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Abstract: A digital signature is essential for verifying people’s reliability and data integrity over networks and is
used in web server certificates, authentication, and blockchain technologies. Specifically, to solve the bitcoin scala-
bility problem, Multi-Signature (MS) schemes have recently attracted attention because the MS’s aggregate algorithm
can reduce the amount of signature data in transactions. While such schemes support only a single message signing,
Interactive Aggregate Signatures (IAS) and Aggregate Multi-Signature Protocol (AMSP) support signing of multiple
messages. However, there are some issues with these schemes, for example, key aggregation is unavailable. In this
paper, we propose a key aggregatable IAS scheme called KAIAS that can sign multiple messages with key aggre-
gation. In terms of cases using Multi-Signature, previous studies have mainly discussed the benefits of reducing the
size of signatures. On the other hand, we also propose a practical application of KAIAS that leverages its benefits in
aggregating both signatures and public keys with a low computing cost for verification.
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1. Introduction

Electronic signatures are used as data “fingerprints”, mainly in
identity verification and preventing spoofing from occurring. In
recent signature applications, its attention has focused not only
on using it as a conventional sign but also on using it as an au-
thentication method.

For example, in authentication protocols such as SSH (Secure
SHell) [27] and FIDO (Fast Identity Online Universal Authenti-
cation Framework) [16], the client sends a valid signature to the
server instead of a password hash. This modification is useful and
effective for security because the client does not have to remem-
ber the password. Another benefit is that the server does not have
to keep the client’s secret information in their secure storage.

Multi-Signatures
Multi-signature schemes have been attracting attention for their

convenience and functionality.
A multi-signature scheme [22] is a scheme in which n parties

(who have their own private key ski and public key pki where
i ∈ {1, · · · , n}) sign their signature σi for each i ∈ {1, · · · , n} in a
common message m and output an aggregated signature σ, which
is a static size independent of n. The verifier is given m that is
attached with σ with public key list Lpk = {pk1, · · · , pkn} and
confirms the correctness by running the verification algorithm,
which outputs an accept or reject. Instead of a public key list Lpk,
Maxwell et al. proposed verifying aggregate signatures using a
single public key apk generated from Lpk, called an aggregate
public key [18]. This method is called Key Aggregation.
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Multi-signature schemes are constructed by expanding suitable
provable signature schemes, e.g., a Schnorr signature scheme [6]
or BLS (Boneh-Lynn-Shacham) signature scheme [7]. Also,
RSA-based [22], pairing-based [4], and lattice-based [10] have
been proposed.

Even if we construct a secure model under any assumption,
naive multi-signature schemes are vulnerable to the “Rogue-key
Attack” [4], [18], [25], which is caused by registering the cor-
rupted public key. To avoid this attack, there are two model
assumptions. In the first model, during the public key registra-
tion step, all users register their public key for trusted Certificate
Authority (CA), and they prove their “knowledge” (or posses-
sion [25]) of the secret key to CA, in actual work situations, this
knowledge is used as the certificate. This model is usually for-
malized as the knowledge of the secret key (KOSK).

In the second model, all users can generate their key pair
locally without registering for CA. The model proposed by
Bellare and Neven [6] is formalized as the plain public-key
model. Bellare and Neven showed a provable multi-signature
scheme in the plain public-key model under the Discrete Loga-
rithm assumption. This scheme however does not support key
aggregation. After that Maxwell et al. proposed improvements to
include key aggregation, which has a verification algorithm does
not require Lpk but only uses apk [18].

In the KOSK model, although dynamic key aggregation (ag-
gregate new public key) is available, it still requires a strong as-
sumption that a CA is a trusted third party. On the other hand,
plain public-key models are limited to using static key aggrega-

This paper is an updated version of Ref. [14] and we have added new sec-
tions like Section 3.2 (Security Proof), Section 4.2 (New Application),
and Section 5 (Conclusion and Future works).
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tion (cannot aggregate new public key) but do not require CA
assumptions.

Multiple Messages Signing
Aggregate Signature [8] is a scheme in which n parties sign

their own messages and output an aggregated signature σ (fixed
size independent of n) in situations where each party has a sin-
gle message. In general, by replacing {m1, · · · ,mn} with m, we
can translate aggregate signatures into multi-signatures. Thus,
Aggregate Signature is defined as a generalization of a multi-
signature scheme. This scheme does however have some restric-
tions. These include for example that the verifier much check
which messages are signed by the signers before verification and
that all message must differ from each other.

Also, a sequential aggregate signature has been proposed [5],
[15], [31]. In this scheme, i-th signer with an index from 2, · · · , n
takes as input an aggregate signature σi−1 from the i−1-th signer,
aggregate with its own signature and outputs σi and sends it to
the i + 1-th signer until all messages are signed. This scheme
requires n-round communication for n signers, even though the
verifier can see the signer’s aggregation order.

Prior works of aggregate signatures are based on the KOSK
model s.t. requiring a CA’s presence and do not support verifica-
tion using an aggregated public key generated by Key Aggrega-
tion. To support plain public key models and key aggregation,
we plan to construct algorithms based on MuSig instead of some
Aggregate Signatures.

As described above, multi-signature schemes only support sin-
gle message signing. The signers however may want to add or
modify any message for signing dynamically and aggregate it in
some use cases like aggregate signatures. Maxwell et al. pro-
posed transforming multi-signature schemes to secure Interactive
Aggregate Signature (IAS) [18], including a signing algorithm
for the single combined message generated from multi messages.
This scheme appears to work well for signing multiple messages
thought it does not satisfy (1) verification in constant time be-
cause IAS does not support key aggregation. Boneh et al. pro-
posed the Aggregate Multi-Signatures Protocol (AMSP) [4], in-
cluding key aggregation algorithm like MuSig, but this scheme
does not satisfy (2) signing in constant time because all signers
have to sign all signer’s messages.

We will discuss the issues in more detail in Section 2.3.

Our Proposal
To solve the above issues, we propose KAIAS which is a Key

Aggregatable IAS scheme that does not require additional public-
key model assumptions and is constructed from three-round pro-
tocols like MuSig. This scheme supports multiple message sign-
ing, in addition to (1) verification in constant time using an ag-
gregated key, and (2) signing in constant time.

Compared with IAS and AMSP, KAIAS has a slightly larger
aggregated signature size. This size is however negligible be-
cause it is a static value independent of the number of signers n,
so by increasing n, we can benefit from signature aggregation and
key aggregation the same as with other multi-signature schemes.
Table 1 shows a comparison of KAIAS, IAS, and AMSP.

Table 1 Comparison of the Multi-Signature schemes supporting multiple
messages when using a group G and hash functions H where d, �
are the bit size of each of the elements G and H.

Schemes sig. size key agg. sig. time
IAS [18] d + � no 1
AMSP [4] d + � yes n
KAIAS (Proposal) 2d + � yes 1

sig. size : Size of signature

key agg. : Key aggregation is available.

sig. time : Number of signing times for each co-signer.

Applications
Wuille et al. recently proposed a draft of Bitcoin Improvement

Proposal (BIP) 340 (Schnorr signatures for secp256k1) [30],
which is the standard implementation for improving the Bitcoin
protocols [19] using the Schnorr signature scheme. BIP 340 uses
the ECSDSA (Elliptic Curve Schnorr Digital Signature Algo-
rithm) and has the following three advantages, Provable Security,
Non-malleability and Linearity, over the ECDSA (Elliptic Curve
Digital Signature Algorithm), which is the standard signature pro-
tocol in the current Bitcoin. By using the linearity of the Schnorr
signature scheme, we can construct advanced Schnorr-based sig-
nature schemes such as Adaptor Signatures and Blind Signatures.
In BIP 340, Schnorr signatures are not limited to solving the scal-
ability problem in Bitcoin but are expected to improve comput-
ing efficiency and privacy protection by using these applications.
This is why Bitcoin has recently been the most popular applica-
tion of multi-signature schemes.

We can also consider applying KAIAS to Bitcoin applications
like MuSig. On the other hand, recently there has been an in-
creased demand for the application of Trust Services following
eIDAS (Electronic Identification, Authentication and trust Ser-
vices) regulation [11] of the EU. Trust Services are components
for determining how to trust other entities such as public services
or businesses over a network. Trust Services are composed of
electronic signature, timestamps and e-Seal, etc. [28]. In Japan, in
particular, Japan Digital Trust Forum (JDTF) has proposed Trust
as a Service (TaaS) to facilitate the use of trust services by medi-
ating between the cloud and clients [12]. Fujitsu Laboratories has
also proposed specific schemes of TaaS [17].

In this paper, we propose using a contract between companies
with TaaS and the use case of Code Signing with TaaS to apply
KAIAS in the trust service (e-Seal, Code Signing).

Overview
We first describe the notations used in this paper including the

discrete logarithm problem, multi-signature schemes, IAS, and
AMSP in Section 2. We then present KAIAS and discuss its se-
curity proof in Section 3 and propose two practical applications
with KAIAS in Section 4. Finally, we conclude and discuss some
issues in Section 5.

2. Preliminaries

2.1 Definitions
2.1.1 Notation

Given a non-empty set S , we denote by s ←$ S which means
the operation of sampling an element s from S uniformly at ran-
dom. If y is an output of a randomized algorithm A, we denote
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by y ← A (x1, · · · ; ρ), where x1, · · · are inputs and ρ are random
coins, and y ←$ A (x1, · · · ) when coins ρ are chosen uniformly
at random.

The word “semi-honest” means that attackers comply with the
protocol, but exploit the information gained in the meantime.

In all the following, Let G = 〈g〉 be a cyclic group of prime
order p, where p is a κ-bit integer, with generator g, and we call
(G, p, g) the group parameters.
2.1.2 Discrete Logarithm Problem

The provable security of Schnorr Signature [26] is based on the
discrete logarithm problem (DLP).
Def. 1 (Discrete Logarithm Problem (DLP)).

Let (G, p, g) be the group parameter. We define an AdvDL
G

as

Pr[y = gx : y←$ G, x←$ A (y)]

which is a probability is taken over the random choice of A and
random elements y. An algorithmA is said to (τ, ε)-solve DLP if
it runs in time at most τ and AdvDL

G
> ε.

2.1.3 Generalized Forking Lemma
The forking lemma [24] is used to prove the security proof of

Schnorr signature schemes in the Random Oracle model. As in
Ref. [6], our security proofs rely on the following generalized
forking lemma [3].
Lemma. 1 (Generalized Forking Lemma).

Let q and � be a integer, A be a randomized algorithm which
takes inp as main inputs, �-bit strings h1, · · · , hq ∈ {0, 1}� as ran-
dom numbers, and ρ as A’s random coins, and returns either a
⊥ (Failure) or (i, out) (Success), where i ∈ {1, · · · , q} and out is
main outputs. We describe acc(A) as the probability of accepting
A, which means A returns non-⊥ output. Following the above
definition of acc(A), we can consider algorithm ForkA which
takes inp as the same input and returns either a ⊥ or (i, out, out′)
as outputs described on Listing 1 and let f rk be the probability of
accepting ForkA, then we obtain

f rk ≥ acc(A)

(
acc(A)

q
− 1

2�

)
.

Listing 1: Forking Algorithm

1 (h1, · · · , hq)←$ {0, 1}�
2 α← A (inp, h1, · · · , hq; ρ)
3 if α = ⊥ then return ⊥
4 else parse α = (i, out)
5 h′i , · · · , h′q ←$ {0, 1}�
6 α′ ← A (inp, h1, · · · , hi−1, h′i , · · · , h′q; ρ)
7 if α′ = ⊥ then return ⊥
8 else parse α′ = (i′, out′)
9 if (i = i′ ∧ hi � h′i ) then return (i, out, out′)

10 else return ⊥

2.1.4 Multi-Signature Scheme
We follows the definition of Refs. [4] and [6], and we describe

the scheme and security of multi-signatures. In general, a Multi-
Signature scheme MS is constructed by algorithms Pg, Kg, Sign,
SAg, KAg, and Vf is defined by the following.
Pg (1κ)

Given the security parameter κ, output the system parameters
params.

Kg (params)
Given the params, output a key pair (sk, pk) where sk is a
secret key and pk is a public key.

Sign (params, Lpk, sk,msg)
Given the (params, sk, Lsk,msg), where Lpk is the set of the
public key, output a signature σ.

SAg (params, Lsig)
Given the (params, Lsig), where Lsig is the set of the signa-
ture, output an aggregated signature σ̃.

KAg (params, Lpk)
Given the (params, Lpk), output an aggregated public key
pk.

Vf (params, pk,msg, σ̃)
Given the (params, pk,msg, σ̃) and verify them. If σ̃ is the
valid signature for m, then output 1, otherwise output 0.

This scheme should satisfy completeness which means the fol-
lowing equation is valid for any n.

Vf (params,KAg (params, Lpk),msg,SAg (params, Lsig)) = 1

where Lsig = {σ1, · · · , σn}, σi = Sign (params, Lpk, ski,msg),
Lpk = {pk1, · · · , pkn} and (ski, pki) ← Kg(params) for each
i ∈ {1, · · · , n}.

In addition, this scheme should satisfy unforgeability. Un-
forgeability of MS is defined by the following three-stage game.
Setup. The challenger generates params ← Pg (1κ), and let

(sk∗, pk∗) ← Kg (params) be a challenge key pair. It runs
the adversary (the forger algorithm)A (params, pk∗).

Signature queries. A has access to sign oracle
OSign (params,·,sk∗ ,·) for any message m and any set of
signer public keys Lpk = {pk1, · · · , pkn} where pki = pk∗ for
any i. This oracle will simulate the honest signer and output
the forgery signature σi.

Output. The adversary outputs a forged Multi-Signature σ∗, a
message m∗ which is not queried in previous stage, and a
set Lpk including pk∗. The adversary wins this game if the
following equation is satisfied.

Vf (params,KAg (params, Lpk),m∗, σ) = 1

Finally, we recall the definition of the unforgeability of Multi-
Signature.
Def. 2 (Unforgeability of Multi-Signature).

We said A is a (τ, qS , qH , ε)-forger for the Multi-Signature
Scheme MS = (Pg,Kg,Sign,SAg,KAg,Vf), where qS is its max-
imal number of sign oracle queries and qH is its maximal number
of random-oracle queries, if it runs in time τ and wins the above
game with the probability of at least ε. MS is a (τ, qS , qH , ε)-
unforgeable if no (τ, qS , qH , ε)-forger exists.

2.2 Prior Works
2.2.1 MuSig

We remark on the definition of Multi-Signature scheme
MuSig = (Pg,Kg,Sign,SAg,KAg,Vf), which is denoted by
Maxwell et al. [18]. This scheme is executed by n signers, a veri-
fier, and a “aggregator”.

The aggregators are separated into a signature aggregator that
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performs SAg and a key aggregator that performs KAg. Since the
aggregation of signatures assumes a malicious signer’s presence,
it is not necessary to assume that the signature aggregator is also
trusted (Any signer may also act as the signature aggregator).

On the other hand, in the case of key aggregation, we assumed
that the key aggregator is semi-honest as in the previous works
because it is outside the scope of the verifier and must depend on
the assurance of the key aggregator. If there are multiple key ag-
gregators on the signer side and verifier side, and at least one key
aggregator is semi-honest, then the aggregated public key which
KAg generates is valid.
Parameter Generation. MuSig.Pg (1κ)

The aggregator generates the group parameters params ←
Pg (1κ), where params = (G, p, g), and prepares three dif-
ferent hash function H0, H1, and H2 defined as follows.

H0,H1,H2 : {0, 1}∗ → Zp − {0}

Key Generation. MuSig.Kg (params)
Each i-th signer generates a random parameter xi ←$ Zp and
compute the public key Xi = g

xi . Lets Lpk = {X1, · · · , Xn} be
the multi-set of public keys.

Key Aggregation. MuSig.KAg (Lpk)
Each i-th signer computes ai = H1(Xi, Lpk) and sends ai to
the aggregator. After that, the aggregator computes an ag-
gregated key X̃ =

∏n
i=1 Xai

i and outputs X̃.
Signing. MuSig.Sign (params, Lpk, x,m)

This algorithm outputs an aggregated signature σ following
three rounds of interactive protocol.
( 1 ) Each i-th signer generates a random integer ri ← Zp

and computes Ri ← gri and ti = H2(Ri) and sends ti as
a “commitment” to the aggregator, after that, the aggre-
gator broadcasts {t j} j∈{1,··· ,n} to each signer.

( 2 ) Each i-th signer sends Ri to the aggregator, after that, the
aggregator broadcasts {Rj} j∈{1,··· ,n} to each signer, and all
signers check that t j = H2(Rj) for each j � i and aborts
this protocol if the equation is incorrect.

( 3 ) The aggregator computes X̃ ← KAg (Lpk) and lets
ai = H1(Xi, Lpk) and broadcasts (X̃, {a j} j∈{1,··· ,n}) to each
signer, and all signers check that X̃ =

∏n
i=1 Xai

i .
After 3-round protocols, the aggregator computes R =∏n

i=1 Ri, c = H0(R, X̃,m) and broadcast c for all signers, and
each i-th signer computes si = ri + c · ai · x mod p, where
ai = H1(Xi, Lpk), and outputs σi = (si,Ri).

Signature Aggregation. MuSig.SAg (params, {σ1, · · · , σn})
The aggregator parses σi = (si,Ri) and computes s ←∑n

i=1 si and outputs an aggregated signature σ = (s,R).
Verification. MuSig.Vf (params,m, σ, X̃)

This algorithm outputs b ∈ {0, 1} which means the verifier
accepts or rejects it. Given a message m, an aggregated sig-
nature σ and an aggregated public key X̃, the verifier com-
putes c = H0(R, X̃,m), and outputs 1 if and only if gs = RX̃c,
otherwise it outputs 0.

We can confirm the following equations to check their correct-
ness.

gs = gs1+···+sn = R1Xa1c
1 · · ·RnXanc

n = RX̃c

Intuitionally, this 3-round protocol in the signing process ap-
pears to work well without a first-round (1), and the first version
of Ref. [18] in fact omitted this round. However, Drijvers et al. [9]
found the sub-exponential attack for such a 2-round protocol us-
ing Wagner’s algorithm for generalized birthday problem [29].
Therefore, Maxwell et al. revised [18] to include a a 3-round pro-
tocol like the above described protocol.

As an improvement scheme of MuSig, Yannick Seurin et
al. proposed MuSig-DN [21], and J. Nick et al. proposed
MuSig2 [20]. MuSig-DN allows the use of a deterministic nonce
generated from a private key instead of a nonce generated from
a pseudo-random generator, and the other signers can verify the
authenticity since this deterministic nonce was used for signing
using zero-knowledge proofs. This improvement allows MuSig-
DN to protect against key exfiltration attacks caused by the bad
pseudo-random generator. MuSig2, on the other hand, has been
modified to reduce the communication between users from 3-
round to 2-round.

Their modification scope is limited to the nonce and key gener-
ation protocol, in contrast, our proposal’s scope is the generation
algorithm of the aggregate signature. Therefore, these are inde-
pendent of each other, and we believe that we can easily combine
our proposals with MuSig-DN and MuSig2.
2.2.2 Rogue-key Attack

If we define X̃ =
∏n

i=1 Xi as an aggregated public key instead
of MuSig.KAg, the adversary (any corrupted signers) can execute
a Rogue-key Attack via the following steps.
( 1 ) The adversary has a new key pair (xn+1, Xn+1) ←

Kg (params) and computes a rogue-key X′ = Xn+1 · X̃−1 and
registers it.

( 2 ) The aggregator computes a new aggregated public key as
X̃′ = KAg ({Lpk, X′}) = Xn+1, thus, the adversary can gener-
ate signatures which are verifiable with X̃′ signed by skn+1.

Bellare and Neven’s proposal includes an individual public key
Xi and the public key list Lpk among the inputs of the hash value
for avoiding the rogue-key attack [6]. In contrast, Maxwell et
al. has proposed separating the hash value of the public keys
ai = H1(Xi, Lpk) from the message hash value to allow public
key aggregation [18].

Namely, in MuSig, a parameter ai in a part of the aggregate
public key X̃ =

∏n
i=1 Xai

i exists as a countermeasure against a
rogue-key attack.
2.2.3 Interactive Aggregate Signature (IAS)

Compared with the multi-signature schemes, which include
only a signing algorithm for a common message, IAS supports
a distinct messages signing algorithm. Bellare and Neven [6]
suggested a generic approach to transform any multi-signature
scheme into an IAS, and Maxwell et al. [18] then proposed a fixed
secure IAS schemes.

In the IAS scheme, instead of a public key list Lpk =

{X1, · · · , Xn} and a single message m, the signer and the verifier
use an ordered set of the tuple of public key and message pairs
S = {(X1,m1), · · · , (Xn,mn)} instead of the message.

We remark on the definition of IAS IAS = (Pg,Kg,Sign,

SAg,KAg,Vf) where Pg = MuSig.Pg, Kg = MuSig.Kg, SAg =

MuSig.SAg, and KAg = MuSig.KAg informally, which is de-
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noted by Maxwell et al. in appendix A of Ref. [18].
Signing. IAS.Sign (params, S , {sk1, · · · , skn})

After 3-round protocols in MuSig.Sign, the aggregator com-
putes

X̃ ← IAS.KAg(Lpk)

R =
n∏

i=1

Ri

ci = H0(S , X̃, i)

and each i-th signer computes

si = ri + cixi mod p

and output σi = (si,Ri).
Verification. IAS.Vf (params, S , σ, X̃)

Given a set S , an aggregated signature

σ← IAS.SAg (params, {σ1, · · · , σn})

and an aggregated public key X̃, the verifier computes ci =

H0(S , X̃, i), and outputs 1 if and only if gs = R
∏n

i=1 Xci
i and

otherwise outputs 0.
2.2.4 Aggregate Multi-Signature Protocol (AMSP)

To aggregate some signatures generated from distinct mes-
sages without using IAS, Boneh et al. introduced AMSP, which
is a scheme that outputs an aggregated signature aggregated from
some multi-signatures [4]. Besides pairing, this AMSP aggrega-
tion technique can also be applied to all Multi-Signature schemes
whose signature aggregation has homomorphism.

We remark on the definition of AMSP = (Pg,Kg,Sign,SAg,

KAg,Vf,AVf) where Pg = MuSig.Pg, Kg = MuSig.Kg, Sign =

MuSig.Sign, KAg = MuSig.KAg, and Vf = MuSig.Vf informally,
which is denoted by Boneh et al. in Ref. [4].
Signature Aggregation. AMSP.SAg (σ1, · · · , σn)

Parse σi = (si,Ri) where

σi ← MuSig.SAg (params, {σi,1, · · · , σi,n})

for each i ∈ {1, · · · , n} and

σi, j ← MuSig.Sign (params, Lpk, x j,mi)

for each j ∈ {1, · · · , n}, and outputs Σ = (s,R), where

(s,R)← MuSig.SAg (params, {σ1, · · · , σn})

Aggregate Signature Verification.
AMSP.AVf ({m1, · · · ,mn},Σ)

Output 1 if and only if gs = RX̃c, where c =
∑n

i=1 ci and
ci = H0(R, X̃,mi) and otherwise outputs 0.

2.2.5 Optimistic Aggregate Signature (OAS)
As another approach using aggregate signature with multi-

signature, a signature method called Optimistic Aggregate Sig-
nature (OAS) has been proposed by Ambrosin et al. [1].

OAS is a generalization of multi-signatures and aggregate sig-
nature based on pairing that expects most signers to sign the
default message M. In OAS, the aggregator aggregates the

same messages using multi-signatures and aggregates the differ-
ent messages using aggregate signature’s aggregation. This fea-
ture shows that both the aggregated signature size and the veri-
fication time are linear in this kind of message but independent
of the number of signers who have signed M. Namely, OAS per-
forms best when everyone signs the same message (Essentially
identical to multi-signatures); however, when they sign different
messages, they have the same construction as a typical aggregate
signature.

Although OAS uses an aggregated public key consisting of a
simple aggregation (Multiplication) of individual public keys for
the verification like MuSig, since independent public keys em-
bedded in signatures are essentially used for the verification, the
verification time is linear in these kind of messages. In addition,
to prevent rogue-key attacks, OAS must follow the KOSK model
and not the plain public-key model like MuSig.

In summary, OAS can be regarded as an extended Multi-
Signature that supports distinct message signing. However, be-
cause OAS is constructed by pairing-based technique (using bi-
linear maps) rather than Schnorr-based technique, it has different
security models, and the signature size is linear to the number of
signers, OAS is based on different assumptions and models from
MuSig, so we reference OAS just in this section.

2.3 Issues
This section summarizes what has been achieved and what has

not been achieved by conventional multi-signature application
which support multi-message signing.
Signature Verification in Constant Time

In MuSig, using an aggregated public key generated from some
individual keys with Key Aggregation, the verification cost is re-
duced in constant time (Although verification time for an aggre-
gated key is linear in this kind of key, the verifier can delegate this
computation to a trusted third party like the aggregator).

On the other hand, signature verification of IAS requires all
individual public keys pk1, · · · , pkn included in a public key list
Lpk, and verification with an aggregated public key is not sup-
ported. Namely, IAS has an issue that the cost of the verification
time and the number of public keys required for the verification
are linear in the kind of message. This problem requires that the
verifier requires all individual public keys for the verification and
therefore increases the signer’s key management costs and pri-
vacy risk such as requiring certificates for each public key issued
by the private CA.
Signing in Constant Time

As described above, AMSP supports verification for an aggre-
gated signature using MuSig’s aggregated key. However, all sign-
ers requires signing n times per signer’s message. This cost issue
is a minor problem because of the relatively low signing costs
such as for the transaction processing proposed in Ref. [4]. How-
ever, in cases in which signing a message requires the signer’s
operations (consensus), such as a digital signature to a PDF file,
increasing the signing time is not small problem for each signer.

In response to the issue above, we propose a new signature
scheme that enables both signing and verification in constant time
in the next section.
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3. Our Proposal

3.1 Construction of KAIAS
To consider applying Multi-Signature for more practical use

cases, we propose a new IAS scheme based on 3-round MuSig
that resolve the above issues.

In prior IAS, the verifier needed the public key list Lpk

instead of an aggregated public key X̃ to confirm the equa-
tion gs = R

∏n
i=1 Xci

i . As the improvement of it, please
note that we introduced the message hash aggregation c ←
KAIAS.MHAg({m1, · · · ,mn},R, X̃) as well as the aggregation of
signatures and public keys, and we embedded the additional pa-
rameter {di}i∈{1,··· ,n} in an aggregated signature σ̃. As a conse-
quence of this modification, the verifier can verify using only X̃

to confirm the equation gs̃ = R̃X̃c.
Now we introduce the new Key Aggregatable IAS KAIAS =

(Pg,Kg,KAg,Sign,SAg,KVf,AVf).
Hash Function. H0

Define H0,H1,H2 as H0,H1,H2 : {0, 1}∗ → Zp − {0}, which
returns a non-zero value.

Parameter Generation. KAIAS.Pg (1κ)
Same as MuSig.Pg(1κ).

Key generation. KAIAS.Kg (params)
Same as MuSig.Kg(params).

Key Aggregation. KAIAS.KAg (Lpk)
Same as MuSig.KAg(Lpk).

Signing. KAIAS.Sign (params, Lpk, ski,mi)
This algorithm outputs an aggregated signature σ̃. After 3-
round protocols in MuSig.Sign, each i-th signer computes

R =
n∏

i=1

Ri

ci = H0(R, X̃,mi)

ai = H1(Xi, Lpk)

si = ri + ciaixi mod p

and outputs (ci, σi = (si,Ri)).
Signature Aggregation.

MuSig.SAg (params, {(c1, σ1), · · · , (cn, σn)})
The aggregator checks that ci = H0(R, X̃,mi). If this equa-
tion is incorrect, the aggregator aborts this protocol and oth-
erwise computes

s̃ =
n∑

i=1

sidi, R̃ =
n∏

i=1

Rdi
i

where {di}i∈{1,··· ,n} is the “wormhole” product of {ci}i∈{1,··· ,n}
defined as

di =
∏

j∈{1,··· ,n}−{i}
c j = c1 · · · ci−1ci+1 · · · cn

for each i, and outputs an aggregated signature σ̃ = (s̃, R̃,R).
Message Hash Aggregation.

KAIAS.MHAg ({m1, · · · ,mn},R, X̃)
This algorithm outputs an aggregated message hash value c.
Computes c =

∏n
i=1 ci, where ci = H0(R, X̃,mi) for each

i ∈ {1, · · · , n}, and outputs c.
Key Verification. KAIAS.KVf (Lpk, X̃)

Given a public key list Lpk and an aggregated public key X̃,
and it outputs 1 if and only if X̃ = MuSig.KAg(Lpk) and oth-
erwise outputs 0.

Signature Verification.
KAIAS.AVf (params, {m1, · · · ,mn}, σ, X̃)
Given a message {m1, · · · ,mn}, an aggregated signature σ =
(s̃, R̃,R) and an aggregated public key X̃, the verifier com-
putes c← KAIAS.MHAg ({m1, · · · ,mn},R, X̃), and outputs 1
if and only if gs̃ = R̃X̃c and otherwise outputs 0.

Note that anyone who knows all individual public keys can ver-
ify the aggregated public key’s correctness, so the verifier doesn’t
have to execute KAIAS.KVf. Suppose a key aggregator computes
and publishes the aggregated public key, and a different third
party performs KAIAS.KVf. and outputs 1, the aggregated pub-
lic key is valid if one entity among of them is honest. There-
fore, if the aggregated public key is verified once after executing
KAIAS.KAg, then KAIAS.KVf is not required in the subsequent
verification.

We can confirm the following equations to confirm the correct-
ness of KAIAS.

gs̃ = gs1d1+···+sndn

= gr1d1+c1d1a1 x1+···+rndn+cndnan xn

= Rd1
1 · · ·Rdn

N (Xa1
1 · · · Xan

n )c

= R̃X̃c

This scheme should also satisfy completeness.

KAIAS.AVf (params, {m1, · · · ,mn},
MuSig.SAg (params, {(c1, σ1), · · · , (cn, σn)}),
KAIAS.KAg (Lpk)) = 1

In the KAIAS scheme, there are two verification algorithms:
aggregated public key verification and signature verification. The
verifier accepts the given aggregated signature if both algorithms
output 1; moreover, we can delegate the aggregated public key
verification to a trusted third party such as a CA (If a third party
passed an invalid aggregated public key, the signature verification
using that aggregated public key fails, so the verifier can detect
that either the aggregated signature or the aggregated public key
is invalid).

Therefore, the verifier does not need to obtain an individual
public key list from the signers by introducing this party and can
execute signature verification using only the aggregated public
key. This modification is effective in protecting the privacy of
individual public keys, as discussed in Ref. [18].

3.2 Security Proof of KAIAS
As with the security proof in Refs. [4] and [18], we use the

“Double Forking Lemma” technique to construct the DLP solver.
In this technique, the adversary executes the forger algorithm de-
fined in Generalized Forking Lemma twice. First, the adversary
executes algorithm B which outputs the discrete logarithm of the
aggregated public key apk using algorithms A and ForkA. Sec-
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ond, the adversary executes algorithm D which outputs the dis-
crete logarithm of the input public key pk∗ using algorithms B
and ForkB.
Thm. 1. KAIAS is an unforgeable Multi-Signature scheme (as
defined in Section 2.1.4, Def.2) in the random-oracle model if
the DLP is hard. In other words, we can construct (τD, εD)-
solve DLP D by using KAIAS (τ, qS , qH , n, ε)-forger algorithm
F where

τD = 4τ + 4nτexp + O(nqT )

εD ≥ ε
4

q3
T

− 16nq2
T

p
− 3

2�

where qT = qS + qH + 1, and τexp is the time needed to compute
an aggregated public key apk at most.

Proof. We first construct an algorithm A (as described in
Lemma. 1) which takes y as input and outputs a forgery multi-
signature using forger algorithm F . we then construct an algo-
rithm B that takes y as input, and outputs an aggregated pub-
lic key apk which includes y and its discrete logarithm ω, using
generalized forking algorithm ForkA on the algorithm A which
outputs two forgery multi-signatures which are generated by the
same inputs. Finally, we construct a discreate-logarithm algo-
rithmD that takes y as an input and outputs its discrete logarithm
x, using the outputs of ForkB on the algorithm B, that means if
we define the (τ, qS , qH , ε)-forger algorithm F , we can construct
the DLP-solverD.
Construction of algorithmA.
A takes as input in = (y, h1,1, · · · , h1,qH ), the randomness

(h0,1, · · · , h0,qH ), and ρ as A’s random tape, and runs pk∗ = y
with i0 = 0, i1 = 0, and initialized empty hash tables T0, T1 and
T2. A is described as the following.
H0(R, apk,mi)

If T0(R, apk,mi) is undefined, then A sets T0(R, apk,mi) =
H0,i0 and i0 ← i0 + 1. It returns T0(R, apk,mi).

H1(pki, Lpk)
If pk∗ ∈ Lpk and T1(pk∗, Lpk) is undefined, then A
sets T1(pk∗, Lpk) = h1,i1 and i1 ← i1 + 1 and assigns
T1(pk, Lpk) ←$ Zp for all pk ∈ Lpk − {pk∗}. A computes
apk ←∏

pk∈Lpk
pkT1(pk,Lpk). If F already sent a query involv-

ing apk, then we say that bad1 has happened and A return
(0,⊥), otherwise it returns T1(pki, Lpk).

H2(R)
If T2(R) is undefined,A assigns T2(R)←$ Zp. If
(i) there exists another R � R′ s.t. T2(R) = T2(R′), or
(ii) T2(R) has been already used in the first round of the

signing query,
then we say that event bad2 has happened and A returns
(0,⊥), otherwise it returns T2(R)

Sign (Lpk, {m1, · · · ,mn})
In first step, A computes apk according to three round pro-
tocols.
( 1 ) A generates a random value ti ← Zp and sends it to the

aggregator.
( 2 ) After receiving {t j} j∈{1,··· ,n} from the aggregator, A de-

tects Ri s.t. ti = H2(Ri). If A can’t find such a value, it

sets the random value Ri ←$ G.
A assigns si, ci ←$ Zp, simulates an internal query
ai = H1(pk∗, Lpk), computes Ri = g

si (pk∗)−aici and
R =

∏n
j=1 Rj, and sets the tables as T2(Ri) ←

ti, T0(R, apk,mi) ← ci. If T0(R, apk,mi) is already de-
fined, we say that event bad3 has happened and A re-
turns (0,⊥), otherwise it returns T2(R). A sends Ri to
the aggregator.
After receiving {Rj} j∈{1,··· ,n} from the aggregator, A
checks that t j = H2(Rj) for each j � i.

( 3 ) A checks that apk =
∏n

i=1 Xai
i , and sends (mi, si, ci) to

the aggregator.
If the forger F outputs a valid forgery KAIAS signa-

ture (s̃, R̃,R) corresponding to the signature of n messages
{m1, · · · ,mn} and a public key list of the signers Lpk =

{pk1, · · · , pkn}, then A computes apk ← KAg (Lpk), c =

KAIAS.MHAg ({m1, · · · ,mn}, σ, apk), and ai = H1(pki, Lpk) for
each i ∈ {1, · · · , n}.
A returns (i0, (s̃, R̃,R, c, apk, Lpk, a1, · · · , an)) where satisfies

apk =
∏n

i=1 pkai
i , gs̃ = R̃X̃c, and there exists i ∈ {1, · · · , n} s.t.

ci = h0,i0 .
If F is a (τ, qS , qH , ε)-forger, then we can compute the lower

bound εA, which is the probability of accepting ForkA with the
running time τA.

First, if bad1 has happened, the random-oracle returns a
H1(pk, Lpk) which is a value in conflict in T1 with the probabil-
ity (qS+qH+1)

p . Thus, considering as qH is a maximal number of

random-oracle queries, we describe Pr[bad1] = qH (qS +qH+1)
p .

Second, if bad2 has happened, the random-oracle returns a
H2(R) where (i) R � R′ and H2(R) = H2(R′) with the probability
(qS+qH )2

2p , and (i) used value in the first round with the probability
qS qH

p in n signers, thus we describe Pr[bad2] = (qS +qH )2

2p +
nqS qH

p .
Third, if bad3 in n has happened, the random-oracle returns a

H0(R, apk,mi) which is a value in conflict with T0 with the prob-
ability (qS+qH+1)

p , which conflicts in T1 for each i ∈ {1, · · · , n}, so

we describe Pr[bad3] = nqH (qS+qH+1)
p From the above,

acc(A) = Pr[F succeeds ∧ bad1 ∧ bad2 ∧ bad3]

≥ acc(F ) − Pr[bad1] − Pr[bad2] − Pr[bad3]

≥ ε − qH(qS + qH + 1)
p

−
(

(qS + qH)2

2p
+

nqS qH

p

)

− nqH(qS + qH + 1)
p

≥ ε − 4nq2
T

p
= ε − δ = εA

where δ =
4nq2

T
p .

Additionally, the running time ofA is equal to the total running
time of forger (t), aggregating of n keys (nτexp), and all answering
queries order (O(n · qT )). Therefore we can compute the running
time ofA at most as τA = τ + nτexp + O(n · qT ).
Construction of B

Next, we construct algorithm B that runs the forking algorithm
ForkA takes (y, h1,1, · · · , h1,qH ) and random tape ρ as input, and B
outputs
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(i0,(s̃, R̃,R, c, apk, Lpk, a1, · · · , an),

(s̃′, R̃′,R
′
, c′, apk′, L′pk, a

′
1, · · · , a′n)).

Compare the query of H0(R, apk,mi) in the first run of ForkA

and H0(R
′
, apk′,m′i ) in the second run of it, they are identical

up to the view of A because of using the same inputs and ran-
dom tapes, thus, R = R

′
and apk = apk′, then apk and apk′ are

generated by same public key list, so Lpk = L′pk, (a1, · · · , an) =

(a′1, · · · , a′n), R̃ = R̃′ and c � c′.
Using its outputs of ForkA, we have the following two equa-

tions.

gs̃ = R̃ · apkc

gs̃′ = R̃′(apk′)c′ = R̃ · apkc′

then we can compute ω ← (s − s′)(c − c′)−1 mod p s.t. gs−s′ =

gω(c−c′) which is the discreate-logarithm of apk = gω.
Finally, B returns (i1, (ω, Lpk, a1, · · · , an)), and we can com-

pute the lower bound of the probability of accepting ForkB with
the running time τB from Section 2.1.2, Def.1 such as

acc(B) ≥ acc(A) ·
(

acc(A)
qT

− 1
2�

)

≥ (ε − δ)2

qT
− (ε − δ)

2�

≥ ε
2

qT
− δ′ = εB

where δ′ = 2δ + 1
2� . Note that the running time of B is twice the

running time ofA, so we can compute τB = 2τ+2nτexp+O(n·qT )
Construction ofD

As the above, we construct a DLP-solve algorithmD that runs
the forking algorithm ForkB takes y as input, and B outputs

(i1, (ω, Lpk, a1, · · · , an), (ω′, L′pk, a
′
1, · · · , a′n)).

Compare with the two executions of B in ForkB, where i1-th H1

query H1(pki1 , Lpk) and H1(pk′i1 , L
′
pk) are identical up to the view

of B, so we have that Lpk = L′pk. Since all values T1(pk, Lpk) for
pk � pk∗ are chosen randomly by A using the same inputs and
random tapes, thus we obtain ai = a′i for i � i1, and ai � a′i for
i = i1. By dividing the following two equations

apk =
n∏

i=1

pkai
i = g

ω

apk′ =
n∏

i=1

pk
a′i
i = g

ω′ ,

we have (pk∗)ai1−a′i1 = gω−ω′ and D can compute x ← (ω −
ω′)(ai1 − a′i1 )−1 mod p which is the DLP solutions of y = pk∗.

Finally, D takes y as input and outputs x s.t. gx = y with the
probability at least of εD and the running time τD described as

acc(D) ≥ acc(B) ·
(

acc(B)
qT

− 1
2�

)

≥ (ε2/qT − δ′)2)
qT

− ε
2/qT − δ′

2�

≥ ε
4

q3
T

− δ′′ = εD

where δ′′ = 2δ′ + 1
2� , and τD = 4τ + 4nτexp + O(n · qT ) �

4. Proposed Application

This section introduces our electronic signature application
that uses KAIAS and can be applied to business tasks.

“Trust Services” are digital signature components constructed
by signature-application technologies such as time-stamps, e-Seal
(the signature issued by a corporation), and e-Delivery. These
enables users to verify the completeness and reliability, which
contains the data’s evidence when signed and also who signed
it. After publishing eIDAS regulations in the EU in 2014 [11],
the criteria defined by eIDs (Electronic IDentification) and Trust
Services were recognized. Therefore, it is expected that Trust
Services will spread throughout the EU and in Japan and the US
to achieve the Digital Single Market envisioned by the EU.

On the other hand, research on multi-signature schemes has
been actively discussed to reduce the transaction data size using
the multi-signature application in transaction technologies typi-
fied by Bitcoin. However, there has been less discussion on es-
tablishing the aggregation of each signers’ approval using multi-
signature schemes.

We introduce the following practical application in Trust Ser-
vice for effectively applying KAIAS whose use is not restricted
to transaction cases *1.

4.1 Contracts among Companies
We introduce an effective KAIAS application that establishes

a contract between two companies X and Y (Company X and
Company Y, respectively), using an electronic signature.

We assume the contract process flow is as follows. Before sign-
ing the e-Seal, some approvers (the signers) in Company X at-
tached their individual signatures to the contract document as a
sign of approval (independent of e-Seal). Finally, Company X
(the signer side) issues this document with an e-Seal which is a
signature for verifying the contract’s correctness signed by the re-
sponsible person in this contract. In response, Company Y (the
verifier side) can confirm the document’s validity by verifying its
e-Seal using a public key corresponding to it.

In the above cases, the e-Seal signed by Company X allows
Company Y to confirm only the validity of this document. How-
ever, the process assurance of this document signed by the in-
dividual approvers is outside the verifiers’ scope. For example,
Company Y’s verifier cannot detect these documents’ internal
rewriting and cheating using only e-Seal.

To avoid these abuses, we use signature aggregation in KAIAS
to define the binding between an e-Seal signed by Company X
and individual signatures signed by some approvers. However,
Company X has a motivation for not disclosing incomplete doc-
uments created before the final contract document regarding pri-
vacy and compliance.

We introduce “Message Hiding” as an extension of KAIAS to
improve the trust of e-Seal to meet the following requirements for
the above cases.
• Company X can keep the incomplete documents confidential

from Company Y.

*1 In the following use cases, we implicitly assume there exists a semi-
honest third party as an aggregator.

c© 2021 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.29

• Company Y can verify that the final version has been issued
by Company X according to the appropriate approval pro-
cess without using the original incomplete documents.

• Company Y does not usually require incomplete documents
for the verification but can verify their validity using a dis-
closure request.

Message Hiding conceals incomplete documents using the
double hash chain and establishes the validity of its approval
routes in Company X.

We now define the algorithms HCSign,HCVf, and DR in addi-
tion to KAIAS.
Hash Chain Signing.

KAIAS.HCSign (params, {m1, · · ·mn}, {sk1, · · · , skn}, Lpk)
This algorithm takes the same input as the KAIAS.Sign, and
outputs normal KAIAS signature and hash chain parameters.
( 1 ) After 3-round protocols in MuSig.Sign, the 1st signer

computes

h1 = H0(R, X̃,m1)

c1 = h1

a1 = H1(X1, Lpk)

s1 = r1 + c1a1x1 mod p

and sends (m1, s1, c1, h1) to the aggregator.
( 2 ) k-th signer gives hk−1 from the aggregator and computes

hk = H0(R, X̃,mk)

ck = H0(ck−1, hk)

ak = H1(Xk, Lpk)

sk = rk + ckak xk mod p

and sends (mk, sk, ck, hk) to the aggregator.
( 3 ) Finally, the aggregator computes an aggregated sig-

nature σ̃ and the hash chain parameters hcp =

{h1, h2, · · · , hk−1}.
Figure 1 shows the construction of Hash Chain Signing.

Hash Chain Verification.
KAIAS.HCVf (hcp,mn, σ̃, cn)
This algorithm checks the verification of hash chain between
{h1, · · · , hn−1} and cn before checking the KAIAS.Verity.
Parses σ̃ = (s̃, R̃,R) and computes recursive as follows.

c′1 = h1

Fig. 1 Construction of Hash Chain Signing.

c′2 = H0(c′1, h2)

...

c′n−1 = H0(c′n−2, hn−1)

h′n = H0(R, X̃,mn)

c′n = H0(c′n−1, h
′
n)

If c′n = cn then verification is successful which means the
input parameters hcp and mn are definitely non-forged and
generates them in sequentially ascending order. Figure 2
shows the construction of the Hash Chain Verification.

Disclosure Requirements. DR (hcp,m, σ̃) ( 1 ) Compute h′ =
H0(R, X̃,m)

( 2 ) Output 1 if a i exists s.t. h′ = hi (i ∈ {1, · · · , n − 1}) in
hcp, otherwise outputs 0.

Hash chain verification KAIAS.HCVf and KAIAS aggregated
signature verification KAIAS.AVf enables verifiers to verify pro-
cess order and unforgeability. However, since the verifier cannot
obtain m1, · · · ,mn−1 following the requirements, it cannot deter-
mine whether hk = H0(R, X̃,mk) for k = 1, · · · , n − 1. In other
words, hk is actually calculated by mk. Therefore, we introduce
the algorithm called “Disclosure Requirements” KAIAS.DR. Us-
ing this algorithm, the verifier can confirm whether h1, · · · , hn−1

contains a hash value for mi only when the i-th signer publishes
an arbitrary message mi. Thus, the verifier can confirm that mi is
correctly included in the process of generating mn.

Using KAIAS with Message Hiding, both Company X and
Company Y have the following advantages.
Signatures Aggregation

No matter how the structure of the internal approval path
in Company X is constructed, the verifier can confirm that
all signatures are valid by verifying just the aggregated sig-
nature. This representative signature can also be treated as
evidence of passing Company X’s approval flow, such as e-
Seal.

Key Aggregation
As mentioned in Section 3.1, a third party can verify the ag-
gregated public key instead of the verifier. Therefore, the
verifier does not need to obtain all the individual public key
certificates. Moreover, the verifier can verify in a constant
time using the aggregated public key.

Fig. 2 Construction of Hash Chain Verification.
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Disclosure Requirements
Company X keeps the incomplete documents confidential
from Company Y using the hash chain until publishing it.
Company Y can confirm the validity of whether the pub-
lished document is really used in contract by using the hash
chain.

4.2 Code Signings
In a software development company such as Apple [2], using

Code Signing, which is the signature of the software’s source
code signed by the developer (the signer), the users (the veri-
fier) can verify that this application was registered by a certain
publisher and nobody has edited this code since last signed. On
the other hand, in a version control service like Git, there is a
commit signature to verify that all commits in the development
process have not been forged or that commits by non-developers
are included [13].

This paper considers the aggregate signature of the commit sig-
natures as Code Signing and proposes a scheme that enables the
users to verify the final version’s source code and all commits.
Sign

Each j-th developer who has a key pair (sk j, pk j) for each
j ∈ {1, · · · ,m} commits a new commitment with a Schnorr
signature σ j signed by sk j to the central server. Even-
tually, this server publishes all n (n ≥ m) commitments
{m1, · · · ,mn} with n signatures {σ1, · · · , σn} for Code Sign-
ing.

Verify

To confirm the validity of the software, the user can verify
n signatures corresponding to n commitments, and the entire
developer’s public key list {pk1, · · · , pkm}.

In this naive usage case, however, the user has to run the ver-
ification algorithm n times which increases the cost of verifica-
tion as the total n of commitments increases. We cannot regard
that this cost as negligible for huge projects since for example
in Google’s repository, 25,000 developers commit 45 thousand
commitments daily for 2 billion lines of code [23].

As explained above, the signer can aggregate n signatures into
a single IAS signature by using IAS, but since IAS does not allow
verification using aggregated public keys, users need a public key
list Lpk for all developers. This public key list is used only among
the developers to identify which part of the implementation each
developer was responsible for. Therefore to justify using a certain
public key for all users, a CA must issue a certificate for all public
keys.

Using KAIAS, both developers and users have the following
advantages.
Signatures Aggregation

No matter how many commits exist, the users can confirm
the validity that all signatures are valid by verifying only a
single aggregated signature.

Key Aggregation
As mentioned in Section 3.1, the users do not need all de-
velopers’ public keys and can verify the signature with just
a single aggregated public key provided by the developers.
The verifier therefore does not require any information about

the individual public keys.

5. Conclusion and Future Work

We present a new scheme called KAIAS which supports mul-
tiple message signing and public key aggregation while solving
prior works issues in real use cases. Also, we propose two ap-
plications that utilize the advantages of KAIAS. We assume that
the signature generated by the contract application corresponds
to an e-Seal which is a digital signature issued by the company.
It enables the verifier to confirm its authenticity and the internal
process assurance by verifying the normal e-Seal. This exten-
sion of e-Seal is effective as a countermeasure against Business
Email Compromise (BEC) which is a deception that makes a non-
existent company look like it exists.

In many Japanese companies with a deep-rooted culture of us-
ing paper signatures, it isn’t easy to promote electronic signa-
tures. Therefore, introducing the new values of digital signature
application, such as the proposed, which were not possible with
paper signatures, will lead to promoting use of DX (Digital Trans-
formation) and archiving Society 5.0.

Finally, we conclude this section by discussing future works of
KAIAS.

How secure is the aggregation message cagg?
The cagg is a parameter calculated using the Message Aggrega-

tion algorithm (KAIAS.MHAg) by the aggregator, the semi-honest
entity. On the other hand, in some usage cases, the signer may
be motivated to keep all messages m1, · · · ,mn hidden from the
aggregator. In this case, we modified how to generate the cagg

which each i-th signer calculates the message hash ci in local,
the signer sends the message hash ci to the aggregator instead of
the message mi, and the aggregator calculates cagg from the prod-
uct of c1, · · · , cn. It appears that the above motivation has been
achieved. However, since cagg is not a simple hash value, but a
product of hash values, so we have to consider the risk that an
adversary can change cagg to a forged value by using Wagner’s
Algorithm to introduce a malicious message hash [29]. Since d,
a wormhole product, is also a product of the hash values, the ad-
versary can forge the same attack. The evaluation of Wagner’s
Attack on the product of hash values is a subject for future work.
We also believe that the signer can avoid such an attack by intro-
ducing “tricks” such as Key Aggregation into Message Aggrega-
tion.

What about the use of deterministic nonce and modification
to the 2-round Protocol?

As two advanced applications of MuSig, MuSig-DN [21] sup-
ports deterministic nonce instead of using a random number gen-
erator, and MuSig2 [20] supports a two-round protocol, respec-
tively. Since these schemes are improvements related to the sign-
ing algorithm, we believe that updating KAIAS supports these
modifications. The construction of such schemes will be a sub-
ject for future works.
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