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Abstract: With fast deployment of high speed wireless access networks, communication environments for internet
access have been changing drastically. According to these wide range of network environments, a lot of TCP variants
have been proposed. Each of these algorithms focuses on the specific environment and is designed with hardwired
logic. This means there is no one-size-fits-all congestion control which can adapt to all environments. To resolve
this problem, reinforcement learning based congestion control which learns operation suitable for each environment
has been proposed. QTCP (Q-learning Based TCP) is one of the promising learning based TCPs. In this paper, we
first reveal that a QTCP flow only behaves in the selfish manner of just increasing its own utility function, which
causes unfairness between resource sharing flows. We propose a new QTCP congestion window control mechanism
which is based on AIMD. Performance evaluation results show our proposal improves fairness without degrading high
throughput and low latency characteristics of QTCP.

Keywords: congestion control, fairness, reinforcement learning

1. Introduction

Network applications consuming high bandwidth, e.g., video
streaming, cloud gaming and AR/VR applications, are continu-
ously requiring higher network bandwidth. In addition, with fast
deployment of high speed wireless access networks, communica-
tion environments for internet access have been changing drasti-
cally. According to these wide range of network environments, a
lot of TCP variants have been proposed [1].

These TCP variants include widely used approaches such as
CUBIC [2] and Compound TCP [3], and approaches suitable for
the specific environment such as DCTCP [4] and TCP West-
wood [5]. The existence of a lot of TCP variants implies that
there is no one-size-fits-all congestion control applicable to all
the current internet environments. The limitation of existing TCP
variants is their hardwired mapping nature [6].

Hardwired mapping means that the action for each of the spe-
cific events is strictly predefined. For example, TCP NewReno [7]
halves the congestion window when a packet loss that implies net-
work congestion is detected. Therefore, in the wireless environ-
ment where a packet loss might occur without correlation with
congestion, NewReno has a chance to degrade its performance
due to unnecessary window halving. The reason for this problem
is the hardwired mapping that supposes a wired environment.

New kinds of TCP variants that can resolve the problem of
hardwired mapping by adapting its performance to many kinds
of network environments with machine learning have been pro-
posed. Q-learning based TCP (QTCP) [8] has been proposed
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as one of these variants. QTCP applies reinforcement learning
to Congestion Avoidance Phase of NewReno. In reinforcement
learning, a learning agent learns the optimal action through trial
and error. With this reinforcement learning, QTCP can learn
how to adaptively change the congestion window and run with-
out hardwired mapping. In addition, QTCP can achieve high
throughput and low latency by considering the network utility
(throughput and latency) as reward of reinforcement learning
metrics.

When TCP variants with machine learning compete in the net-
work, they may cause unfairness because they take a selfish ac-
tion to increase their individual network utility. For example,
in QTCP, each sender only chooses actions to increase its own
throughput or decrease its own delay, and does not change in
a direction of improving fairness. There are two ways to solve
this problem. The first one is to change the reinforcement learn-
ing model to one that considers fairness. The second one is
to adopt window control mechanism considering fairness, e.g.,
AIMD (Additive Increase Multiplicative Decrease).

In this paper, we take the latter approach to improve fairness
of QTCP. At first, we show that QTCP converges unfair condi-
tion because it takes selfish actions and also its window control
mechanism is MIMD (Multiplicative Increase Multiplicative De-
crease). After that, we propose a new window control mechanism
of QTCP based on AIMD. This paper is an extended version of
our technical report [9], in which we only evaluated in a simple
model. In this paper, we extend our work by evaluating our pro-
posal in a more complicated model and show that our approach
can improve fairness while keeping high throughput and low la-
tency characteristics of QTCP.
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2. QTCP

QTCP is the reinforcement learning congestion control based
on TCP NewReno. Reinforcement learning is applied to Con-
gestion Avoidance Phase of NewReno. Reinforcement learning
is modeled with state space, action space and reward. In QTCP,
state space is represented by network states and an action space
is formed with the ways of how to change congestion window.
And reward is degree of improvement of network utility [10] rep-
resented by throughput and delay. Namely, QTCP learns the
ways of how to change congestion window that can achieve high
throughput and low latency for each network state.

Network states are represented by three metrics: average inter
packet sending time, average inter ACK arrival time and aver-
age RTT. They are calculated at each Time Interval (TI). Ac-
tion is the variation of congestion window when ACK is received
and is selected for each TI. The amount of each window change
is selected from 3 options, +10 [byte], 0 [byte] (no change) and
−1 [byte]. Reward is calculated by using network utility defined
by the following equation:

Utility = log(throughput) − δ · log(RTT), (1)

where δ is a parameter. If the utility in the current TI is higher
than the previous one, reward has a positive value, otherwise, a
negative value. Throughput is calculated by the number of re-
ceived ACKs in each TI. RTT is the exponential weighted aver-
age of measured RTT.

3. Fairness improvement for QTCP

In this section, we discuss fairness issues of QTCP and pro-
pose a new QTCP algorithm which resolves unfairness between
bottleneck sharing flows.

When network utilization is less than 1, RTT is unrespon-
sive to variation of congestion window because queue length is
held 0 even with slight change of window size. On the other
hand, throughput is responsive to variation of congestion win-
dow. Therefore, according to Eq. (1), the action of increasing
window brings positive reward and the action of decreasing win-
dow brings negative reward. In this case, QTCP increases con-
gestion window to increase throughput.

When network utilization is 1, throughput is unresponsive to
the change of the congestion window size because increase of
window size just leads to queue length growth. And RTT is re-
sponsive to variation of congestion window. Therefore, according
to Eq. (1), the action of decreasing window brings positive reward
under this assumption and accordingly QTCP decreases conges-
tion window.

As described above, QTCP increases congestion window when
network utilization is less than 1, and decreases congestion win-
dow when network utilization is 1. QTCP behavior is decided by
its basic policy of maximizing utility function. This means when
occasionally multiple flows sharing the same bottleneck link fall
into unfair condition, e.g., one flow whose initial window size
is small joins, the flow(s) obtaining high throughput will not de-
crease its window size because decrease of window size causes
degradation of utility function. In this sense, QTCP behaves in a

Fig. 1 Congestion window behavior in MIMD and AIMD.

selfish manner.
Next, we would like to discuss QTCP window control mech-

anism from the perspective of fairness. Assume that TI is an in-
tegral multiple of RTT and the selected action does not change
during one RTT. In this situation, QTCP window size after one
RTT can be formulated as follows:

cwnd ←

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
cwnd ∗

(
1 +

10
MSS

)
(increase),

cwnd ∗
(
1 − 1

MSS

)
(decrease),

(2)

where MSS is maximum segment size. According to Eq. (2),
QTCP multiplies congestion window by 1 + (10/MSS) [pkt] and
1− (1/MSS) [pkt] in 1 RTT when QTCP selects action of increas-
ing and decreasing window, respectively. This means QTCP win-
dow control mechanism is MIMD.

Figure 1 (a) shows congestion window sizes of two flows shar-
ing the same bottleneck link. The red line indicates that the sum
of throughput of two flows is equal to the link capacity. The blue
line shows equal bandwidth share of the two flows. When con-
gestion window sizes of two flows are given by point 1, link uti-
lization is below 1. According to the above discussion, two flows
behave in selfish manner and increase their congestion window in
MI manner. The sum of the throughput increases along a vector
connecting the origin and point 1. When it exceeds the red line,
link utilization is 1. And at point 2, occasionally two flows de-
crease their window sizes in MI manner. In this decreasing phase,
the sum of the throughput decreases also along a vector connect-
ing point 2 and the origin. QTCP iteratively increases and de-
creases along this line, which means QTCP cannot converge to
fair share of the blue line.

One of the most important issues for machine learning con-
gestion control which utilizing utility function is fairness among
flows. This is because of its selfish behavior. There can be two
approaches for resolving this technical issue, one is significant
modification of utility function and the other is change of MIMD
to AIMD mechanism. In this paper, we try to resolve the QTCP
fairness issue by the latter approach. Figure 1 (b) shows AIMD
behavior. As shown in this figure, AIMD can improve fairness.
So, we would like to integrate QTCP and AIMD approaches.

We set the amount of the congestion window variation when
receiving an ACK to MSS/cwnd [byte] (Additive Increase) and
−5 [byte] (Multiplicative Decrease). The amount of change of
congestion window in 1 RTT is as follows:

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

cwnd ←
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

cwnd + 1 (increase)

cwnd ∗
(
1 − 5

MSS

)
(decrease)

(3)

According to Eq. (3), the amount of variation in 1 RTT is 1 [pkt]
in increase phase, and (1−5/MSS) [pkt] in decrease phase, which
is totally an AIMD mechanism.

4. Evaluation

In this section, we evaluate default QTCP and QTCP-AIMD
(QTCP with our proposal method) with computer simulation. In
this simulation, we use ns-3 [11] as a network simulator. Simu-
lation parameters are as follows: bottleneck link = 40 [Mbps],
other links = 100 [Mbps], RTT = 120 [ms], Buffer size =
100 [pkt], Learning rate = 0.1, Discount rate = 0.9, Exploration
rate = 0.1, δ = 10. Figure 2 shows simulation topology and each

Fig. 2 Simulation topology.

Fig. 3 Cwnd of QTCP.

Fig. 4 Cwnd of QTCP-AIMD.

of the four senders starts its transmission every 500 seconds and
leaves every 500 seconds after 2,000 seconds.

Figures 3 and 4 show characteristics of Cwnd in QTCP
and QTCP-AIMD, respectively. QTCP-AIMD converges to fair
Cwnd, while QTCP cannot converge to fair Cwnd. Figures 5 and
6 show characteristics of bottleneck link throughput in QTCP and
QTCP-AIMD, respectively. As shown in Fig. 6, QTCP-AIMD
achieves high throughput as well as QTCP. Figures 7 and 8

Fig. 5 Throughtput of QTCP.

Fig. 6 Throughput of QTCP-AIMD.

Fig. 7 Queue length of QTCP.
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Fig. 8 Queue length of QTCP-AIMD.

show characteristics of the queue length of the bottleneck link
in QTCP and QTCP-AIMD, respectively. As shown in Fig. 8,
QTCP-AIMD achieves low queue length as well.

5. Conclusion

In this paper, we introduce QTCP which can perform with-
out hardwired mapping as adaptive congestion control for diverse
communication environments. However, QTCP has a technical
problem of throughput fairness between senders. We propose a
new QTCP window control mechanism based on AIMD. De-
spite QTCP’s selfish behavior due to machine learning approach,
our proposal (QTCP-AIMD) based on simple AIMD mechanism
greatly improves fairness without degradation of throughput and
queue length characteristics.
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