpfr
does not require the user to explicitly allocate or deallocate an
area for the mantissa. In addition, unlike Rug, Rumpfr can be
used to write efficient programs for matrix computation, a typical
application in numerical computation, because the API design,
which follows that of MPFR, makes it easy to reduce the fre-
quency of memory allocation and data replication for multiple-
precision floating-point numbers.

In this paper, we describe the design and implementation of
Rumpfr. We also discuss the results of numerical experiments
conducted to compare Rumpfr with gmp-mpfr-sys, Rug, and the

*1 Typically, a 64-bit unsigned integer.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

case in which MPFR is driven by the C programming language.
This paper is organized as follows. In Section 2, we present the

preliminaries: the necessity of multiple-precision floating-point
operations, the MPFR library, and programming using MPFR.
Section 3 presents the design of Rumpfr, and Section 4 presents
the results of numerical experiments. In Section 5, we discuss the
differences between Rumpfr and other bindings. Section 6 gives
concluding remarks.

2. Preliminary: MPFR and Its Bindings

2.1 Necessity of Multiple-precision Floating-point Opera-
tions

Double-precision floating-point representation based on the
IEEE 754 standard enables numerical values to be captured with
a precision of 53 bits in terms of mantissa length, or about 16 dig-
its in decimal notation. However, this precision is not necessarily
sufficient for numerical simulation programs. Here is an example
that illustrates the problem of computational errors in floating-
point arithmetic [9]. Suppose that matrix A and vector b are as
follows.

A =
(
ai j

)
=

⎛⎜⎜⎜⎜⎝
64919121 −159018721

41869520.5 −102558961

⎞⎟⎟⎟⎟⎠ , b =

⎛⎜⎜⎜⎜⎝
1
0

⎞⎟⎟⎟⎟⎠ .

The solution of the linear system Ax = b is as follows.

x1 = a22/(a11a22 − a12a21) = 205117922 (1)

x2 = −a21/(a11a22 − a12a21) = 83739041 (2)

However, computation of Eqs. (1) and (2) using double-
precision floating-point arithmetic gives values for x1 and x2 of
102558961.0 and 41869520.5, respectively. These values do not
match the true solution for any single digit. This inaccuracy is
difficult to identify immediately by looking at the Eqs. (1) and (2)
or the calculated values.

The cause of these inaccurate computational results is the de-
structive loss of significant digits. Ideally, the loss of signifi-
cant digits should be prevented by reformulating the equations or
changing the computational procedure, but, in some cases, it can
be easily prevented by simply using multiple-precision floating-
point arithmetic with a longer mantissa. For example, in the
above example, if we allocate 54 bits to the mantissa (making
it one bit longer than needed for double precision), we can ob-
tain values that match the true solution. It is difficult to determine
in advance the mantissa length needed to obtain accurate results,
but, by using arbitrary-precision arithmetic, we can examine the
results by changing the length of the mantissa and estimate the
degree of error introduced.

2.2 Multiple-precision Floating-point Library MPFR
The GNU MPFR library (MPFR) is a portable library for

arbitrary-precision floating-point arithmetic written in the C pro-
gramming language [5]. It provides functions for arithmetic oper-
ations with arbitrary mantissa lengths as well as basic mathemat-
ical functions. MPFR is still being actively developed 20 years
after its first release *2. MPFR uses the GNU MP library [7] as

*2 The latest version as of February 2021 is version 4.1.0, released in April
2020 [15].

Fig. 1 Definition of floating point representation (mpfr struct structure)
in MPFR.

Fig. 2 Mantissa part of floating-point representation in MPFR (using arrays
of type mp limb t in bit units).

Fig. 3 Example of a C program written using MPFR.

its core. Although the basic interface is designed for the C lan-
guage, it can be used with other languages such as C++, Haskell,
OCaml, Java, and Rust by using the various FFI bindings that
have been developed [4], [6], [12], [13], [14].

Floating-point numbers handled by MPFR have a fixed-
length exponent part and an arbitrary-precision mantissa part.
The MPFR library provides two functions (mpfr_init2 and
mpfr_clean) to manage the mantissa part of floating-point num-
bers.

Figure 1 shows the details of the __mpfr_struct type, which
is the data type of numbers handled by the MPFR library *3. As
shown in Fig. 1, the type __mpfr_struct is the structure for a
floating-point representation with a mantissa part (_mpfr_prec),
a sign (_mpfr_sign), an exponent part (_mpfr_exp), and a
pointer to the mantissa part (_mpfr_d). The management of the
memory area used for storing the mantissa part is left to the user.
The bit arrangement of the area pointed to by the mantissa part
_mpfr_d is shown in Fig. 2.

An example of a program written using MPFR is shown in
Fig. 3. Areas sufficient for 200-bit mantissas are allocated in lines
6, 8, and 10. Each allocated area must be explicitly released, as
shown in lines 13, 14, and 15.

*3 In the MPFR user’s manual [15], there is no reference to data of type
struct mpfr. There is a reference only to data of type mpfr t, an-

other name for arrays of type struct mpfr (see Fig. 1). Although it
is not usually necessary to know the internal structure of a floating-point
number to use the MPFR library, the user should always be aware of
whether a mantissa area has been allocated.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

2.3 Java, OCaml, and Haskell Bindings to MPFR
mpfr-java [6] is a Java binding to MPFR that uses the Java

Native Interface (JNI) via HawtJNI [8] to implement the MPFR
binding. When using mpfr-java, in addition to using the same
writing style as when MPFR is used in the C language, method
chains can be used to write in a manner that resembles binary
arithmetic notation with infix operators. The MPFR functions
mpfr_init2 and mpfr_clear are used to allocate and deallo-
cate mantissa areas, but there is no need to include calls to these
functions in the user program.

mlmpfr [14] is an OCaml binding to MPFR. The user does not
need to allocate and deallocate space for floating-point arithmetic
data. The space for storing the result of each floating-point op-
eration is automatically allocated, and is not reused. The MPFR
functions mpfr_init2 and mpfr_clear are used internally to
allocate and deallocate the mantissa area.

hmpfr [4] is a Haskell binding to MPFR. As with the
OCaml binding, the user does not need to allocate and deal-
locate space for floating-point arithmetic data as the space for
storing the result of each floating-point operation is automati-
cally allocated. An interface using the ST monad is also pro-
vided to support reuse of the areas. hmpfr uses Haskell’s
Foreign.ForeignPtr.mallocForeignPtrBytes function in-
stead of MPFR’s functions for allocating and deallocating the
mantissa area, and the heap area for the mantissa is managed by
Haskell’s garbage collector.

2.4 Existing Rust Bindings to MPFR
The programming language Rust [2] does not have a garbage

collector; instead, it uses an ownership system to manage the
heap area, thereby achieving both high speed and memory safety.
It can be used as a system programming language to describe
low-level processing and is thus expected to replace C++, which
has been widely used as a programming language for applications
that require high speed and high execution efficiency. An exam-
ple of Rust’s usefulness is its implementation of Servo [10], an
engine for web browsers, that has achieved several times faster
performance with less code than using C++ while avoiding the
frequently occurring bugs of memory use after free [3].

Since Rust’s high speed and memory safety are also useful for
writing large-scale numerical programs, the development of ef-
ficient Rust bindings for MPFR is essential. However, the gmp-
mpfr-sys Rust binding [13], a low-level library, requires users to
explicitly allocate and deallocate mantissa areas using the func-
tions mpfr_init2 and mpfr_clean provided by MPFR. This
is the same as with the direct use of MPFR in the C language.
Most of the functions provided by gmp-mpfr-sys must be used
in unsafe blocks. Thus, users are forced to do a difficult job
to be sensitive to manage memory area while writing supposed-
to-perform-efficiently programs not to, for example, let NULL
pointer references to occur. An example of a program written us-
ing gmp-mpfr-sys is shown in Fig. 4. It is clear that more care
is required in the description than when using MPFR in the C
language.

On the other hand, the Rug Rust binding [12], which is based
on gmp-mpfr-sys and provides a more user-friendly interface, en-

Fig. 4 Example Rust program written using gmp-mpfr-sys.

Fig. 5 Example Rust program written using Rug.

ables simple descriptions of mathematical expressions by oper-
ator overloading, but it is difficult for users to write programs
without being aware of the existence of memory areas that hold
the calculation results of subexpressions.

An example program written using Rug is shown in Fig. 5. Al-
though the content of the program is the same as that of the pro-
gram in Fig. 4, it requires less description. However, the arith-
metic functions provided by Rug are based on the two-operand
system, and one of the operands is always overwritten. There-
fore, it is difficult to efficiently implement a program that refers
to the results of many arithmetic operations as the operands of
numerous operations, which is often seen in matrix computa-
tions. In addition, it is necessary to pay attention to the owner-
ship of the operands used in the operations and to properly select
between passing by reference and duplicating values using the
clone method. As a result, even a short program such as that
in Fig. 5 requires a less-than-intuitive description. The style of
Rug’s description, which does not require specifying an area for
storing the result of an operation by operator overloading, tends
to make programming that efficiently uses storage space rather
difficult, especially in the case of implementing more complex
numerical algorithms.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

3. Rumpfr Rust Binding

3.1 Features of Rumpfer
The Rumpfr Rust binding to MPFR has the following features:

(1) It follows the interface of the functions provided by MPFR,
facilitating its use by current MPFR users.

(2) As with MPFR, the allocated mantissa area can be reused,
and overhead due to binding is kept low, making it possible
to write efficient numerical programs.

(3) The user simply needs to be aware of the mantissa length
when performing multiple-precision floating-point opera-
tions; numerical programs can be written without awareness
of mantissa area management (allocation and deallocation).

(4) Unsafe operations are hidden from the user, eliminating the
need for the user to write unsafe blocks.

(5) It is implemented using only the descriptions available in
standard Rust without using Rust’s external memory man-
agement mechanism.

None of the existing Rust bindings have all of these features.
Although the last feature does not necessarily affect performance
or usability, it is one of the advantages of Rumpfr whose imple-
mentation is highly independent of the outside of the Rust envi-
ronment.

3.2 Rfloat Type: Floating Point Representation in Rumpfr
Figure 6 shows the definition of the Rfloat type, a floating-

point number type used in Rumpfr. The repr(C) in the first line
makes the Rfloat type compatible with a C structure, enabling it
to be passed to MPFR functions as a __struct_mpfr structure.

We use the buffer area of Rust’s variable-length array type
Vec<c_ulong> *4 for the mantissa part of Rumpfr’s floating-
point type. Applying the as_mut_ptr() method to an object of
type Vec<T> yields a raw pointer to the buffer area in the object;
the pointer is stored in the field d of type Rfloat. Since the buffer
inside an object of type Vec<c_ulong> is simply an array of type
c_ulong, it can be treated as an array of type unsigned long
outside the FFI boundary under careful control.

It is important to note that Rust’s memory management system
does not traverse the locations pointed to by raw pointers. This
means that even if a reference to a part of an object with a certain
structure is still alive as a raw pointer, the entire area for that ob-
ject is deallocated when control leaves the scope of the variable
that owns the object. Therefore, simply embedding a raw pointer
pointing to the buffer of Vec<T> into the Rfloat type does not
enable the buffer to be used as a mantissa area in the MPFR func-
tions.

In Rumpfr, a pointer to the object of type Vec<T>whose buffer
is used as the mantissa part is also embedded in the data struc-
ture of type Rfloat. This (1) prevents the entire object of type
Vec<T> from being released (including the buffer area) before in-
voking an MPFR function, and (2) allows the entire object of type
Vec<T> to be released once the MPFR function has finished. In
doing so, we convert a pointer to an object of type Vec<T> into a
raw pointer type *mut c_void and embed it as shown in Fig. 6.

*4 In general, it is the same as the Vec<u64> type.

Fig. 6 Definition of floating-point representation for Rumpfr (Rfloat
structure).

Fig. 7 Rumpfr’s floating-point representation (type Rfloat) at runtime.

Fig. 8 Constructor for Rumpfr floating-point representation of type
Rfloat.

This conversion is required because it is inhibited (or treated as
FFI-unsafe) to expose a Rust object outside FFI boundary if the
object contains a non-raw pointer pointing to an object of type
Vec<T>.

Figure 7 shows Rumpfr’s floating point representation (type
Rfloat) at runtime. The constructor for Rumpfr floating point
representation of type Rfloat is shown in Fig. 8.

Passing a pointer pointing to an object as a raw pointer outside
the FFI boundary prevents Rust from releasing the memory area
unexpectedly, but memory safety cannot be maintained unless the
processing outside the FFI boundary is valid. Thus, Rumpfr’s de-
sign requires that the MPFR functions satisfy the following two
points for valid operation.
• MPFR functions should never refer to an area that is not of

type __struct_mpfr.
• MPFR functions should not access a memory area beyond

the range defined by the mantissa length given by prec.

3.3 Implementation of Drop trait for Rfloat Type
The area pointed to by a raw pointer is temporarily unmanaged

by Rust, and leaving it unmanaged will lead to memory leaks.
The Rfloat type implements the Drop trait, and when an object
of the Rfloat type is dropped (the memory area is released), the
method drop puts the mantissa area to which it points under the
control of Rust again, thereby preventing memory leaks. There

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 9 Implementation of Drop trait for Rfloat type.

Fig. 10 Implementation of Clone trait for Rfloat type.

is thus no need for the user to explicitly deallocate the mantissa
area.

The implementation of the Drop trait method drop is shown in
Fig. 9. First, the ownership of the region pointed to by the raw
pointer field dvec_ptr is retrieved to Rust, and then the region is
dropped. During the dropping process, the object is re-recognized
as Vec<c_ulong> type, and the buffer used as a mantissa area
that is separately pointed to by the other raw pointer is released at
the same time.

3.4 Implementation of Clone Trait for Rfloat Type
One of the most important applications of Rumpfr is writ-

ing matrix computation programs using multi-dimensional ar-
rays. The most common way to handle arrays in Rust is to use
the Vec<T> type, in which it is convenient and efficient to use
the vec! macro to initialize the array data. To use the vec!
macro with Vec<Rfloat>, the Clone trait must be implemented;
i.e., the clone method must be implemented for deep copying.
The implementation of the clone method in Rumpfr is shown in
Fig. 10.

As described in Section 3.2, data of type Rfloat embeds a raw
pointer pointing to the Vec<c_ulong> type that holds the man-
tissa. To deal with the object pointed to by the raw pointer and
achieve deep copying appropriately, the clone method is imple-
mented to clone the mantissa as Vec<c_ulong> by combining
Box::from_raw and Box::into_raw and convert the pointer to
a newly obtained Vec object into a raw pointer.

3.5 Interface to Floating-point Arithmetic Provided by
Rumpfr

A user program written in Rust consists of a combination of
calls to wrapper functions with public attributes as exemplified in
Fig. 11. Since most wrapper functions simply call MPFR func-

Fig. 11 Definitions of wrapper functions that call MPFR functions.

Fig. 12 Example Rust program written using Rumpfr.

tions, the resulting overhead should be negligible.

3.6 Programming with Rumpfr
An example program written using Rumpfr is shown in Fig. 12.

Space for variables of type Rfloat is allocated in lines 7 to 9 of
Fig. 12. The user can allocate a mantissa of the required length by
using the constructor shown in Fig. 8 with the required length as
an argument. Numbers are stored in two variables in lines 11 and
12, and the sum of the two numbers are calculated and stored in
variable z in line 13. Unlike C programs that use MPFR, as shown
in Fig. 3, and Rust programs that use gmp-mpfr-sys, as shown in
Fig. 4, explicit deallocation of the mantissa area is not needed. In
addition, unlike programs that use Rug as shown in Fig. 5, there
is no need to worry about distinguishing between references and
clones.

3.7 Alternative Implementation Strategy
In the design of Rumpfr described in Section 3.2, a buffer

of type Vec<c_ulong> is used to store the mantissa. An ob-
ject of type Vec<c_ulong> containing the buffer region is held
during floating-point operations. It is also possible to extract
and use only the array part of c_ulong from an object of type
Vec<c_ulong>. This can be done by using a floating-point
representation similar to MPFR’s __mpfr_struct, as shown
in Fig. 13, the constructor shown in Fig. 14, and the destructor
shown in Fig. 15. The buffer of Vec<c_ulong> is used as the
mantissa area also with this approach, but the buffer is extracted
from Vec<c_ulong> by using into_boxed_slice when type
Rfloat is created and the object of type Vec<c_ulong> is dis-
assembled.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 13 Definition of Rfloat structure (alternative version).

Fig. 14 Implementation of constructors of type Rfloat (alternative ver-
sion).

Fig. 15 Implementation of Drop trait for Rfloat type (alternative version).

With this approach, it is impossible to use methods for Vec<T>
to prepare procedures such as reallocating mantissa parts; the
coding may thus become cumbersome. In addition, implement-
ing the Clone trait requires a means of duplicating an array of
type c_ulong.

4. Evaluation

To evaluate the effectiveness of Rumpfr, we conducted exper-
iments using several numerical calculation programs. We mea-
sured the execution times of programs using gmp-mpfr-sys and
Rug, which are existing Rust bindings, and C programs written
using MPFR as well as programs using Rumpfr.

The specifications of the environment used for the evaluation
are shown in Table 1. The functions used to measure the ex-
ecution time were clock from the standard library for C and
std::time::Instant for Rust.

4.1 Iteration of Arithmetic Operations
The times required for the addition and multiplication itera-

tions of two floating-point numbers were measured. In all cases of
MPFR/C, gmp-mpfr-sys, Rug, and Rumpfr, the MPFR functions
mpfr_add and mpfr_mul were called in all the programs tested.
For each program, we measured the time required for 100,000 it-
erations with the mantissa length ranging from 100 to 1,000,000.
The measured results are shown in Fig. 16 and Fig. 17, in which
the horizontal axis is the mantissa length and the vertical axis is
the elapsed time in seconds. The shortest time for ten measure-
ment iterations is plotted.

Table 1 Specifications of environment used for evaluation.

CPU 3.3 GHz Dual-core Intel Core i7
OS macOS 10.15.7

Memory 16 GB
Rust compiler rustc 1.50.0 (-C opt-level=3)

C compiler Apple clang version 12.0.0 (-O)
MPFR library MPFR 4.1.0
gmp-mpfr-sys gmp-mpfr-sys 1.4.0

Rug rug 1.11.0

Fig. 16 Time required for 100,000 iterations of floating-point addition (c←
a + b).

Fig. 17 Time required for 100,000 iterations of floating-point multiplication
(c← a × b).

As can be seen from Fig. 16 and Fig. 17, the execution times
for all the programs were about the same except for Rug, mean-
ing that the performance degradation due to the use of binding
was not significant. Basically, arithmetic operations in MPFR use
a three-operand scheme in which the area for storing the com-
putational result is allocated in advance, and the reference to it
is passed to the arithmetic function. On the other hand, in Rug,
arithmetic operations such as addition and multiplication are two-
operand binary operations, which means that one of the floating-
point numbers must be cloned (by performing a deep copy) in ad-
vance, and that incurs overhead for each operation *5. However,
as can be seen from a comparison between Fig. 17 and Fig. 16,
the overhead of allocating space for computing subexpressions is
reasonably small when performing operations with high compu-
tational cost.

4.2 Solving Linear Equations
To investigate the performance of Rumpfr on typical numerical

*5 Cumulative addition of a← a+ b in Rug can be done without allocating
a region or duplicating values by writing a=a+&b.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Fig. 18 Solving simultaneous linear equations by LU decomposition using
Rumpfr.

programs, we measured the time required to solve a linear system
of equations with dense coefficients by LU decomposition with-
out pivoting *6. For each of the cases of MPFR, gmp-mpfr-sys,
Rug, and Rumpfr, we measured the time required to allocate and
initialize the array data and the time from the start to the end of
the computation for various combinations of the number of un-
knowns and the precision used in the computation (i.e., the man-
tissa length). We ran each program multiple times, and then used
the shortest execution time. The outline of the Rumpfr program
used in the measurements is shown in Fig. 18.

The measured results when the number of unknowns was 100,
200, and 400 are shown in Fig. 19, Fig. 20, and Fig. 21, respec-
tively. The vertical axis shows the elapsed time in seconds. The
bar graphs are shown for each program for mantissa lengths of
250, 500, 1,000, 2,000, and 4,000 bits. Each bar has two parts:
the top one shows the time required to allocate space before start-
ing computation, and the bottom one shows the time required for
computation.

We can observe the following things from the results shown in
Fig. 19, Fig. 20, and Fig. 21.
• The computational cost increases about eight times when the

*6 We used the Hilbert coefficient matrix as it does not break a calculation
without pivoting.

Fig. 19 Measured results of solving simultaneous linear equations (number
of unknowns: 100).

Fig. 20 Measured results of solving simultaneous linear equations (number
of unknowns: 200).

Fig. 21 Measured results of solving simultaneous linear equations (number
of unknowns: 400).

number of unknowns is doubled, indicating that the validity
of the program behavior for solving linear equations is not
disturbed by the use of each binding.

• Compared with the C programs, which directly use the
MPFR library, the Rust programs, which use gmp-mpfr-sys
and Rumpfr, can be processed with sufficiently small over-
head. In particular, when the mantissa length used in the
floating-point arithmetic is large, the difference in overhead
is small. One possible reason for the overhead of Rumpfr
when the mantissa length is small is that it requires more
memory than gmp-mpfr-sys for storing each floating-point
number. A detailed analysis of this finding remains for fu-
ture work.

• Among the three Rust bindings, the overhead of Rug stands
out. This is because, as described in Section 2.4, binary op-

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

erations in Rug frequently allocate numerical data areas and
replicate data in order to deal with the fact that one operand
area is overwritten. Rumpfr is faster than Rug and compa-
rable to gmp-mpfr-sys, mainly because it follows the API
of MPFR, which is based on frequent patterns in numerical
computation.

5. Discussion

5.1 Current Status of Rumpfr
Rumpfr offers wrappers for the basic arithmetic operations and

mathematical functions provided by the MPFR library and has
sufficient functionality for writing general numerical programs *7.
However, Rumpfr does not cover all the features provided by the
MPFR library. For example, the MPFR library provides a way to
change the mantissa size from the user program, but Rumpfr does
not provide a way to expand the mantissa area of a floating-point
number at runtime. In Rumpfr’s floating-point representation, the
mantissa area is a Rust dynamic array (of type Vec<T>), so it
would be easy to provide a way to change the mantissa area in
Rust.

Rumpfr is aimed at achieving a high level of both ease of writ-
ing and efficiency of program execution, under the assumption
that users can directly write numerical programs composed of
multiple-precision floating-point operations. On the other hand,
gmp-mpfr-sys provides a low-level Rust binding to MPFR and
is considered to be a means for establishing easy-to-use user in-
terfaces such as those represented by Rug. While gmp-mpfr-sys
enables the user to do everything that can be done with MPFR
in C in Rust programs, Rumpfr is designed to enable efficient
use of multiple-precision arithmetic with natural programming in
Rust. Despite this difference in design philosophy, our exper-
iments demonstrated that Rumpfr, as well as gmp-mpfr-sys, is
useful for developing programs that implement general numerical
algorithms that can be executed at high speed with low overhead.

The current version of Rumpfr was designed to be a Rust bind-
ing with the primary goal of making the MPFR library easier to
use with Rust. In contrast, Rug, an existing Rust binding, has
additional functionalities for handling multiple-precision integers
and complex numbers. Although we used Rug as a target for com-
parison, since Rug is a binding that provides users with a wider
variety of features, it is not possible to simply determine which is
more beneficial.

5.2 Concerns About Loss of Memory Safety due to Use of
Rumpfr

As described in Section 3.2, Rumpfr expects data of type
__struct_mpfr and the array regions of a unsigned long
mantissa to be properly handled outside the FFI boundary. In
Rumpfr, when a floating-point type instance is created using
gen_Rfloat, the mantissa area is prepared at the same time.
Thus the NULL pointer is not exposed outside the FFI bound-

*7 In addition to the basic arithmetic operations, basic mathematical func-
tions such as sign reversal, square root, and absolute value calcula-
tions, trigonometric and logarithmic functions are implemented. Nu-
merical data can be generated from strings, duplicated, and converted
into strings. Constraints on the mantissa, exponent, rounding mode, etc.
follow MPFR.

ary *8. As long as the interface provided by Rumpfr is used in
user programs, memory safety is not considered to be threatened.

6. Conclusion

We have developed Rumpfr, a binding for using MPFR from
Rust in a fast and easy-to-use manner. By using Rumpfr,
programs for multiple-precision floating-point arithmetic with
MPFR can be written efficiently in Rust. In this paper, we de-
scribe the design and implementation of Rumpfr and discuss its
usefulness based on numerical experiments.

Future work includes detailed performance evaluation and tun-
ing using a variety of numerical applications. In addition, we
plan to improve the functionality of the binding by, for exam-
ple, developing interfaces for multiple-precision integers, com-
plex numbers, and operations using them, as in Rug, and by in-
troducing functions to make it easier to use libraries such as the
MPFI interval arithmetic library [11] in Rust.

Acknowledgments The authors would like to thank Tasuku
Hiraishi for his helpful comments.

References

[1] The GNU MPFR Library (online), available from 〈https://www.mpfr.
org〉 (accessed 2021-02-18).

[2] The Rust Language (online), available from 〈http://www.rust-
lang.org/〉 (accessed 2021-02-18).

[3] Anderson, B., Bergstrom, L., Goregaokar, M., Matthews, J.,
McAllister, K., Moffitt, J. and Sapin, S.: Engineering the
Servo Web Browser Engine Using Rust, Proc. 38th Interna-
tional Conference on Software Engineering Companion, ICSE ’16,
Association for Computing Machinery, pp.81–89 (online), DOI:
10.1145/2889160.2889229 (2016).

[4] Bizjak, A. and Konečný, M.: hmpfr: Haskell binding to the MPFR
library (online), available from 〈http://hackage.haskell.org/package/
hmpfr〉 (accessed 2021-02-18).

[5] Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P. and Zimmermann,
P.: MPFR: A Multiple-Precision Binary Floating-Point Library with
Correct Rounding, ACM Trans. Math. Softw., Vol.33, No.2, pp.13–es
(online), DOI: 10.1145/1236463.1236468 (2007).

[6] K framework: GNU MPFR Java Bindings (online), available from
〈https://github.com/kframework/mpfr-java〉 (accessed 2021-02-18).

[7] Free Software Foundation: The GNU Multiple Precision Arithmetic
Library (online), available from 〈https://gmplib.org〉 (accessed 2021-
02-18).

[8] FuseSource: HawtJNI (online), available from 〈https://github.com/
fusesource/hawtjni〉 (accessed 2021-02-18).

[9] Krämer, W.: A Priori Worst Case Error Bounds for Floating-Point
Computations, IEEE Trans. Computers, Vol.47, No.7, pp.750–756
(1998).

[10] Project, T.S.: Servo (online), available from 〈https://servo.org〉 (ac-
cessed 2021-02-18).

[11] Revol, N.: MPFI, a multiple precision interval arithmetic library based
on MPFR (online), available from 〈https://perso.ens-lyon.fr/nathalie.
revol/software.html〉 (accessed 2021-02-18).

[12] Spiteri, T.: Arbitrary-precision numbers (online), available from
〈https://crates.io/crates/rug〉 (accessed 2021-02-18).

[13] Spiteri, T.: Rust low-level bindings for GMP, MPFR and MPC (on-
line), available from 〈https://crates.io/crates/gmp-mpfr-sys〉 (accessed
2021-02-18).

[14] Thévenoux, L.: OCaml C bindings for MPFR-4.1.0 (online), available
from 〈https://opam.ocaml.org/packages/mlmpfr/〉 (accessed 2021-02-
18).

[15] The MPFR team: GNU MPFR: The Multiple Precision Floating-Point
Reliable Library, 4.1.0 edition (2020).

*8 It is assumed that runtime memory allocation by Vec::with capacity,
Vec::clone(), etc. does not fail.

c© 2021 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.29

Tomoya Michinaka received a B.E.
degree in computer engineering from
Hiroshima City University in 2021. His
research interests include programming
languages and systems.

Hideyuki Kawabata received B.E. and
Ph.D. degrees in computer engineering
from Kyoto University in 1992 and 2004,
respectively. He is an associate profes-
sor at Hiroshima City University. His
research interests include numerical pro-
gramming and programming languages.
He is a member of ACM, IEEE Computer

Society, IPSJ, IEICE, JSIAM, and JSSST.

Tetsuo Hironaka received a Ph.D.
degree in computer engineering from
Kyushu University in 1993. From 1993
to 1994, he served as a research asso-
ciate at Kyushu University. From 1994
to 2006, he was an associate professor at
Hiroshima City University. Since 2006,
he has been a professor at Hiroshima City

University. His research interests include computer architectures,
reconfigurable architectures, and software engineering. He is a
member of IPSJ, IEICE, IEEE, and ACM.

c© 2021 Information Processing Society of Japan

