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Abstract: To achieve the personalized medicine, it is important to examine the links between diseases and genomes.
For this purpose, large-scale genetic studies are often conducted, but there is a risk of identifying individuals. In this
study, we propose new efficient differentially private methods for a transmission disequilibrium test. Existing methods
are computationally intensive and take a long time even for a small cohort. Moreover, for approximation methods, sen-
sitivity of the obtained values is not guaranteed. We first present an exact algorithm with a low time complexity, and
also propose an approximation algorithm that is faster than the exact one and prove that the obtained scores’ sensitivity
is 1. The experimental results show that our exact algorithm is 10, 000 times faster than existing methods for a small
cohort. The results also indicate that the proposed method can be applied to a sufficiently large cohort. In addition, we
discuss a suitable dataset to apply our algorithms.
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1. Introduction
In recent years, the amount of human genome data has in-

creased dramatically with the advances in genome technologies.
Based on these data, it is important to analyze the relationship
between genomes and diseases for genome research and person-
alized medicine. Genome wide association studies (GWAS) rep-
resent a type of statistical analysis to investigate genetic factors
of diseases such as cancer. A typical GWAS statistically ana-
lyzes the links between millions of single nucleotide polymor-
phism (SNP) locations and diseases, and the analysis methods
include case-control studies with contingency tables [1, 2] and
family-based transmission disequilibrium tests (TDTs) [3, 4].

The use of statistics obtained from these tests is essential for
the development of medicine, but it also poses privacy issues. If
these statistics are made public as they are, genomic informa-
tion of an individual might be leaked, and several studies [5, 6]
have been conducted on the identification of an individual using
genomic information. In addition, some attack methods against
GWAS have been proposed [7, 8]. These studies resulted in the
NIH ceasing to release aggregate GWAS data [9], and now it is
difficult to use these data freely.

In this situation, it is important to develop methods to release
statistics based on genomic data, including GWAS data, while
preventing the identification of individuals and maintaining the
statistics’ utility. For this purpose, we focused on the concept of
differential privacy [10]. Differential privacy is a framework to
protect the privacy of individuals in a database when releasing
useful information such as genomic statistics. By adding pertur-
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bation to the original information, it creates a situation wherein
it is almost impossible to distinguish whether a database contains
a particular individual, regardless of what information the adver-
sary has.

Using this concept, several studies [11–14] have proposed
privacy-preserving mechanisms for case-control studies in
GWAS. Other analyses in GWAS include family-based correla-
tion analysis, and Wang et al. [15] proposed differentially private
mechanisms for TDTs in the case of trio families, that is, one
affected child per family [16]. However, their exact algorithm
requires solving the shortest path problems with a large number
of nodes, which are computationally intensive, and takes a long
time to run even for a relatively small dataset. Furthermore,
sensitivity of the score function obtained by their approximation
algorithm is not guaranteed. Since the sensitivity affects the level
of privacy that can be achieved in the concept of differential
privacy, their algorithm is not strictly privacy-preserving.

In this study, we propose efficient methods to release the top
K significant SNPs based on the TDT statistics in GWAS with
the concept of differential privacy. We focus on the exponential
mechanism, which has been shown to provide highly accurate
results in various methods for releasing statistics based on con-
tingency tables [12, 13, 17], and we adopt the shortest Hamming
distance (SHD) score as the score function. We present exact and
approximation algorithms for calculating the SHD score, and the
computational complexity is O(nm) and O(m) for a dataset with
n families and m SNPs, respectively. For the approximation al-
gorithm, we also prove that the sensitivity of the resulting SHD
score is 1. This makes it possible to apply the exponential mech-
anism under differential privacy. Subsequently, we evaluate the
run time and accuracy of our methods through experiments and
show that our exact method is 10, 000 times faster than Wang et
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al.’s method [15] for a small cohort with 5, 000 SNPs, and is the
first globally to be applied to a large cohort with 106 SNPs. We
also show that our approximation algorithm is much faster than
the exact one, taking only about 4 seconds to complete the calcu-
lation even for the large cohort.

In Section 2, we describe basic assumptions and preliminary
definitions. In Section 3, we present ϵ-differentially private meth-
ods for releasing the top K significant SNPs. In Section 4, we
evaluate their utility based on simulation data. We summarize
our study with directions for future work in Section 5.

2. Preliminaries
A typical GWAS examines whether there is an association be-

tween marker loci, such as SNPs, and diseases. Test methods
used in such studies include affected family-based control stud-
ies [18–20]. These methods can test whether there is a correlation
between a marker locus and a disease that has a genetic linkage.
In addition, TDT can also test for linkage when there is a corre-
lation.

2.1 TDT
TDT [16] is a test for linkage disequilibrium, which examines

the relationship between a disease and two or more alleles, de-
pending on how many children are in a family. In TDT for n trio
families, we consider 2n parents and n affected children. We fo-
cus on the case of testing for two alleles, such as SNPs. When
the two alleles are M1 and M2, the 2n parents can be classified
according to the type of allele transmitted to their child as shown
in Table 1.

Table 1 Number of parents for TDT in one SNP.

Non-Transmitted Allele TotalM1 M2

Transmitted M1 a b a + b
Allele M2 c d c + d

Total a + c b + d 2n

Under the null hypothesis of no linkage or no correlation be-
tween a marker locus and a disease, the TDT statistics are ex-
pressed as follows:

χ2
td := χ2

td(b, c) =
(b − c)2

b + c
.

These statistics approximately follow a chi-squared distribution
with one degree of freedom. Since b = c under the null hypoth-
esis, when b = c = 0, we define χ2

td = 0/0 = 0. The possible
combinations of (b, c) in one family are shown in Table 2, and b
and c in n families can be calculated by the following equations:
b = n1 + n3 + 2 n4 and c = n2 + n3 + 2 n5.

Table 2 Number of families for each (b, c).
(b, c) in a family (1, 0) (0, 1) (1, 1) (2, 0) (0, 2) (0, 0)

# of families n1 n2 n3 n4 n5 n6

2.2 Differential Privacy
Differential privacy [10] is a concept developed in the field of

cryptography as a framework that allows statistical analysis of
databases while preserving personal data in the database from ad-
versaries. The idea of differential privacy is based on the fact that
it should be almost impossible to distinguish between two neigh-
boring datasets, that is, they differ in just one record. In this study,
we define two neighboring datasets by exchanging the genomic
data of exactly one family. The privacy level in differential pri-
vacy is evaluated by the parameter ϵ > 0. The following is the
definition of ϵ-differential privacy.
Definition 1. (ϵ-Differential Privacy)
A randomized mechanism M is ϵ-differentially private if, for all
datasets D and D′, which differ in only one family and any S
⊂range(M),

Pr[M(D) ∈ S ] ≤ eϵ · Pr[M(D′) ∈ S ].

The closer ϵ is to zero, the more privacy is preserved, and the
larger ϵ is, the less privacy is guaranteed. On the other hand, the
higher is the privacy level, the lower is the data’s utility, so the
value of ϵ needs to be set with consideration of the trade-off be-
tween privacy and utility. In general, the value of ϵ is set in the
range from 0.01 to 10 [21], but a smaller value should be chosen
when more privacy is considered, such as the case with genomic
data.

One main mechanism that satisfies the definition of ϵ-
differential privacy is the exponential mechanism [22]. The ex-
ponential mechanism uses a score function, which indicates the
desirability of the original output. Based on the sensitivity of
the score function, elements with higher scores are made to have
higher probability of being released. Sensitivity is defined as fol-
lows.
Definition 2. (Sensitivity for the Exponential Mechanism)
Let DM be the collection of all datasets with M SNPs; then, the
sensitivity of a score function u : DM × {1, 2, . . . ,M} → R is

∆u = max
r

max
D,D′
|u(D, r) − u(D′, r)|,

where r ∈ {1, 2, . . . ,M} and D,D′ ∈ DM differ in a single family.
Following the above definition, we choose mechanism Mϵu,

which has the following distribution:

Mϵu =
exp

(
ϵu(D,r)

2∆u

)
∑

s∈{1,...,M} exp
(
ϵu(D,s)

2∆u

) .
Then, releasing Mϵu satisfies the definition of ϵ-differential pri-
vacy.

In this study, we use the SHD score as the score function. In
the allelic test, various mechanisms using the SHD score have
been proposed [12,13,17], and it has been shown that this score’s
sensitivity is 1 [12]. The SHD score indicates from how many
neighboring datasets the statistics should be traced, from signif-
icant to non-significant and vice versa, and the definition of the
SHD score is as follows.
Definition 3. (The SHD score)
Given a predefined threshold c∗ > 0, the SHD score for i-th data
Di (i = 1, 2, . . . ,M) is
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dSH(Di, i) =


0, i f Ti ≥ c∗ and ∃D′i ,T

′
i < c∗,

1 +min dSH(D′i , i), i f Ti ≥ c∗ and ∄D′i ,T
′
i < c∗,

−1 +max dSH(D′i , i), i f Ti < c∗,

where Ti and T ′i are the test statistics obtained from Di and D′i ,
respectively, and Di,D′i ∈ DM differ in a single family. For
i ∈ {1, . . . ,M}, dSH(Di, i) = −∞.

3. Methods
In this study, we aim to release the K most significant SNPs.

We first show an efficient exact algorithm to obtain the SHD
score. Then, we propose an algorithm for calculating the approx-
imation SHD score whose sensitivity is 1.

3.1 Exact Algorithm
Some differentially private releasing methods for trio families

have been proposed by Wang et al. [15]. However, the exponen-
tial mechanism in their methods, which gave relatively accurate
results, has high time complexity and takes too much running
time. In fact, it took 4.2 hours for a dataset with 187 families and
906 SNPs [15]. The reason for this is that it requires construct-
ing a graph with O(n5) nodes for a dataset with n families and
solving the shortest path problems for m SNPs. To deal with this
concern, we propose an efficient and rigorous exponential mech-
anism with the complexity of O(nm) for the same dataset, which
does not need to consider graphs.
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Fig. 1 Contour plots of the transmission disequilibrium test statistic for trio
families and the possible moves of (b, c).

In this study, we adopt the SHD score as the score function in
the exponential mechanism. Here, the TDT statistic for trio fami-
lies is (b−c)2

b+c , and the contours of this function can be shown as in
Fig. 1. There can be 18 moving directions of (b, c) between two
neighboring datasets, as shown in the figure. These 18 moves are
due to the variations in the combinations of (b, c) shown in Table
2, and our algorithm calculates the SHD score by changing the
values of nk (k = 1, 2, . . . , 6). The detailed procedure is shown
in Algorithm 1, and we prove that this algorithm gives the exact
SHD score in Theorem 1.
Theorem 1. Algorithm 1 outputs the exact SHD score.

Proof. We consider two cases: (I) T < c∗ and (II) T ≥ c∗.

(I) T < c∗

In order to increase the value of the statistic (b − c)2/b + c,
we can consider increasing the difference between the values of b
and c.

Firstly, we consider making b larger than c. Here, we discuss
how to change the families included in each of the categories
shown in Table S1. We start by looking at the case of changing

Algorithm 1 Exact algorithm to find the SHD score for TDT
statistics.
Input: Information about a single SNP, that is, n1, n2, n3, n4, n5, n6, and the

threshold c∗ for the TDT statistics.
Output: The SHD score in one SNP.

1: T = (n1 − n2 + 2n4 − 2n5)2/(n1 + n2 + 2n3 + 2n4 + 2n5)
2:
3: if T < c∗ then
4: Increase the number of families with (b, c) = (2, 0).
5: d1 = 0, Nk = nk(k = 1, . . . , 6)
6: while T < c∗ do
7: Check the value of N5, N2, N3, N6, and N1 in that order, and if a

value greater than 0 is found, decrease it by one and continue to the
next step.

8: N4 ← N4 + 1
9: T = (N1 − N2 + 2N4 − 2N5)2/(N1 + N2 + 2N3 + 2N4 + 2N5)

10: d1 ← d1 − 1
11: end while
12:
13: Increase the number of families with (b, c) = (0, 2).
14: d2 = 0, Nk = nk(k = 1, . . . , 6)
15: As in the above case, check N4, N1, N3, N6, and N2 in that order, and

increase N5, then decrease d2 until T ≥ c∗.
16:
17: The SHD score is max{d1, d2}.
18:
19: else if T ≥ c∗ then
20: if n1 + 2n4 > n2 + 2n5 then
21: As in the case of T < c∗, check n4, n1, n6, n3, and n2 in that order,

and increase n5 until T < c∗.
22: else
23: Check n5, n2, n6, n3, and n1 in that order, and increase n4 until

T < c∗.
24: end if
25: The SHD score is (the number of steps) −1.
26: end if

Algorithm 2 ϵ-differentially private algorithm for releasing the
top K significant SNPs using the exponential mechanism with
the SHD score.
Input: The SHD score of all m SNPs, number K of SNPs to release, and

privacy budget ϵ.
Output: Top K significant SNPs.

1: Let S = ∅ and qi be the SHD score of the i-th SNP.
2: For each i ∈ {1, . . . ,m}, set the weight wi = exp

(
ϵqi
2K

)
and the probability

pi =
wi∑m

i=1 wi
for sampling the i-th SNP.

3: Sample k from {1, . . . ,m} with probabilities {p1, . . . , pm}; add k-th SNP
to S and set qk = −∞.

4: Repeat steps 2 and 3 until the size of S reaches K.
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one family in the category (1, 0). In this case, there are five pos-
sible changes as follows: (i) (1, 0) → (0, 1), (ii) (1, 0) → (1, 1),
(iii) (1, 0) → (2, 0), (iv) (1, 0) → (0, 2), and (v) (1, 0) → (0, 0).
For each of these cases, the statistics after the change are given
below:

(i)
(b − c − 2)2

b + c
, (ii)

(b − c − 1)2

b + c + 1
, (iii)

(b − c + 1)2

b + c + 1
,

(iv)
(b − c − 3)2

b + c + 1
, (v)

(b − c − 1)2

b + c − 1
.

If b > c, the largest change is in case (iii), so we change the fam-
ily into the category (2, 0). When a family is in the categories
(0, 1), (1, 1), (0, 2), and (0, 0), we can change them into the cat-
egory (2, 0) as well. The families in the category (2, 0) are not
changed, because changing them decrease the statistics. Then,
since

(b − c + 4)2

b + c
>

(b − c + 3)2

b + c + 1
>

(b − c + 2)2

b + c

>
(b − c + 2)2

b + c + 2
>

(b − c + 1)2

b + c + 1
,

we can check n5, n2, n3, n6, and n1 in that order and increase n4,
which is the number of families with (2, 0).

When making b smaller than c, the proof is very similar to the
above.

(II) T ≥ c∗

When b > c, we can think as in the case (I) and change the
families so that the statistic becomes smaller. In this case, we
consider increasing the number of families included in the cate-
gory (0, 2). Since

(b − c − 4)2

b + c
<

(b − c − 3)2

b + c + 1
<

(b − c − 2)2

b + c + 2

<
(b − c − 2)2

b + c
<

(b − c − 1)2

b + c + 1
,

we check n4, n1, n6, n3, and n2 in that order.
When b < c, same as for the case of b > c. □

In Algorithm 1, the number of families to be changed is at most
2n, so the computational complexity of this algorithm isO(n). If a
dataset has m SNPs, we only need to apply Algorithm 1 m times,
and thus the total complexity is O(nm). The ϵ-differentially pri-
vate mechanism using the SHD scores for releasing the top K
significant SNPs is represented in Algorithm 2. Here, as K in-
creases, the accuracy of the output is expected to decrease be-
cause the weights of significant SNPs become smaller.

3.2 Approximation Algorithm
We also propose an algorithm to find the approximation SHD

score whose sensitivity is 1. The computational complexity of our
algorithm is O(1) when finding the SHD score for a single SNP,
which is much faster than the exact algorithm. We also prove that
sensitivity of the obtained score is 1, which has not been shown
in the existing approximation algorithm [15].

In our approximation algorithm, we focus on only variables b
and c in calculating the TDT statistics(= (b − c)2/(b + c)). First,
we consider the case wherein the original data are not significant.

If b + c < c∗, we start by increasing b + c to c∗. Then, we in-
crease |b − c| to c∗. Since the maximum changes in the sum and
difference of b and c are 2 and 4, respectively, the approxima-
tion score can be calculated by −

⌈
c∗−(b+c)

2 +
c∗−{|b−c|+c∗−(b+c)}

4

⌉
=

−
⌈

2c∗−(b+c)−|b−c|
4

⌉
. If b+c ≥ c∗, we increase the difference between

b and c to
√

(b + c) · c∗. When the original data are significant,
we reduce it to

√
(b + c) · c∗. The above procedures are summa-

rized in Algorithm 3. We show that the sensitivity of the score in
this way is 1 by Theorem 2.

Algorithm 3 Approximation algorithm to find the SHD Score for
TDT statistics.
Input: Information about a single SNP, that is, n1, n2, n3, n4, n5, n6, and the

threshold c∗ for the TDT statistics.
Output: The SHD score in one SNP.

1: b = n1 + n3 + 2n4, c = n2 + n3 + 2n5

2: T = (b − c)2/(b + c)
3: if T < c∗ then
4: if b + c < c∗ then
5: The SHD score is −

⌈
2c∗−(b+c)−|b−c|

4

⌉
.

6: else if b + c ≥ c∗ then
7: The SHD score is −

⌈ √
(b+c)·c∗−|b−c|

4

⌉
.

8: end if
9: else if T ≥ c∗ then

10: The SHD score is
⌈
|b−c|−

√
(b+c)·c∗

4

⌉
− 1.

11: end if

Theorem 2. Sensitivity of the SHD score obtained by Algorithm
3 is 1.

Proof.

(I) (b − c)2/(b + c) < c∗

(i) b + c < c∗

When b ≥ c, (b+ c)+ |b− c| = 2b. Since the maximum change
in b is 2, that in the SHD score is

⌈
4
4

⌉
= 1. It is similar for b < c.

(ii) b + c ≥ c∗

Let b+c = s, |b−c| = d, and we calculate the maximum change
in
√

kc∗ − s.
When the change in s is 2, d changes by at most 2. Therefore,

we can consider the following inequality:

{
√

(s + 2)c∗ − (d − 2)} − {
√

sc∗ − d}

=
2c∗

√
(s + 2)c∗ +

√
sc∗
+ 2 ≤

√
c∗
√

s
+ 2 ≤ 3. [∵ s ≥ c∗]

When the change in s is 1, since d changes by at most 3,

{
√

(s + 1)c∗ − (d − 3)} − {
√

sc∗ − d}

=
c∗

√
(s + 1)c∗ +

√
sc∗
+ 3 ≤

√
c∗

2
√

s
+ 3 ≤ 7

2
. [∵ s ≥ c∗]

When s does not change, the maximum change in d is 4.
Thus, the SHD score changes by at most

⌈
4
4

⌉
= 1.

(II) (b − c)2/(b + c) ≥ c∗

Same as the case (I)(ii).
Consequently, the sensitivity of the SHD score from Algorithm

2 is 1. □
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Even when using this approximation score, Algorithm 2 can be
used to release the top K significant SNPs privately.

4. Experiments
We first measured the run time of our algorithms in a small co-

hort and a large cohort using two types of simulation data: one
wherein families were only in n1, n2, and n6 categories, and one
wherein families were distributed across n1 to n6. Then, we cal-
culated the accuracy rate of the top K significant SNPs in each
case and examined the effect of the value of K and ϵ.

4.1 Simulation Data
For both cases in (I) small cohort and (II) large cohort, we gen-

erated simulation data for two situations: (i) all families were in
the n1 or n2 or n6 categories, and (ii) families were distributed in
n1 to n6 categories.
(I) Small Cohort

We set the family number N = 150 and SNP number M =

5, 000 as in the experiments by Wang et al [15]. Here, we con-
sider generating a dataset for the i-th SNP.

(i) First, we let S i be a random natural number in the range of
0 to 2N. Then, we generate n1 from binomial distribution with
size S i and probability 0.5. Finally, we set n2 = S i − n1 and
n6 = 2N − n1 − n2. In addition, for the 10 SNPs, the probability
in the binomial distribution to generate n1 is set to 0.75 to create
some significant datasets.

(ii) We set n1 to n6 by the following equations:

n1 = Binomial
(
2N,

1
6

)
, n2 = Binomial

(
2N − n1,

1
5

)
,

n3 = Binomial
(
2N − n1 − n2,

1
4

)
,

n4 = Binomial
(
2N − n1 − n2 − n3,

1
3

)
,

n5 = Binomial
(
2N − n1 − n2 − n3 − n4,

1
2

)
,

n6 = 2N − n1 − n2 − n3 − n4 − n5.

For the generation of 10 significant datasets, the probabilities
in the binomial distribution are set to 1

4 , 1
8 , 1

4 , 1
2 , and 1

3 , in that
order.
(II) Large Cohort

We set N = 5, 000 and M = 106 as in the experiments by Wang
et al [15]. The way to generate non-significant datasets is the
same as in (I). When generating 10 significant datasets,

(i) the probability in the binomial distribution to calculate n1 is
set to 0.55, and

(ii) the probabilities are set to 11
60 , 2

11 , 1
4 , 11

30 , and 5
11 , in that

order.

4.2 Results
4.2.1 Run Time

We measured the run time of calculating the SHD score based
on the generated data described above. We conducted five runs
for each case, and the averages are shown in Table 3.

The existing method by Wang et al. [15] took four hours even
for a small cohort, but our algorithm is 10, 000 times faster than

Table 3 Run Time [sec] of our algorithms for a (I) small cohort and (II)
large cohort, when the (i) distribution of families is unbalanced
and (ii) families are distributed across all categories.

(I) exact appx.
(i) 0.875 0.020
(ii) 0.972 0.019

(II) exact appx.
(i) 1081.773 4.047
(ii) 1338.327 4.163

that. For a large cohort, our exact algorithm can compute within
about 20 minutes, indicating that it is practical. To the best of
our knowledge, this is the first high-speed algorithm for a large
cohort.
4.2.2 Accuracy

We varied the values of K and ϵ and calculated the accuracy
for top K significant SNPs’ output by the exponential mechanism.
For the four cases described in Subsection 4.1, the accuracies of
the exact and approximation algorithms are plotted in Figs. 2, 3,
4, and 5.
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Fig. 2 Accuracy of the top K significant SNPs when (a) K = 1, (b) K = 3,
(c) K = 5, and (d) K = 10 in case (I)(i).
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Fig. 3 Accuracy of the top K significant SNPs when (a) K = 1, (b) K = 3,
(c) K = 5, and (d) K = 10 in case (I)(ii).

First, we discuss the case of a small cohort. Figs. 2 and 3 indi-
cate that when K = 1, high accuracy could be obtained even if we
set ϵ as small as 1.0 to 1.5. On the other hand, when K = 10, no
high accuracy was obtained. For practical use, it might be better
to set K as 3 or 5, and the value of ϵ as 1.5 to 2.5. Moreover,
interestingly, in case (ii), wherein families are distributed across
all categories, the approximation algorithm achieved almost the
same accuracy as the exact algorithm. One possible reason for
this is that there is a reasonable number of families included in
the n4 and n5 categories. Changes in the values of b and c, which
were considered when determining the approximation algorithm,
might be actually possible, and the SHD score will be almost
equal to that obtained from the exact algorithm.
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Fig. 4 Accuracy of the top K significant SNPs when (a) K = 1, (b) K = 3,
(c) K = 5, and (d) K = 10 in case (II)(i).
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Fig. 5 Accuracy of the top K significant SNPs when (a) K = 1, (b) K = 3,
(c) K = 5, and (d) K = 10 in case (II)(ii).

For the case of a large cohort, the figures’ outline is roughly the
same as that for a small cohort, but with high accuracy. In fact,
it is expected that the statistics on significant SNPs will be larger
for a large cohort than for a small cohort, and therefore, the top
SNPs will be selected with higher probability by the exponential
mechanism.

5. Conclusion
In this study, we presented efficient privacy-preserving meth-

ods for releasing significant SNPs based on TDT statistics in
GWAS. Our exact algorithm is about 10, 000 times faster than
the previous method [15] for small cohorts. Our experimental re-
sults indicated that our algorithms are the first in the world to be
practical even for large cohorts, such as those with 106 SNPs. We
have also shown that sensitivity of the SHD score obtained by our
approximation algorithm is 1. Our simulation studies have sug-
gested that the approximation algorithm can be as accurate as the
exact algorithm when there is no imbalance in the combination
of genotypes in a family dataset. If we want to release the top K
TDT statistics privately, we could consider adopting the Laplace
mechanism [23].

For future research, we need to consider multi-allelic TDT [24]
or the case wherein one family has two or more affected children,
not only the case of trio families. Also, it might be desirable to
investigate score functions other than the SHD score for the ex-
ponential mechanism.
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