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Abstract: Ethereum smart contracts are programs that are deployed and executed in a consensus-based blockchain
managed by a peer-to-peer network. Several re-entrancy attacks that aim to steal Ether, the cryptocurrency used in
Ethereum, stored in deployed smart contracts have been found in the recent years. A countermeasure to such attacks
is based on dynamic analysis that executes the smart contracts themselves, but it requires the spending of Ether and
knowledge of attack patterns for analysis in advance. In this paper, we present a static analysis tool named RA (Re-
entrancy Analyzer), a combination of symbolic execution and equivalence checking by a satisfiability modulo theories
solver to analyze vulnerability of smart contracts to re-entrancy attacks. In contrast to existing tools, RA supports
analysis of inter-contract behaviors by using only the Ethereum Virtual Machine bytecodes of target smart contracts,
i.e., even without prior knowledge of attack patterns and without spending Ether. Furthermore, RA can verify existence
of vulnerability to re-entrancy attacks without execution of smart contracts and it does not provide false positives and
false negatives. We also present an implementation of RA to evaluate its performance in analyzing the vulnerability of
deployed smart contracts to re-entrancy attacks and show that RA can precisely determine which smart contracts are
vulnerable.
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1. Introduction

1.1 Backgrounds
Ethereum, which is often described as “the world computer,” is

a global, open-source platform for decentralized applications and
execution of programs called smart contracts, which are software
programs recorded on the Ethereum blockchain *1 and executed
in the Ethereum Virtual Machine (EVM). The EVM is a virtual
machine that runs codes called EVM bytecodes and is the runtime
environment for smart contracts in Ethereum. Ethereum enables
developers to build smart contracts with built-in functions and
gain the benefits of cryptocurrency and blockchain technologies.

Research Motivation: The blockchain is decentralized and
transparent by nature, and thus anyone can read the bytecodes
of deployed contracts. Moreover, smart contracts typically con-
tain financially valuable data and therefore create a criminogenic
environment for adversaries. The attack on “The DAO” on June
2016 is the most infamous case of an attack on smart contracts.
In the attack, a vulnerability called re-entrancy, where the main
contract calls an external contract which again calls into the call-
ing contract within a single transaction, was utilized to steal more
than 60 million US Dollars worth of Ether. With the transparency
of the Ethereum blockchain, the vulnerabilities of deployed con-
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tracts can be utilized permanently as a springboard of attacks.
Indeed, many attacks [5] and honeypots [32] on Ethereum have
been found in the past years.

Security Analysis of Smart Contracts: Based on these back-
grounds, program analysis for the security of Ethereum smart
contracts is an urgent and significant research theme. In this
paper, we focus on the analysis of EVM bytecodes of smart
contracts instead of their corresponding source codes. Analysis
of bytecodes brings a couple of advantages. First, the analysis
of EVM bytecodes is independent of a high-level language that
is periodically updated. For instance, the Solidity language [2],
which is one of the major languages used for writing Ethereum
smart contracts, is often updated and offers different capabilities
for different versions. Consequently, a tool that was developed to-
day for the analysis of contracts written in Solidity before they are
deployed may not be applicable for analysis of contracts written
in future versions of Solidity. In fact, deployed contracts have dif-
ferent versions of Solidity depending on their application and on
the features of the Solidity language they require or use. There-
fore, the analysis of EVM bytecodes is more desirable than the
analysis of Solidity and other high-level languages. Second, the
analysis of a high-level language, such as Solidity, requires an
analyst to input a copy of the actual source codes of the analy-

The preliminary version of this paper was published at Computer Se-
curity Symposium 2019 (CSS2019), Oct. 2019. The paper was recom-
mended to be submitted to Journal of Information Processing (JIP) by
the chief examiner of SIGCSEC.

*1 Hereafter, “contract” and “smart contract” are used interchangeably but
have the same meaning. Likewise, “the blockchain” will be used to refer
to the Ethereum blockchain, unless otherwise specified.
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sis targets. If a developer will only analyze the Solidity source
codes he/she develops, then a tool that analyzes Solidity source
codes will suffice. However, such a tool cannot be used if a user
wants to analyze other deployed contracts but he/she does not
have the corresponding source codes. In contrast, users can ob-
tain the EVM bytecodes of deployed contracts directly from a
blockchain explorer even if the corresponding source codes are
unpublished and analyze their vulnerabilities anytime. Thus, us-
ing static analysis of EVM bytecodes, analysts can easily judge
whether a deployed contract has benign or malicious codes, e.g.,
vulnerable or honeypots.

In early literature on analysis of EVM bytecodes, formal veri-

fication [6], [16], [18], [19], [33] is a leading approach for verify-
ing a specification of bytecodes and symbolic execution [8], [21],
[23], [26], [31] is used for exploring bytecodes in a depth-first
search fashion by extracting control flow graphs (CFGs). Ac-
cording to Weiss et al. [35], rigid formal verification is often dis-
missed as it puts too high demands on analysts who are not ex-
perts in formal verification. On the other hand, symbolic exe-
cution can potentially support analysis of vulnerabilities via ex-
traction of CFGs. Several prior works [23], [26], [31] succeeded
in analyzing some vulnerabilities, such as to re-entrancy attacks.
However, symbolic execution only outputs CFGs from programs
to be analyzed and does not support detection of the vulnerabil-
ities themselves. Accordingly, analysis becomes often heuristic
if an infeasible path exists in the programs. In particular, analy-
sis results may produce many false positives and false negatives
because of an infeasible path [7].

A recent work [29] has found re-entrancy attacks that under-
mine existing analysis tools [19], [23], [33] by creating a new
contract or calling a different function via an external contract.
Although a monitoring tool was also proposed in the same pa-
per as a countermeasure against those attacks, the tool performs
monitoring based on dynamic analysis and is therefore unable to
detect vulnerabilities unless the attacks occur during program ex-
ecution. Accordingly, analysts need to implement and execute
attack patterns by themselves in advance to check for vulnerabil-
ities. Although generic attack patterns [12] have been presented
formally, dynamic analysis remains impractical for analysis of
smart contracts because it often requires analysts to know how
an attack is launched as well as to spend Ether for the execution
of contracts. Ideally, contracts should be analyzed based on only
their bytecodes, i.e., with the use of static analysis.

Research Goal: This paper aims to design an inter-contract

static analysis tool that (1) uses only EVM bytecodes as input,

(2) eliminates false negatives and false positives, and (3) does

not require analysts to have a priori knowledge of the attacks on

contracts. For this goal, we focus on analysis of re-entrancy at-
tacks [29]. As evident in the attack on “The DAO,” re-entrancy
attacks have a significant impact and many contracts have been
found to be vulnerable to these attacks [19], [23]. Considering
findings on new attacks [29] in the recent years, our research goal
can prove to be important and useful. Moreover, the design of a
static analysis tool that is effective against new attacks is an open
challenge [29].

This paper is the full version of our previous work [10] which

was presented at IEEE Blockchain 2020. In the previous work,
we presented an analysis tool named RA and evaluated its per-
formance. In this paper, we evaluate the performance of RA in
a theoretical fashion. We also include additional related works
from literature.

1.2 Contributions
In this paper, we present a new static analysis tool named Re-

entrancy Analyzer (RA) for analyzing EVM bytecodes of smart
contracts. RA can analyze re-entrancy vulnerabilities via inter-
contract flows, for instance, by creating a new contract and call-
ing a different function in the main contract via an external con-
tract. RA does not require analysts to have prior knowledge of
the attack patterns and pay Ether for analysis, and it does not
provide false positives and false negatives. These advantages
are achieved via integration of symbolic execution and equiva-
lence checking with a satisfiability modulo theories (SMT) solver.
Furthermore, we provide an implementation of RA and evalu-
ate it by utilizing publicly available reference implementations
of re-entrancy vulnerabilities [1], [2], [29]. Our results confirm
that, unlike Oyente [23], RA can analyze precisely the vulner-
ability of deployed contracts to state-of-the-art re-entrancy at-
tacks [29]. We have released the source codes of RA via GitHub
(https://github.com/wanidon/RA) for reproducibility and as refer-
ence for future works.

Our main contribution is the creation of a new symbolic execu-
tion method named symbolic re-entrancy emulation, which em-
ulates re-entrancy attacks by connecting different contracts with
each other. As will be described in detail in Section 3, Oyente
and its extensions [19], [33] do not support inter-contract analy-
sis, for example, CFGs become fragments. On the other hand, we
developed a module that localizes stored data on the blockchain
in each execution path and a module that stacks a return address
of an account information for each path. Using these modules,
RA can support inter-contract analysis and emulate the behavior
of re-entrancy attacks in a symbolic fashion via an internal im-
plementation of a dummy contract, i.e., a contract that executes
other contracts.

As another important contribution, we developed a new
method named vulnerability verification, which verifies vulnera-
bilities by utilizing the Z3 SMT solver in the CFGs obtained from
the symbolic re-entrancy emulation. In particular, on path condi-
tions of the obtained CFGs, our method verifies whether program
behavior on paths for executions with re-entrancy attacks is iden-
tical to that without the attacks, i.e., behavior on normal execu-
tions. Using the methods above, RA can completely eliminate
false positives and false negatives (see Section 4 for details).

1.3 Paper Organization
The rest of this paper is organized as follows. A background

of smart contracts and program analysis is presented in Section 2.
Re-entrancy attacks and the technical difficulties in analyzing re-
entrancy attacks are discussed in Section 3. The design of RA
is presented in Section 4, and then its experimental evaluation
is presented in Section 5. A review of related works is given in
Section 6. Finally, a conclusion is presented in Section 7.
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2. Technical Background

2.1 Ethereum Smart Contracts and EVM
In Ethereum, there are two kinds of accounts, namely, an ex-

ternally owned account (EOA) and a contract account. EOAs
have a private key that can be used to access the corresponding
Ether or contracts. A contract account has smart contract code,
which an EOA cannot have, and it does not have a private key.
Instead, it is owned and controlled by the logic of its smart con-
tract code. In Ethereum, a smart contract refers to an immutable

computer program that is deployed on the blockchain and runs
deterministically in the context of the EVM. The immutability
property indicates that, similar to any data published on a general
blockchain, smart contract codes can be considered as trustwor-
thy, i.e., once deployed, they cannot be changed or deleted. The
deterministic property indicates that the execution of the coded
functions of smart contracts will produce the same result for any-
one who runs them. Once deployed on the blockchain, a contract
is self-enforcing and managed by the peers in the network, i.e.,
its functions are executed when the conditions in the contract are
met. A smart contract is given an identity in terms of a contract
address. Using this address, it can receive Ether and its functions
can be executed. A contract is invoked when its contract address
is the destination of a transaction, which is a signed message orig-
inating from an EOA, transmitted by the network, and recorded
on the blockchain. Such a transaction causes a contract to run in
the EVM using the transaction (and transaction’s data) as input.
The data indicate which specific function in the contract to run
and what parameters to pass to that function. To incentivize peers
to execute contract functions, Ethereum relies on gas, which is
paid in Ether, to “fuel computations”. The amount of gas needed
to execute a transaction is relative to the complexity of the com-
putations, thus also preventing infinite loops.

Smart contracts are typically written in a high-level language
such as Solidity [2]. The source code is then compiled to low-
level bytecode that runs in the EVM. The EVM is a simple stack-
based architecture. Its instruction set is kept minimal to avoid
incorrect implementations that could cause consensus problems.
The EVM is a global singleton, i.e., it operates like a global,
single-instance computer that runs in all peers in the network.
Each peer runs a local copy of the EVM to validate the execution
of contract functions, and the processed transactions and smart
contracts are recorded on the blockchain.

2.2 Static Analysis of Programs
This paper focuses on the use of static analysis composed of

CFGs, SMT solver, and symbolic execution. A CFG represents
feasible paths of a program as a graph and is utilized for opti-
mization by a compiler and static analysis of programs. Paths in
a manner of sequential execution without branches are called ba-

sic blocks and are identical to nodes of a CFG. Likewise, paths
which are feasible via branches or jumps are represented by edges
to connect with nodes.

An SMT solver is a tool used for SMT problems. In contrast
to satisfiability problems represented by proportional logic, SMT
problems are represented by the first-order predicate logic which

is more representative. By describing a specification to be ver-
ified in some logic formally, an SMT solver verifies whether a
program satisfies the given specification.

Symbolic execution is a method that pseudo-executes a pro-
gram by replacing information unspecified in the program itself
with symbolic values to represent any value. Symbolic execu-
tion is composed of CFGs and an SMT solver, and it is suitable
for analysis of smart contracts given that smart contracts utilize
information on blockchains which are outside of program codes.
Specifically, a condition to execute a path is called a path con-

dition. Path conditions at the beginning of program execution
are valid, and a restriction is newly added to the path conditions
when a branch occurs. In a case where a path condition contains
a symbolic value, executing either one or both paths according to
a condition, i.e., the condition is satisfied or not, is decided by
checking the satisfiability of the condition. Path conditions are
often represented by first-order predicate logic, and their satisfia-
bility is decided by an SMT solver described above.

3. Motivating Example and Technical Difficul-
ties

In this section, we recall the fallback function and the re-
entrancy attacks shown by Rodler et al. [29] as our motivating
example and then discuss the technical difficulties in the analysis
of the attacks.

3.1 Re-entrancy Problem
3.1.1 Fallback Function

Functions in Solidity are similar to classes in object-oriented
languages. There are four types of Solidity functions, namely,
external, internal, public, and private. A contract can
have exactly one unnamed function called a fallback function,
which cannot have any arguments, cannot return anything, and
should have external visibility. The fallback function of a contract
is executed whenever the contract receives Ether without any data
included. To receive Ether and add it to the total balance of the
contract, the fallback function must be marked payable. If the
contract does not have a fallback function, then it cannot receive
Ether through regular transactions and throws an exception. In
other words, if a contract is intended to not receive Ether, then
the payable in the fallback function can simply be removed. The
fallback function is also triggered if someone tries to call a func-
tion that does not exist in the contract, and is often utilized for
re-entrancy attacks.
3.1.2 Create-Based Re-Entrancy Attack

CREATE is an instruction that creates a new contract during
execution of a contract (we call this the original contract for con-
venience). The new contract consists of initialization codes and
the codes of its functions, and these codes are allocated by follow-
ing a STOP instruction of the original contract. Once the initial-
ization codes are executed, data is initialized and then bytecodes
of the new contract are returned. These transitions via the initial-
ization codes can be viewed as function calls by CREATE. When-
ever a new contract is created, its constructor will be executed
immediately. In the attacks by Rodler et al. [29], a newly gener-
ated contract by CREATE can issue further calls in its construc-
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tor to other contracts, including malicious contracts, via CALL in
the initialization codes. Here, the victim contract first creates a
new contract and then updates its internal state. The newly cre-
ated contract then calls a contract owned by an adversary. Con-
sequently, the adversary maliciously withdraws from the victim
contract via the re-entrancy.
3.1.3 Cross-Function Re-Entrancy Attack

Whenever function calls in which Ether is sent to an exter-
nal contract account are executed, transactions are created by the
CALL instruction. In doing so, some data are sent together with
the transaction. The four most significant bytes correspond to a
function ID of a caller function, which is obtained from a function
name and a type name of variables. The callee contract obtains
the function ID of the caller contract from the received transac-
tion and then decides a function to be executed by checking if the
ID is identical to that owned by the callee contract. If the callee
contract does not own a function ID specified by a transaction, a
fallback function is executed as described above. Cross-function
re-entrancy attacks proposed by Rodler et al. [29] are launched
over multiple functions of the victim contract. Specifically, cross-
function re-entrancy attacks are launched by re-entering the same
contract via a different function, whereas classical re-entrancy at-
tacks are launched by re-entering the same contract via the same
function.

3.2 Technical Difficulties
We present some technical issues that need to be solved for the

analysis of the attacks described in the previous subsection. First,
existing tools [19], [23], [33] do not provide support for generat-
ing running states of a callee contract via opcodes such as CRE-

ATE and CALL, which utilize an external contract. Consequently,
in these tools, a caller contract is unidentified uniquely from the
standpoint of a callee contract and vice versa. More concretely, in
the reference implementation of re-entrancy attacks [29], an ini-
tialization code for the create-based re-entrancy attack is executed
in the aforementioned manner. In doing so, the initialization code
is on an infeasible path for existing tools. Moreover, because the
main body of the created code is determined by a return value
from the initialization code, the contract by CREATE is infeasi-
ble unless the initialization code is analyzed. Thus, the behavior
of the created contract including CALL is unknown during offline
analysis. Likewise, when an external contract is called by CALL

for the cross-function re-entrancy attacks [29], analysis should be
executed independently for each contract because running states
of a callee contract are not generated. Consequently, utilizing
path conditions for a caller contract is no longer meaningful to
analyze the behavior of a callee contract. Furthermore, there are
many candidates of function combinations, and thus analyzing
vulnerability to cross-function re-entrancy attacks becomes diffi-
cult due to the potential state explosion [29].

Second, a method that evaluates vulnerabilities should be con-
sidered as well. Several analysis tools [7], [23], [26] report fea-
sible paths but do not provide evaluation and detection of vul-
nerabilities. Accordingly, analysts often need to determine if
a contract is vulnerable in a heuristic fashion, and hence many
false positives and false negatives are produced. To eliminate

false positives and false negatives, analysis tools should include
a method that can evaluate vulnerabilities without requiring ana-
lysts to have prior knowledge of the attacks.

4. Design of RA

In this section, we present Re-entrancy Analyzer (RA), a new
static analysis tool for re-entrancy attacks on Ethereum smart
contracts. We first describe our design concept and then describe
symbolic re-entrancy emulation and vulnerability verification as
main processes, including their implementation.

4.1 Design Concept
The main idea of RA is to combine symbolic execution and an

SMT solver in a dual way, i.e., symbolic re-entrancy emulation

and vulnerability verification.
First, modules that emulate re-entrancy attacks based on sym-

bolic execution are developed. Loosely speaking, by using an
SMT solver to verify if conditions for calling to an external con-
tract and generating basic blocks are satisfied, RA can identify
which function is called. Consequently, RA can find path con-
ditions via symbolic execution, which transits executions to each
basic block recursively. Second, by utilizing the path conditions
obtained from the emulation process above, RA verifies if a resul-
tant running state of a function call based on a fallback function
is equivalent to the original behavior, i.e., without the fallback
function, on the CFG obtained from the emulation. The verifi-
cation is done by the SMT solver. While symbolic executions in
literature [19], [23], [33] report only program behavior via CFGs
obtained within a single contract, RA emulates re-entrancy at-
tacks including inter-contract behavior and then it verifies the
vulnerability of these contracts to re-entrancy attacks. Conse-
quently, in contrast to the early literature, while the coverage of
the analysis for re-entrancy attacks has improved drastically, RA
can analyze the vulnerabilities precisely, i.e., without false pos-
itives and false negatives and without requiring analysts to have
prior knowledge of attack patterns, including state-of-the-art re-
entrancy attacks [29].

4.2 Tool Overview
The overview of RA is as follows. First, for the symbolic re-

entrancy emulation, RA generates CFGs from bytecodes whereby
a newly created/called contract is represented within a flow of the
main contract via symbolic execution. Then, for vulnerability
verification, RA verifies whether the bytecodes are vulnerable to
re-entrancy attacks by utilizing the Z3 SMT solver in accordance
with path conditions obtained from the symbolic re-entrancy em-
ulation. To do this, the following notions are defined for RA:
• Local-world state is owned by a basic block in local and

stores global information, such as balance or storage.
• Call stack is a stack that stores a return address to a basic

block.
• Contract queue is a queue that stores bytecodes of a contract

to be analyzed.
An overview of RA including the notions is presented in Fig. 1.
RA mainly consists of three modules, namely, CFManager, VM,
and Verifier. The symbolic re-entrancy emulation process is
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Fig. 1 Overview of RA.

mainly conducted by CFManager and VM. On the other hand,
the vulnerability verification process is executed by Verifier as-
sisted by VM. We describe the role of each module below.

CFManager handles feasible paths by directly operating data
structures in a basic block for a CFG. A basic block contains the
local-world state, the call stack, as well as mnemonic of instruc-
tions, running states, and path conditions. These give us informa-
tion retrieved from the blockchain and return values, i.e., infor-
mation obtained as a result of each caller/callee contract. Conse-
quently, symbolic execution of each block can be covered even
through an external contract. First, VM receives a contract to be
analyzed from the contract queue, and then CFManager executes
instructions on basic blocks. Finally, Verifier verifies existence of
re-entrancy vulnerability by utilizing the Z3 SMT solver with the
information obtained by VM. Based on these modules, the sym-
bolic emulation for inter-contract analysis is provided and then
the verification of vulnerabilities is executed. To use RA and an-
alyze contracts, analysts only need to provide EVM bytecodes
of target contracts as input and they do not need to have prior
knowledge about re-entrancy attacks. The details of each process
are presented below.

4.3 Symbolic Re-entrancy Emulation
The goal of this process is to generate a CFG completely via

emulation of re-entrancy attacks. In particular, the CFManager
generates a CFG to represent inter-contract behavior by record-
ing basic blocks with transitions as edges. We call such a CFG
an extended CFG (ECFG) for convenience. In ECFGs, CREATE

and CALL instructions are utilized as separators of basic blocks
in addition to JUMP and STOP instructions. For convenience, let
contracts to be executed by CREATE and CALL be callers, and let
contracts to be created or called be callees. When CREATE ap-
pears, the symbolic execution is transited to its callee contract,
i.e., the initialization code. Similarly, when CALL appears, the
execution is transited to a function of its callee contract. When
STOP appears within the callee contracts described above, the
execution is returned to the caller contract. These transitions of
contracts are managed by VM.

We now describe the emulation process by RA in detail. For
instance, for analysis of the create-based re-entrancy attacks, VM
extracts an initialization code of a contract from variables of

Fig. 2 Process of vulnerability verification.

CREATE by specifying basic blocks via the Z3 SMT solver, and
CFManager transits the execution to those blocks in accordance
with branches decided by the Z3 SMT solver. By obtaining each
block and connecting them, CALL in the initialization code can
be identified. Moreover, VM can register the callee contract ob-
tained by the initialization code in the contract queue, and thus
the whole contract can be symbolically emulated in a recursive
manner. On the other hand, for analysis of the cross-function
re-entrancy attacks, a function ID is symbolically executed as a
symbolic value, and then Verifier extracts the function ID to be
executed by the Z3 SMT solver. By giving the ID at the begin-
ning execution and re-execution, combination of any functions is
representative.

4.4 Vulnerability Verification
The vulnerability verification is done by Verifier with path con-

ditions obtained from the emulation described in the previous
subsection. Let functions to be verified be f , g, where f con-
tains a function call during the execution. We also denote by I a
set of path conditions where g is executed by taking over a result
in the execution of f , and by C a set of path conditions where
f calls a fallback function in a manner that the fallback function
calls g and then f is executed again with the result of g. The Ver-
ifier module can receive I and C from the VM module. Then, the
Z3 SMT solver verifies whether a program is vulnerable or not as
follows:

∃c ∈ C,∀i ∈ I : ¬(c ≡ i). (1)

Using Eq. (1), the Z3 solver finds c ∈ C such that c is not equal
to any i ∈ I, i.e., the program is vulnerable if ¬(c ≡ i), and benign
otherwise.

The procedure of the vulnerability verification is shown in
Fig. 2. The withdraw process is not executed when g is exe-
cuted after executing f in a normal way, i.e., executions in I. On
the other hand, the withdraw process is executed due to the re-
entrancy on f whereby a fallback function calls g, i.e., executions
in C. RA decides that a contract is vulnerable if program behav-
iors are equivalent in these executions. In particular, RA checks
if there is no case where the behaviors are equivalent. Intuitively,
the main difference between these cases is whether instructions
following CALL in f are executed before g. Specifically, g con-
tains a branch that determines whether the withdraw process is
executed in accordance with changing states on the blockchain,
where path conditions at the end of executions for both cases are
different from each other.

c© 2021 Information Processing Society of Japan
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4.5 Implementation
The main techniques for implementing the symbolic re-

entrancy emulation of RA are presented as the technical parts of
the implementation below. In particular, we describe how ba-
sic blocks are controlled and function IDs are extracted to re-
duce potential state explosion, which is one of the problems for
static analysis tools according to Rodler et al. [29]. Several tech-
niques for improving the performance are presented as well. We
released the source codes of the whole implementation publicly
via GitHub (https://github.com/wanidon/RA).
4.5.1 Environment

RA is implemented on Python 3.7 and three modules, i.e., z3,
pysha3, and Graphviz. The z3 module provides APIs for the use
of the Z3 SMT solver on Python. The pysha3 module enables
the use of the Keccak256 hash function as a SHA-3 module. Fi-
nally, Graphviz provides support for drawing CFGs. We also note
that RA is independent of any specific compiler because it uses
bytecodes as input.
4.5.2 Control of Basic Blocks for CFManager

The method that represents a branch with a conditional jump
operation JUMPI is as follows. First, RA adopts the depth-first
search for finding feasible paths, and the CFManager owns a data
structure named dfs stack which stores candidates of basic blocks
to be searched. Then, the CFManager pops two variables for
JUMPI from the dfs stack, i.e., a jump address and a condition
c for the jump where c is determined by true or false. When c

is a symbolic value, the z3 module decides whether ¬c is satisfi-
able. If so, there exists a path that does not contain jump. Then,
a new block is generated by copying the current basic block and
incrementing a program counter, and the new block is newly rec-
ognized as the basic block. Next, the solver decides whether c

is satisfiable. If so, there exists a path that contains jump. Then,
the current basic block is copied as a jump block and the program
counter is set as the jump address. In the case that there exists a
path with jump but a path without jump does not exist, the current
basic block is set as a jump block. In contrast, if both a path with
jump and that without jump exist, then the jump block itself is
stored in the dfs stack.
4.5.3 Extraction of Function ID for Verifier

Decision of a function ID for Verifier is implemented as fol-
lows. First, a symbolic value f unction id is assigned with the
four most significant bytes of any transaction. The value is loaded
onto a contract to be analyzed, and hence paths are branched for
each function by comparing them with actual function IDs for
the contract. Then, the function ID can be obtained because a
solution satisfying f unction id is obtained by deciding the satis-
fiability of path conditions for all paths with the z3 module. If
a CALL instruction appears during the execution, CALLABLE is
recorded as a state of a basic block. The state of the basic block
is inherited by all the descendant paths. In extracting an actual
function ID, ID of a function with function call is recorded if the
end state of a basic block is CALLABLE.
4.5.4 Speed-up Techniques

The entire performance of RA was improved by using four op-
timization techniques. First, RA can verify combinations of func-
tion calls described in Eq. (1) in parallel. Second, a constraint is

given on push to a stack. A CALL instruction normally requires
push to a stack in accordance with success of a function call, i.e.,
0 or 1. In contrast, a re-entrancy attack is always executed af-
ter the success of a function call. Thus, RA always pushes 1,
i.e., the success of the function call, to a stack as assumed in the
success of CALL instruction. This enables RA to reduce the num-
ber of path conditions as a speed-up technique. Third, because
CALL is required to always succeed, a constraint, i.e., a balance
for any contract account is a positive value, is given on path con-
ditions only at the end states. The computational complexity can
be reduced drastically by giving the constraint at the end states in-
stead of at each change of the balance. Surprisingly, for analysis
of several contracts, the computational performance becomes ten
times faster by using this constraint although we omit the details.
Finally, RA stops to analyze paths for some stop instruction with-
out the rollback process. In particular, a stop instruction called
REVERT contains the rollback about the blockchain related to
a given transaction. However, to the best of our knowledge, re-
entrancy attacks never occur in this case, thus RA does not ana-
lyze the remaining parts of such paths.

5. Evaluation and Discussion

In this section, we will show that RA can analyze inter-
contract control flows precisely in comparison with execution of
Oyente [23]. Then, we will show the computational performance
of RA for analysis. Finally, we will provide a discussion on the
comparison of RA with other tools and the current limitations of
RA.

5.1 Case Studies
As case studies, we test RA with reference implementations

of the re-entrancy attacks by Rodler et al. [29] and known re-
entrancy vulnerabilities [1], [2]. The goal of these studies is to
clarify the ability of RA to perform inter-contract analysis. The
codes of the reference implementations of the re-entrancy at-
tacks [29] are publicly available *2.
5.1.1 Creation of Contracts

Consider the output of RA shown in Fig. A·1 *3. On a CFG
output by RA for a contract created via CREATE, the execution
is transited to a callee contract on the basic block (denoted by the
red box), and the execution is returned to the basic block (denoted
by the green box). In contrast, Oyente cannot transit execution
into the initialization code, i.e., a created contract, in a symbolic
manner. The remaining parts of the CFG are identical to a CFG
output from Oyente. Consequently, RA can handle a function call
by extracting the initialization codes on CREATE instructions.

Consider the output of RA shown in Fig. A·2 *4. On a
CFG output by RA on analysis of the reference implementa-
tion of the create-based re-entrancy attack, the execution is tran-
sited/returned to/from a callee contract on the basic block. The
figure is an output of RA for the Fund contract [2], and the same
figure is obtained even when the Fund function is called by the
CREATE instruction. This confirms that, unlike Oyente, RA

*2 https://github.com/uni-due-syssec/eth-reentrancy-attack-patterns
*3 This figure is shown in the Appendix.
*4 This figure is shown in the Appendix.
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Table 1 Results of Analysis of Contracts Vulnerable to Re-Entrancy Attacks: The Benign Functions and
Vulnerable Functions columns represent the number of benign functions and vulnerable func-
tions in the contract, respectively. The true positive rate is denoted by TPR, false positive rate by
FPR, true negative rate by TNR, and false negative rate by FNR.

Contract
Code

Length [Byte]
Benign

Functions
Vulnerable
Functions TPR [%] FPR [%] TNR [%] FNR [%]

Fund [2] 356 0 1 100 0 0 0

KnownReentrancy [1] 365 0 1 100 0 0 0

Bank [29] 1,694 2 1 100 0 100 0

Token [29] 2,516 11 1 100 0 0 0

KnownCrossFunction [1] 680 1 1 100 0 100 0

provides analysis of create-based re-entrancy attacks in an inter-
contract fashion.
5.1.2 Call of Contracts

We omit the output of RA in this case due to its length and
describe only the intuition. Suppose that an adversary utilizes
a contract with only CALL instructions. In particular, because
there are two basic blocks, two function calls and two transitions
to the caller are identified according to the analysis results of RA.
These results confirm that RA provides analysis of cross-function
re-entrancy attacks in an inter-contract fashion.

5.2 Vulnerability Analysis
The performance of RA is evaluated by using it to analyze the

vulnerability of a number of deployed contracts to re-entrancy
attacks. In particular, the target contracts included in the evalua-
tion are the Fund contract in the official document of Solidity [2],
a contract named KnownReentrancy obtained from the code of
“Reentrancy on a Single Function” published on the webpage of
“Ethereum Smart Contract Best Practices” [1], the Bank contract
based on create-based re-entrancy attack [29], the Token contract
based on cross-function re-entrancy attack [29], and a contract
named KnownCrossFunction obtained from the code of “Cross-
function Reentrancy” published on “Ethereum Smart Contract
Best Practices”. Both Fund and KnownReentrancy contain a sin-
gle contract. Bank contains three contracts, two of which are be-
nign, i.e., not vulnerable. Token contains twelve contracts, eleven
of which are benign and only one contract is vulnerable. Fi-
nally, KnownCrossFunction contains one vulnerable contract and
one benign contract because the cross-function re-entrancy attack
needs “cross” calls between different contracts. Several contracts
include multiple functions and hence analysis of re-entrancy at-
tacks becomes complicated due to combinations of function calls
as described in Section 3.2. In doing so, the goal of this eval-
uation is to determine whether RA can precisely identify both
vulnerable contracts and benign contracts.

The results are shown in Table 1. According to the table, RA
can precisely verify all the existing vulnerabilities without false
positives and false negatives. In other words, in addition to be-
ing able to analyze contracts that are vulnerable to re-entrancy
attacks, RA can also analyze contracts that are not vulnerable, as
confirmed by the true negative rate. This precise evaluation for
verification of vulnerabilities was obtained by the use of the Z3
SMT solver with path conditions obtained from symbolic execu-
tion.

Table 2 Computational Time of RA for Analysis: The Combinations of
Functions column represents the number of combinations of func-
tion calls in the contract.

Contract
Code

Length [Byte]
Combinations
of Functions Time [sec]

Fund [2] 356 1 20.750

Known
Reentrancy [1] 365 1 23.003

Bank [29] 1,694 3 47.579

Token [29] 2,516 12 519.676

KnownCross
Function [1] 680 2 37.705

Table 3 Comparison of RA and Other Analysis Tools: • indicates the tool
can detect the attack, ◦ indicates the tool cannot detect the attack,
and � indicates the tool can potentially detect the attack but did not
provide a discussion in its paper.

Tool
Static

Analysis
Cross-

Function
Create-
Based Analysis Target

Oyente [23] Static ◦ ◦ EVM

Securify [33] Static ◦ ◦ EVM

Annotary [35] Static � � Solidity

Sereum [29] Dynamic • • EVM

ÆGIS [12] Dyanmic • � EVM

RA Static • • EVM

5.3 Computational Performance
We now present the computational performance of RA for

analysis of re-entrancy attacks. The performance was measured
by utilizing the time.perf counter function as an average of ten ex-
ecutions. The environment for measurement is as follows: iMac
21.5-inch, 2017 with 3.6 GHz Intel Core i7 processor, 32 GB
memory, and Radeon Pro 560 4 GB as GPU. The measurement
was done by implementing parallel-processing. As can be seen in
Table 2, the computational time for analysis becomes longer in
proportion to the number of function calls. Surprisingly, analysis
of Bank is fast even with its code length because Bank is based
on create-based re-entrancy attack, i.e., the majority of its codes
to create a contract and the function call are restricted to call the
created contract. In contrast, Token is based on cross-function
re-entrancy attack and its code length and variation of function
calls are large. Nevertheless, RA was still able to analyze Token
within reasonable time.

5.4 Comparison to Other Analysis Tools
Table 3 shows a comparison of different tools in terms of

their ability to detect re-entrancy attacks discovered by Rodler
et al. [29]. Oyente [23] and Securify [33] cannot detect such re-
entrancy attacks. In particular, Oyente fails to detect the vulner-
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abilities, while Securify produces false alerts due to its conser-
vative policy. Sereum and ÆGIS can potentially detect the vul-
nerabilities, but they are based on dynamic analysis. Finally, An-
notary is a static analysis tool that can deal with CREATE and
CALL instructions. Thus, it can potentially detect the re-entrancy
attacks, but its paper did not discuss re-entrancy attacks. More-
over, Annotary’s analysis target are Solidity codes and thus it may
experience difficulties in analyzing deployed contracts.

5.5 Computational Complexity for Vulnerability Verifica-
tion

Let the number of functions with function call be Fn, the num-
ber of those paths be Fp, the number of any function be Gn, and
the number of those paths be Gp. Here, the number of functions
to be executed in the first step is Fn and its resulting number of
end states for each execution is Fp. Then, in the second step, Gn

functions are executed in proportion to the number of end states,
and the number of the end states of Gn is Gp. Consequently, the
order complexity to obtain path conditions at the end of the pro-
cess is O(FnFpGnGp). By parallelizing the process, the complex-
ity becomes O(GnGp) because all combinations of function calls
can be parallelized. To compute path conditions using Eq. (1),
RA decides whether two sets, i.e., C and I, of the path conditions
obtained from combinations of one function have an identity re-
lation between i ∈ I and c ∈ C. In doing so, the order complexity
is O(FnFpG2

nG2
p), which is smaller than the complexity to obtain

path conditions at the end states. The execution time for analy-
sis becomes longer in proportion to the number of contracts to be
analyzed because the order complexity described above is poly-
nomial time. In contrast, RA can be expected to be utilized for
analysis of contracts developed by a user in realistic time.

5.6 Extension to Analysis of Delegated Re-Entrancy Attacks
Rodler et al. [29] presented delegated re-entrancy attacks

where a contract invokes another contract as a library within in-
structions that utilize contracts as an external library, e.g., DELE-

GATECALL or CALLCODE. These instructions are currently not
implemented in RA, but RA can be extended to analyze delegated
re-entrancy attacks by introducing these instructions. The main
technical difficulty in analysis of delegated re-entrancy attacks is
that the library contract that will be used is unknown [29]. This
difficulty is also a problem in analyses of create-based and cross-
function re-entrancy attacks, which have been overcome already
in RA.

5.7 Limitations
The current implementation of RA has three limitations. First,

analysis of gas is not considered. Thus, contracts that restrict
gas consumption may not be analyzed precisely. Second, a case
where multiple contracts are tightly coupled with each other, i.e.,
more than two contracts are strongly interdependent, is out of the
scope of RA. Specifically, instructions that utilize other contracts
as an external library are not implemented. Consequently, the
number of contracts to be analyzed in a single execution should
be at most one, and the number of callee contracts is limited to a
single contract. An improved implementation of RA, which is our

ongoing work, may be able to overcome the limitation described
above. Finally, bytecodes of contracts cannot include symbolic
values. Accordingly, a case where created contracts are differ-
ent for each execution is not considered. Improving the points
described above is our ongoing work.

6. Related Works

In this section, we recall early literature on security analysis
of Ethereum smart contracts in terms of symbolic execution and
formal methods as static analysis. Then, we describe several mul-
tidisciplinary approaches proposed in the past few years as addi-
tional related works. Interested readers are advised to read the
survey papers [11], [37] for details on EVM analysis.

6.1 Symbolic Execution
Symbolic execution of Ethereum smart contracts was origi-

nally started by Oyente [23]. Although there are many subsequent
works [8], [21], [26], [31], these works do not perform inter-
contract analysis. Furthermore, analysis of re-entrancy attacks
is often heuristic and thus Oyente often produces many false pos-
itives. Extensions of Oyente that support readability of outputs
from symbolic execution have been proposed [24], [25], and the
usability of RA can be potentially improved in a similar way.

The closest work to RA is Annotary [35], which can analyze
inter-contract behavior via both symbolic executions of EVM
bytecodes and the Z3 SMT solver. The major difference of Anno-
tary from RA is that Annotary mainly targets analysis of Solidity
codes. In other words, RA mainly checks if deployed contracts
are secure or not, while Annotary supports developers in imple-
menting secure codes. Compared to RA, Annotary has several
advantages. In particular, according to Weiss et al. [35], Anno-
tary’s focus on the analysis of Solidity code brings the following
two advantages. First, an analyst can use annotations to express
invariants and restrictions directly in the Solidity source code and
then use these annotations to find a feasible path on symbolic ex-
ecution effectively. On the other hand, RA focuses on analysis of
EVM bytecodes and hence cannot handle Solidity source code,
i.e., RA cannot analyze Solidity source codes because it targets
EVM bytecodes. Therefore, Annotary has an advantage in find-
ing a feasible path effectively by its use of annotations. Second,
Solidity source codes can be operated and written using a typi-
cal editor, and then a software developer can incorporate a plugin
such that an analysis tool coordinates with existing editors. For
instance, Annotary has provided a Sublime Text plugin. It means
that, for example, a developer can analyze the Solidity source
codes written by him-/herself. The analysis of EVM bytecodes
requires a developer to compile the source codes to get the EVM
bytecodes or to obtain the EVM bytecodes of deployed contracts,
and therefore it would be challenging to embed RA into a typical
editor. Providing a plugin is thus another advantage provided by
Annotary. Although the authors of Annotary did not consider the
new attacks by Rodler et al. [29], we consider their idea and work
to be elegant nonetheless.

ETHBMC [13] and VerX [27] are recent state-of-the-art works
that verify properties of Ethereum. VerX is similar to Annotary
in terms of taking Solidity codes as input and dealing with exter-
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nal contracts. Similar to Annotary, the new attacks by Rodler
et al. [29] were not considered in VerX. On the other hand,
ETHBMC takes EVM bytecodes for symbolic executions and its
motivation is rather close to that of RA. However, ETHBMC
mainly focuses on parity vulnerability.

6.2 Formal Methods
Formal verification of EVM was motivated by Bhargavan et

al. [6], and EVM was correctly formalized as KEVM [18]. How-
ever, verification of the security is challenging in general, and
the existing works [3], [4], [19], [33] do not provide support for
inter-contract analysis, which is the main target of our work. As
more theoretical approach, Grishchenko et al. [15], [16] formal-
ized several attacks, including re-entrancy attacks, as well as for-
malization of EVM. Their formalization inspired the vulnera-
bility verification of RA. As the latest work, Grishchenko et al.
presented a formal verification tool [30] that can deal with inter-
contract analysis. This work is concurrent with ours.

6.3 Multidisciplinary Approaches
NeuCheck [22] can rapidly analyze Solidity source codes

by extracting a syntax tree on a cross-platform environment.
TokenScope [9] can detect vulnerabilities by identifying to-
kens that have a different specification from the ERC20 to-
ken. SMARTSHIELD [36] is a bytecode rectification system that
fixes security-related bugs automatically. SmartEmbed [14] and
VulDeeSmartContract [28] are automated vulnerability detection
frameworks based on machine learning for the natural language
processing. TEETHER [20] is a penetration tool for exploit gen-
eration of Ethereum smart contracts. The techniques in these mul-
tidisciplinary works can be used to potentially improve RA. Fi-
nally, ILF [17] and ContractWard [34] use a combination of ma-
chine learning and symbolic execution to improve testing cover-
age. These works are expected to have improved performance if
they deploy RA as a building block.

7. Conclusion

In this paper, we introduced RA, a static analysis tool that pro-
vides inter-contract analysis of the EVM bytecodes of Ethereum
smart contracts to detect vulnerabilities to state-of-the-art re-
entrancy attacks [29]. Using RA, analysts do not need to have
prior knowledge of re-entrancy attacks to detect them. To cre-
ate RA, we designed modules that represent inter-contract CFGs
by the symbolic re-entrancy emulation and the vulnerability ver-
ification with the Z3 SMT solver to verify the re-entrancy vul-
nerability of deployed contracts. We also conducted experiments
on deployed contracts and confirmed the performance of RA by
precisely identifying combinations of contracts with and without
vulnerabilities. The aforementioned performance could be ob-
tained by the high-level combination of the symbolic execution
and the Z3 SMT solver.

As future work, we plan to extend RA for a case in which a
fraction of contracts to be verified and external contracts become
many-to-many. If successful, RA will be able to deal with more
complicated attacks that can be proposed in the future. More-
over, we plan to design capabilities that check for vulnerabili-

ties aside from re-entrancy, such as time-dependent vulnerability
which utilizes a timestamp for each block. We believe that the
inter-contract analysis capability of RA can potentially identify
such a vulnerability. Finally, we will also try to improve the com-
putational performance of RA by reusing parts of the computa-
tions for vulnerability verification.
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[4] Amani, S., Bégel, M., Bortin, M. and Staples, M.: Towards Verifying
Ethereum Smart Contract Bytecode in Isabelle/HOL, Proc. CPP 2018,
pp.66–77, ACM (online), DOI: 10.1145/3167084 (2018).

[5] Atzei, N., Bartoletti, M. and Cimoli, T.: A survey of attacks on
ethereum smart contracts (sok), Proc. POST 2017, LNCS, Vol.10204,
pp.164–186, Springer (2017).

[6] Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A.,
Gonthier, G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote,
T., Swamy, N., et al.: Formal verification of smart contracts: Short
paper, Proc. PLAS 2016, pp.91–96, ACM (2016).

[7] Chang, J., Gao, B., Xiao, H., Sun, J., Cai, Y. and Yang, Z.: sCom-
pile: Critical path identification and analysis for smart contracts, Proc.
ICFEM, LNCS, Vol.11852, pp.286–304, Springer (2019).

[8] Chen, T., Li, X., Luo, X. and Zhang, X.: Under-optimized smart
contracts devour your money, Proc. SANER 2017, pp.442–446, IEEE
(2017).

[9] Chen, T., Zhang, Y., Li, Z., Luo, X., Wang, T., Cao, R., Xiao, X.
and Zhang, X.: TokenScope: Automatically Detecting Inconsistent
Behaviors of Cryptocurrency Tokens in Ethereum, Proc. CCS 2019,
pp.1503–1520, ACM (2019).

[10] Chinen, Y., Yanai, N., Cruz, J.P. and Okamura, S.: RA: Hunting for
Re-Entrancy Attacks in Ethereum Smart Contracts via Static Analysis,
Proc. IEEE Blockchain 2020, pp.327–336, IEEE (2020).

[11] Di Angelo, M. and Salzer, G.: A survey of tools for analyzing
ethereum smart contracts, Proc. DAPPCON 2019, pp.69–78, IEEE
(2019).

[12] Ferreira Torres, C., Steichen, M., Norvill, R., Fiz Pontiveros, B. and
Jonker, H.: ÆGIS: Shielding Vulnerable Smart Contracts Against At-
tacks, Proc. AsiaCCS 2020, pp.584–597, ACM (2020).

[13] Frank, J., Aschermann, C. and Holz, T.: ETHBMC: A Bounded Model
Checker for Smart Contracts, Proc. Usenix Security 2020, USENIX
Association (2020) (online), available from 〈https://www.usenix.org/
conference/usenixsecurity20/presentation/frank〉.

[14] Gao, Z., Jiang, L., Xia, X., Lo, D. and Grundy, J.: Checking Smart
Contracts with Structural Code Embedding, IEEE Trans. Software En-
gineering, p.1 (2020).

[15] Grishchenko, I., Maffei, M. and Schneidewind, C.: Foundations and
Tools for the Static Analysis of Ethereum Smart Contracts, Proc. CAV
2018, LNCS, Vol.10981, pp.51–78, Springer (2018).

[16] Grishchenko, I., Maffei, M. and Schneidewind, C.: A semantic frame-
work for the security analysis of ethereum smart contracts, Proc.
POST 2018, LNCS, Vol.10804, pp.243–269, Springer (2018).

[17] He, J., Balunoviundefined, M., Ambroladze, N., Tsankov, P. and
Vechev, M.: Learning to Fuzz from Symbolic Execution with Applica-
tion to Smart Contracts, Proc. CCS 2019, pp.531–548, ACM (2019).

[18] Hildenbrandt, E., Saxena, M., Rodrigues, N., Zhu, X., Daian, P., Guth,
D., Moore, B., Park, D., Zhang, Y., Stefanescu, A., et al.: KEVM:
A complete formal semantics of the ethereum virtual machine, Proc.
CSF 2018, pp.204–217, IEEE (2018).

[19] Kalra, S., Goel, S., Dhawan, M. and Sharma, S.: ZEUS: Analyzing
Safety of Smart Contracts, Proc. NDSS 2018, Internet Society (2018).

[20] Krupp, J. and Rossow, C.: teEther: Gnawing at Ethereum to Automati-
cally Exploit Smart Contracts, Proc. USENIX Security 2018, pp.1317–
1333, USENIX Association (2018).

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

[21] Liu, H., Liu, C., Zhao, W., Jiang, Y. and Sun, J.: S-gram: Towards
semantic-aware security auditing for ethereum smart contracts, Proc.
ASE 2018, pp.814–819, ACM (2018).

[22] Lu, N., Wang, B., Zhang, Y., Shi, W. and Esposito, C.: NeuCheck:
A more practical Ethereum smart contract security analysis tool,
Software: Practice and Experience, Vol.2019, pp.1–20 (2019) (on-
line), available from 〈https://onlinelibrary.wiley.com/doi/abs/10.1002/
spe.2745〉.

[23] Luu, L., Chu, D.-H., Olickel, H., Saxena, P. and Hobor, A.: Making
smart contracts smarter, Proc. CCS 2016, pp.254–269, ACM (2016).

[24] Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco, G.,
Feist, J., Brunson, T. and Dinaburg, A.: Manticore: A User-Friendly
Symbolic Execution Framework for Binaries and Smart Contracts,
Proc. ASE 2019, pp.1186–1189, IEEE (2019).

[25] Mueller, B.: Smashing smart contracts, 9th HITB Security Conference
(2018).
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Appendix

A.1 Outputs of RA

Figure A·1 shows CFGs output by RA on analysis of contracts
with CREATE instruction. Figure A·2 shows CFGs output by
RA for the reference implementation of create-based re-entrancy
attacks.

Editor’s Recommendation
This paper proposes a static analysis tool named RA (Re-

entrancy Analyzer), a combination of symbolic execution and
equivalence checking to analyze vulnerability of smart contracts
to re-entrancy attacks. This research is necessary and important
for smart contracts. In particular, this paper shows the experiment
results on deployed contracts and includes a sufficient amount of
survey. The paper gives insights to readers in this research field
and thus is selected as a recommended paper.

(Chief examiner of SIGSCEC Toshihiro Yamauchi)

Fig. A·1 Control flow graph obtained from CREATE instructions.
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Fig. A·2 Control flow graph obtained from RA for create-based re-entrancy
attacks.
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