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Abstract: Flux balance analysis (FBA) is a crucial method to analyze large-scale constraint-based metabolic
networks and computing design strategies for strain production in metabolic engineering. However, as it is
often non-straightforward to obtain such design strategies to produce valuable metabolites, many tools have
been proposed based on FBA. Among them, GridProd, which divides the solution space into small squares
by focusing on the cell growth rate and the target metabolite production rate to efficiently find the reaction
deletion strategies, was extended to CubeProd, which divides the solution space into small cubes. However,
as GridProd and CubeProd naively divide the solution space into equal sizes, even places where solutions are
unlikely to exist are examined. To address this issue, we introduce dynamic solution space division methods
based on CubeProd for faster computing by avoiding searching in places where the solutions do not exist. We
applied the proposed method DynCubeProd to iJO1366, which is a genome-scale constraint-based model of
Escherichia coli. Compared with CubeProd, DynCubeProd significantly accelerated the calculation of the
reaction deletion strategy for each target metabolite production. In addition, under the anaerobic condition
of iJO1366, DynCubeProd could obtain the reaction deletion strategies for almost 40% of the target metabo-
lites that the elementary flux vector-based method, which is one of the most effective methods in existence,
could not. This study was published in https://doi.org/10.3389/fbinf.2021.716112 [4].
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1. Introduction

Metabolic engineering is a DNA recombination-based

technology proposed in 1991 to improve the designated

substance production and the cell properties by manip-

ulating and introducing specific biochemical reactions

[1], [7]. In many cases, current metabolic engineering

technology focuses on the utilization of microorganisms.

In metabolic engineering analysis, metabolic pathways in

organisms are often represented by metabolic networks,

in which nodes represent metabolite molecules and bio-

chemical reactions. Any two metabolites (biochemical re-

actions) cannot be directly connected, and a metabolite
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must be connected to at least two biochemical reactions.

The biochemical reactions can be irreversible or reversible.

Nodes of external metabolites form the input and output

nodes of the entire network.

Constraint-based modeling is a mathematical method

to identify the best solution within a set of possible choices

subject to pre-specified constraints [5]. Constraint-based

modeling methods, such as linear programming (LP)

and mixed integer linear programming, are widely used

effective optimization techniques. Flux balance anal-

ysis (FBA) is one such widely used constraint-based

modeling method with stoichiometric-based modeling of

metabolism for the analysis of genome-scale metabolic

models (GSMM) [5].

In the constraint-based models of metabolic networks,

the cell growth reaction and the target metabolite produc-
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Fig. 1 (A) In the problem setting of this study, it is required

that convert the original network is converted into the

designed network that achieves growth coupling, where

cell growth and target metabolite production are simul-

taneously achieved. (B) The designed network should

be obtained from the original network through reaction

deletions. The black blocks are nutrient uptake reac-

tions, the cell growth reaction, or the target metabolite

production reaction. The speed of the cell growth re-

action and target metabolite production reaction are

represented by GR and PR, respectively. Light gray

and dark gray represent the designed network and the

original network, respectively.

tion reactions are of particular interest. The cell growth

reaction has been virtually designed to simulate the effi-

cient conversion of uptake resources into cellular energy

and chemical components, which support cell growth in

response to selection pressure to construct the system

in the most plausible physiological state [5]. The target

metabolite production reaction produces a chemical of in-

terest. We define growth rate (GR) as cell growth reaction

speed and production rate (PR) as the target metabolite

production reaction speed.

Growth coupling is a fundamental design principle in

metabolic engineering and computational strain design.

The purpose of growth coupling is to make the target

metabolite a mandatory by-product of the cell growth re-

action. We say that growth coupling is achieved if the

target metabolite is produced when cell growth is maxi-

mized as shown in Fig. 1 (A).

In this study, the core and basic problems are to find

a growth coupling method for the target metabolite pro-

duction through reaction deletions. The method should

produce as much target metabolite as possible by modify-

ing the metabolic network when GR is maximized as the

objective function. The relationship between the original

network and the designed network is shown in Fig. 1 (B).

We can delete reactions by setting their speeds as zero in

the network modification strategies. Based on the most

basic problem above, the following sub-problems are de-

rived. The first is to find knockout strategies for as many

different target metabolites as possible. The second is to

find knockout strategies for the networks under different

input conditions such as aerobic or anaerobic conditions.

The most basic and pioneer algorithm for this purpose is

OptKnock, which is a bilevel optimization-based method

that identifies knockout strategies that result in the maxi-

mum PR when GR is maximized. The inner optimization

performs the flux (reaction speed) allocation with regard

to the optimization of cellular objectives (e.g., maximiza-

tion of biomass yield and MOMA) [2]. The outer op-

timization maximizes the bioengineering objective (e.g.,

chemical production) [2]. However, because the computa-

tion time of OptKnock is proportional to an exponential

function of the network size, in many cases, its compu-

tation is not completed within a realistic timeframe for

GSMMs [10]. Therefore, many algorithms have been pro-

posed to speed up the process for the efficient computation

of the reaction deletion strategies.

Considering that finding the optimal strategy is NP-

hard, it is reasonable to only find out the strategy that

meets the expected requirements. For example, the ele-

mentary flux vector (EFV)-based method determines re-

action deletion strategies in which cell growth forces the

production of the target metabolite, and the success ra-

tio of this method was very high under both anaero-

bic and aerobic conditions for several microbial models

[11]. GridProd efficiently computes the design of mini-

mum metabolic networks by using bilevel optimization ap-

proach with picking two-dimensional limits and gridding

the constraint space [8]. CubeProd divides the entire con-

straint space into small cubes and gave good results for

GSMM with extreme constraints (e.g., anaerobic condi-

tion) [9]. The EFV-based method, GridProd, and Cube-

Prod enable the calculation of reaction deletion strategies

for many target metabolites that cannot be calculated

using the previously developed methods. However, for

Escherichia coli under anaerobic conditions, the reaction

deletion strategies could not be obtained for many target

compounds. In particular, for GridProd and CubeProd,

the bottleneck was the computing speed. Therefore, it was

expected to extend GridProd or CubeProd to shorten the

computation time.

In this study, we developed DynCubeProd that im-

proves the computation speed of CubeProd. DynCube-

Prod employs a dynamic strategy for the cube sizes to

obtain the same results as CubeProd; however its compu-
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tation speed is much faster. The reaction deletion strate-

gies obtained by DynCubeProd also supplement those of

the EFV-based method under certain conditions. Under

anaerobic conditions, we obtained the reaction deletion

strategies for close to 40% of the target metabolites for

which the EFV-based method could not determine strate-

gies.

2. Materials and Methods

2.1 Problem definition

The general formalization of constraint-based modeling

is as follows [5]:

minimize (or maximize):

f(x)

subject to:

h(x) = 0

g(x) ≤ 0

x ∈ S

x is an n-dimensional variable. f(x) is the objective func-

tion to minimize or maximize. S is the set from which

the variable vector x ranges. h(x) and g(x) are the con-

straints that must be satisfied as equalities or one-side

inequalities, respectively.

The general form of the FBA is as follow:

maximize

f(x)

subject to:

Sx = 0

LB ≤ x ≤ UB

x ∈ Rn is an n-dimensional variable. f(x) is the objec-

tive function, which in many cases is GR. S ∈ Rm×n is

the stoichiometric matrix corresponding to m metabolites

and n reactions in the constraint-based models. LB and

UB impose the lower and upper bounds of each x ∈ x. For

example, a flux for irreversible reactions xi is constrained

as xi ≥ 0.

Our goal was to find reaction deletion strategies for

growth coupling of target metabolite production. Let

K = {vj |vj ∈ V } be a set of reactions to be knocked

out, where V is a set of n reactions. Then, the definition

of the main problem of this study arises.

Given

S,LB,UB, vgrowth, vtarget, x
min
growth, x

threshold
target

Find

K

such that

xgrowth ≥ xmin
growth and xtarget ≥ xthreshold

target

maximize

f(x) (=xgrowth)

subject to:

Sx = 0

{x = 0 if , x ∈ K

LB ≤ x ≤ UB, otherwise.

When xgrowth ≥ xmin
growth and xtarget ≥ xthreshold

target is

satisfied, we consider K achieves growth coupling, where

GR = xgrowth for vgrowth ∈ V and PR = xtarget for

vtarget ∈ V hold.

2.2 Example for Problem Definition

A toy example of the constraint-based model with 11

nodes is shown in Fig. 2 (A) to illustrate the prob-

lem definition explained above. The rectangular nodes

{R1, R2, . . . , R7} are chemical reactions. R7 is the target

metabolite production reaction and R6 is the cell growth

reaction. The substrates and products of the reactions are

shown on the right side of Fig. 2 (A). The gray rectangu-

lar nodes are external reactions which play roles of input

and output of the entire network and the white rectangu-

lar nodes are internal reactions, each of which connect at

least two metabolite nodes with different directions. The

intervals next to the rectangular nodes are the lower and

upper bounds of reaction speeds. The circular nodes are

internal metabolites that connect rectangular nodes.

Suppose that vmin
growth = vthresholdtarget = 1 is given. When a

reaction deletion strategy is given and GR = x6 is maxi-

mized, if GR ≥ 1 and PR = x7 ≥ 1 hold, then we consider

that growth coupling is achieved. Because this example is

very simple, such a reaction deletion strategy can be eas-

ily determined through brute force enumeration. Deleting

R3 is the optimal solution for this toy example.

Fig. 2 (B) shows the results of each knockout strategy

applied to this toy example. Because deleting R4 is prac-

tically equivalent to deleting R2, deleting R4 is omitted

in the table. When none of the reactions are deleted,

that is, K = ϕ, GR=3 will be obtained but PR will be

0. When K = {R2} or K = {R5}, the same result will

be obtained. According to the definition of the problem

above, such knockout strategies are not acceptable. When

K = {R3, R5}, PR=3 is obtained, but GR will be 0.

When K = {R3}, both GR = 1 ≥ 1 and PR = 2 ≥ 1

are obtained. Therefore, K = {R3} is a feasible solu-

tion because it achieves growth coupling. However, such

a brute force method cannot be applied to GSSMs owing
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Fig. 2 (A) A toy example of the constraint-based models.

Rectangular nodes R1 to R7 are reactions, and the at-

tached intervals represent lower and upper bounds of

their reaction speeds. R1 is the nutrient uptake reac-

tion. R6 is the cell growth reaction. R7 is the tar-

get metabolite production reaction. Circular nodes C1

to C4 are internal metabolites. (B) Reaction deletion

strategies and the resulting flux (reaction speed) distri-

butions.

to combinatorial explosion.

3. Results

We developed an algorithm DynCubeProd for calcu-

lating reaction deletion strategies that achieve growth

coupling of designated target metabolite production in

constraint-based models of metabolic networks.

Because DynCubeProd is a method obtained by im-

proving CubeProd [9], in this section, we provide an

overview of CubeProd and then explain the difference be-

tween DynCubeProd and CubeProd. The algorithm be-

havior of DynCubeProd is also illustrated using examples.

The relationship between DynCubeProd and other meth-

ods is discussed in Section 4.

3.1 DynCubeProd

Idea: CubeProd considers the three-dimensional solution

space whose axes represent GR, PR and sum of absolute

values of fluxes (SF). Let TMGR, TMPR, and TMSF be

the theoretical maximum values of the above, respectively.

Then the whole constraint space is a rectangle formed by

[0, TMGR], [0, TMPR], and [0,TMSF] *1. According to

the designated value of P , each of [0, TMGR], [0, TMPR],

and [0,TMSF] are divided into P pieces. Therefore, fi-

nally, CubeProd considers P 3 constraint sub-spaces.

The value of P closely affects the trade-off between the

*1 Because it is difficult to determine TMSF in polynomial
time, we approximate TMSF by SF when PR is maximized,
and [0,2·TMSF] was used instead of [0,TMSF] in the com-
putational experiments and examples.

ease of finding a solution and the computation time. The

larger the value of P, the easier it is to find a solution, but

the slower the computation time. Therefore, if CubeProd

uses a certain value of P and cannot find a solution, a

larger value of P should be applied, but the computation

time will be more. However, it may be the case that some

of the small solution spaces generated by a larger P are

already proved by a smaller P to contain no solutions.

DynCubeProd starts with P=1 and doubles P if no so-

lution is found. When applying a larger P, it refers to the

result of applying the smaller P and avoids searching for

places where there is no solution.

Because the intervals on each of the three axes are

equally subdivided into P sub-intervals, the entire con-

straint space is divided into P 3 sub-spaces, and

(i− 1)× TMGR

P
≤ xgrowth ≤ i× TMGR

P
,

(j − 1)× TMPR

P
≤ xtarget ≤

j × TMPR

P
,

(k − 1)× TMSF

P
≤

∑
|x| ≤ k × TMSF

P

are added as constraints and the sum of the absolute val-

ues of fluxes is minimized for every 1 ≤ i, j, k ≤ P , where

i, j, k are integers.

In each of those P 3 sub-spaces, (1) LP is employed with

the above three constraints, (2) if the LP is feasible, re-

actions whose flux is less than 10−5 are collected as K,

(3)the minimum value of PR is calculated with deletions

of K under the condition that GR is maximized without

the above three constraints, and (4) if GR and PR exceed

the minimum required values, the output K is considered

as the solution.

The number of sub-spaces to be computed is P 3 and it

increases dramatically as P increases, which will lead to

a power-of-three increase in computation time. However,

the larger the value of P , the smaller is the range of the

subspace and the easier it is to approach the point of the

optimal solution or local optimal solution.

A dynamic strategy is adopted by DynCubeProd to save

time. Starting with i = 1 for P = 2i, DynCubeProd in-

creases i one by one, and stops once an acceptable knock-

out strategy is obtained. Suppose that Q is a sub-space

corresponding to P = m and {Q1, . . . , Qk} are sub-spaces

of Q for P = n with m < n. If the candidate knockout

strategy computed from Q is not acceptable when P = m,

all the sub-spaces {Q1, . . . , Qk} will be skipped during the

calculation when P = n.
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The example of results of DynCubeProd applied to the

network of Fig. 2 (A) with P = 1 and P = 2 is published

in https://doi.org/10.3389/fbinf.2021.716112 [4].

For a positive integer k, the solution obtained by Dyn-

CubeProd for P = 2k is also a solution for P = k, and

the constraint sub-spaces skipped by DynCubeProd do

not include a solution.

Define S as the constraint space of an LP problem. Let

S1∪S2∪· · ·∪Sn = S hold. Suppose there exists a solution

x in the sub-space Sk, x ∈ Sk. Then, x must be in the

space of S, x ∈ S, because Sk ⊂ S. If there is no solution

x in S, that is, x /∈ S, then such x must not exist in any

sub-space of S.

3.2 Pseudo Code of DynCubeProd

The details of pseudo code is published in

https://doi.org/10.3389/fbinf.2021.716112 [4].

3.3 Computational Experiments

The dataset used in the computational experiments

was iJO1366, which is a GSMM of Escherichia coli K-

12 MG1655 from the BiGG database with 1805 metabo-

lites and 2583 reactions [3], [6]. All procedures of Dyn-

CubeProd were implemented based on Gurobi, COBRA

Toolbox and Matlab on a Windows machine with Intel(R)

Core(TM) i5-8500 CPU 3.00 GHz 6-core processor and

32.0 GB RAM.

If the target metabolite is not connected to an external

reaction, then, an auxiliary external reaction is added, and

the growth coupling is evaluated by GR and the outgoing

flux from the additional external reaction, which is also

called PR.

Fig. 3 (A) shows the computing time of DynCube-

Prod and CubeProd when applied to iJO1366 under aer-

obic conditions at different values of P. It also shows the

ratio of the number of success cases to the number of

target metabolites. For P ≥ 16, the reaction deletion

strategies were obtained for more than 95% of the tar-

get metabolites. It should be noted that the success ratio

of DynCubeProd and CubeProd is always the same for

the same P. The computing time for DynCubeProd with

P=32 was only approximately quarter of the computing

time of CubeProd with P=16. Fig. 3 (B) visually com-

pares the computing time increase by P between Dyn-

CubeProd and CubeProd.

Furthermore, under anaerobic conditions of iJO1366,

DynCubeProd succeeded in computing the reaction dele-

tion strategies for 76 of the 211 target metabolites for

Fig. 3 (A) Computation time and success ratio when Dyn-

CubeProd and CubeProd were applied to iJO1366 un-

der aerobic conditions for different values of P . (B) Vi-

sual comparison of the computation time of DynCube-

Prod and CubeProd of (A).

which the EFV-based method [11], which is one of the

best methods, could not.

4. Discussion

The details of discussion part is published in

https://doi.org/10.3389/fbinf.2021.716112 [4].

5. Conclusion

DynCubeProd is an improved version of CubeProd,

which is an existing algorithm based on solution space de-

composition. The improvements in DynCubeProd are as

follows. (1) While CubeProd divides the solution space

based on pre-specified parameters, DynCubeProd grad-

ually divides the solution space into smaller and smaller

pieces. (2) CubeProd mechanically explores even the sub-

space where no solution is expected to exist, while Dyn-

CubeProd stops dividing the solution space when no so-

lution exists. (3) While CubeProd searches the entire so-

lution space, DynCubeProd stops as soon as it finds a so-

lution that meets the conditions. The results of computer

experiments using iJO1366 confirmed that DynCubeProd

reduces the computation time more than 10 times than

CubeProd. The reduction in computation time enabled

finer solution space partitioning, and reaction deletion

strategies could be calculated for about 40% of the target

metabolites for which reaction deletion strategies could
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not be obtained by the EFV-based method. In this study,

we developed DynCubeProd, by improving the computa-

tion speed of CubeProd, which enabled us to calculate re-

action deletion strategies in anaerobic conditions for many

target compounds that could not be calculated before.
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