
Checklist-Based Intelligent Human-Machine Pair
Inspection

Yujun Dai1,a) Shaoying Liu1,b)

Abstract: With the rapid development of computer technology, the scale of the software system is increasing, the
quality of the software is getting more attention. Software inspection is a widely known practice of software quality
assurance. However, most of the existing software inspection are handed over to other reviewers for inspection after
the program is completed. In this paper, we study a process of software construction that machine can automatically
and dynamically comprehend program and guide programmers to inspect the code in the current version of software
as it is being constructed. The aim of the method is to use cyclomatic complexity to determine which function or
method may have the most defects, and then use static analysis technology to extract its intermediate representation,
and automatically generate the inspection syntax tree and the corresponding questions in checklist for programmer to
inspect. We present an example to show how the method can be used and prove its accuracy and usefulness. The result
shows that our method can be automatic and effective in assisting programmers to detect defects during programming.

1. Introduction
As the rapid development of computer and Internet technol-

ogy, computer has been applied to all sectors of the society, and
the software is a very important part of the computer system.
At present, the scale of the software system is increasing, the
software development technology is becoming more complex,
the quality of the software is getting more attention. Especially
now computer systems have been widely used in many safety-
related systems related to national economy and people’s liveli-
hood, such as high-speed train control system, aerospace control
system, nuclear reactor control systems, medical equipment sys-
tems, etc. Any errors in these systems can lead to catastrophic
consequences. We have been longing for a process of software
construction that can timely comprehend program and indicate
faults in the current version of software as it is being constructed,
simply because it can significantly improve software quality, re-
duce construction cost, and enhance software productivity.

Software inspection is a static analysis technique that has
widespread practical use for identifying defects, assuring and im-
proving reliability and quality of software [1–3]. In different
publications, the term software inspection has a number of syn-
onyms, including code review, code inspection, formal inspec-
tion, etc.The goal of software inspection is to look for defects
or improvement opportunities without the software execution and
before the product delivery, thus reducing the costs of fixing them
later [4].Fagan pointed out in his theoretical work [5] that formal
design and code inspections and face-to-face meetings reduced

1 Graduate School of Advanced Science and Engineering, Hiroshima Uni-
versity

a) d201609@hiroshima-u.ac.jp
b) sliu@hiroshima-u.ac.jp

the number of errors detected during the testing phase in small
development teams.However, this early form of software inspec-
tion mandate a number of formal requirements that do not adapt
well to agile development methods, most notably a fixed, for-
mal, waterfall process. Due to the adoption of agile methods and
distributed software development, code inspection are currently
done in a less formal way than in the past, reducing the inefficien-
cies of its early form. The lightweight variant of code inspection
has been referred to as modern code review (MCR) [6], which
is a flexible, tool-based, and asynchronous process. The general
idea of MCR is that developers (i.e., reviewers) other than the
author evaluate code changes to identify defects and quality is-
sues, and decide whether to discard or integrate the changes into
the main project repository.Nowadays, it is a common practice to
use MCR to improve the quality of code in many development
projects.But understanding code changes, their purpose, and mo-
tivations has always been the main challenge faced by develop-
ers(reviewers) when reviewing code changes [7]. Obviously, the
author of the code comprehends his or her code most clearly.
Therefore, adopting intelligent Human-Machine Pair Program-
ming (HMPP) [8] technology, there is an opportunity to solve
the above problems.HMPP means that a programmer and com-
puter work together to construct a program, where the program-
mer plays the role of driver and the computer plays the role of
observer. In other words, as the software is constructed by a hu-
man developer, its current version is always being observed and
checked by a software tool, and faults are reported timely if any.
The targeted faults are primarily semantic faults, not syntactical
faults which can be found by a complier.

In this paper, we describe an approach to using cyclomatic
complexity and static analysis technology to improve the process
and quality of software inspection. We present a new checklist-

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 270

based human-machine pair inspection(HMPI) method which is
intended to mitigate the above-mentioned deficiencies of existing
inspection techniques, to increase the benefits of machine, that is,
tool-based self-code-inspection through the automatic guidance
by the machine, and to support HMPP. The aim of the method
is to automatically and dynamically observing and verifying the
process of software construction, thereby guiding the program-
mer to inspect code in the current version of the software to han-
dle implementation-related bugs.The method includes six steps:
• Record the code being constructed by developer in real time.

Preprocess the recorded data, once the number of lines of
code other than blank lines and comment lines reaches 20
lines, perform static analysis.

• Generate the Intermediate Representation(IR) of these 20-
lines-codes in the form of 3 Address Code(3AC).

• Calculate the cyclomatic complexity of each function.
• Generate the inspection syntax graph according to the IR of

the codes.
• Establish the checklist according to each component in the

graph.
• Analyze the corresponding code for each question to detect

defects.
The remainder of this paper is organized as follows: Section

2 formally presents and discusses the rationale for the proposed
HMPI approach, paving the way for the discussion of the inspec-
tion process and tool support in later chapters.Section 3 explains
the inspection process. Section 4 presents an example to illustrate
the process. Finally,Section 5 concludes the paper and identifies
future research directions.

2. Principle of Inspection
2.1 Checklist-based Inspection

Inspection in software engineering, refers to peer review of
any work product by trained individuals who look for defects us-
ing a well-defined process.The goal of inspection is to identify
defects, assure and improve reliability and quality of software,
enable systematic software process improvement and preventive
actions earlier than testing. The process of formal software in-
spection includes 6 stages:
(1) Planning:The plan of inspection is made by the moderator.
(2) Overview meeting: The background of the work product

is described by the author.
(3) Preparation:The work product is examined by each re-

viewer to identify possible defects.
(4) Inspection meeting: During this meeting the reader

reads through the work product, part by part and the reviewer
point out the defects for every part.

(5) Rework: The author makes changes to the work product ac-
cording to the action plans from the inspection meeting.

(6) Follow-up: The changes by the author are checked to make
sure everything is correct.

In the preparation phase of formal inspection, the reviewers
work alone on the product using the checklists provided. The aim
of each reviewers is to find the maximum number of potential
defects by answering all the questions in the checklists. The orig-
inal formal inspection method (Fagan Inspection) [5] included

the idea of using checklists in defect finding. The purpose of
the checklist is to gather expertise concerning the most common
defects to support the inspection. Chorkowski et al. (2003) [9]
reported that about half of the respondents in their survey used
checklists in peer review. Checklists are a fundamental part of the
Inspection process. There are individual checklists for each type
of documentation in Inspection. Sometimes individual checker
specialist roles are defined by means of a special set of checklist
questions. Checklists are built to the following rules [10]:They
may contain suggestions for probable defect severity (e.g. Ma-
jor, minor); the checklist does not need to contain every possible
question; a checklist should concentrate on questions which will
turn up Major defects. Checklists serve the following purposes:
• Instruction: teach reviewers about what is expected.
• Stimulation: provokes reviewers to look for more than

they otherwise might do.
• Checklists should increase the number of bugs found by a

reviewer.
• They define part of what is expected of the inspection pro-

cess, in ”question form”.
In our method, we mainly focus on the checklist for code files.The
author acts as an inspector, and the targeted faults are primarily
semantic faults.

2.2 Intermediate Representation(IR)
In order to analyze the semantics of the code and generate ap-

propriate checklists for the author to inspect. We can use static
analysis methods, that is, intermediate representation(referred to
as IR) to record every piece of information of the code in our
file. 3-Address Code(3AC) is the most common form of IR.Note
that IR mentioned in the rest of the paper are all in 3AC form.
Common 3AC forms includes 3AC has two properties: (1)There
is at most one operator on the right side of an instruction. For
example,instruction v2 = a + b + 3 includes two operator on the
right side of the equation.When converted to 3AC form, it is ex-
pressed as: v1 = a+b; v2 = v1 +3.(2)Each 3AC contains at most 3
addresses, where address can be one of the following:name(e.g.,
a, b); constant(e.g., 3);compiler-generated temporary(e.g., v1, v2).
Common 3ac forms include: a = b bop c,where bop means
binary arithmetic or logical operation;a = uop b, where uop

indicates unary operation (e.g.,minus,negation,casting);goto L, it
is an unconditional jump, where L represents a label of a pro-
gram location; if a rop b goto L, it is a conditional jump, where
rop stands for relational operator(e.g.,>, <,==, >=, <=, etc.) For
example, the do-while loop:”doi = i + 1;while(a[i] < v);”,its cor-
responding IR is shown as follows:

1: i = i + 1
2: v1 = a[i]
3: if v1 < v goto 1

Obviously, IR has four characteristics:low-level and closed to
machine code; usually language independent; compact and uni-
form; contains control flow information. Therefore, IR is usually
considered as the basis for static analysis. After generating 3ac,
it should be converted to a control flow graph(CFG), and then
static analysis can be performed on the CFG. Given the 3AC of

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 271

program P as follows:

1: x = input
2: y = x − 1
3: z = x ∗ y
4: if z < x goto 7
5: p = x/y
6: q = p + y

7: a = q
8: b = x + a
9: c = 2a − b
10: if p == q goto 12
11: goto 3
12: return

The corresponding CFG can be generated as shown in figure 1:

Fig. 1 Control flow graph

The node in CFG can be an individual 3-address instruction,
or(usually) a Basic Block(BB). BBs are maximal sequences of
consecutive 3-address instructions with the properties as follows:
it can be entered only at the beginning,i.e., the first instruction in
the block; it can be exited only at the end,i.e., the last instruction
in the block.The edge between nodes indicate the order of execu-
tion. There is an edge from node x to node y if and only if: there
is a conditional or unconditional jump from the end of x to the
beginning of y; y immediately follows x in the original order of
instructions and x does not end in an unconditional jump.

2.3 Cyclomatic Complexity(CC)
Software complexity is a key property that has been discussed

widely in software literature. The complexity of the program
is often proportional to the possibility of defects.Functions and
methods with the highest complexity tend to also contain the
most defects. Thus, reviewers should give priority to inspecting
the code with higher software complexity. McCabe’s Cyclomatic
Complexity [11] is static code attributes that is commonly used
for measuring code complexity [12]. It is a quantitative measure

of the number of linearly independent paths through a program’s
source code. In basis path testing, the number of test cases will
equal the cyclomatic complexity of the program. The high cy-
clomatic complexity means that the logic of the program code
is complicated, the quality may be low, and it is difficult to test
and maintain. In general, methods with cyclomatic complexity
greater than 10 have a great risk of error.

The cyclomatic complexity can be obtained by analyzing the
control flow graph. There are three main calculation formulas,
respectively as follows:

V(G) = E − N + 2P (1)

Where V(G) represents cyclomatic complexity, E represents the
number of edges in the control flow graph, and N represents the
number of nodes in the control flow graph, and P stands for the
connected parts in the control flow graph.Since the control flow
graph is connected, P is equal to 1 here.

Fig. 2 Control flow graph G1

Taking the control flow graph G1 shown in Figure 2 as an ex-
ample, according to formula (1), we can get: V(G) = E−N+2P =

9 − 7 + 2 = 4. The cyclomatic complexity of G1 is 4.

V(G) = E − N + P (2)

The difference between formula (2) and formula (1) is whether
each exit node has an edge connecting the corresponding entry
node in the control flow graph, that is, whether the control flow
graph constitutes a strongly connected graph. The strongly con-
nected graph refers to a graph that can reach all other nodes start-
ing from any node in the graph. As shown in the control flow
graph G2 in Figure 3.

For the control flow graph G2 shown in Figure 3, the formula
(2) is calculated as: V(G) = E − N + P = 10 − 7 + 1 = 4. The
cyclomatic complexity of G2 is 4.

V(G) = P + 1 (3)

Where P denotes the number of logical decision points. Logical
decision point refers to that two or more outgoing edges are is-
sued from each such node. This formula is the simplest and the
easiest to use to calculate cyclomatic complexity, just find the de-
cision points.Some well-known open source tools can be used to
calculate cyclomatic complexity. For example, PMD, CheckStyle
and JavaNCSS tools for Java programming language, OCLint,

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 272

Fig. 3 Control flow graph G2

Testwell CMT++, Understand, SourceMonitor and other tools
for C programming language. For the Python programming lan-
guage, there are also many cyclomatic complexity measurement
tools, such as PyMetrics and Pygenie.

3. Human-Machine Pair Inspection Process
The inspection process supporting our inspection method

is illustrated in Fig.4.The process consists of six major
steps:Preprocess the recorded data, Generate the IR and CFG,
Calculate the cyclomatic complexity, Generate the inspection
syntax graph, Establish the checklist, Analyze the code to detect
defects. Each step that describes an operation is represented by
a diamond in the figure,and each data item, such as ”IR, CFG”,
is represented by a box. The black arrow from an operation to
a box indicates that the data item of the box is an output of the
operation. An arrow between operations shows a control flow.
The blue arrow from operation to Source code means the link
between the questions in the checklist and source code. The
yellow arrow from ”Establish the checklist” to ”Preprocess the
recorded data” will be the future work to make the inspection
more intelligent.

Fig. 4 Inspection process of our method

The Preprocess the recorded data step takes the source code
being constructed by developer as input. Update the record syn-
chronously to form a real-time mapping: f : P → P′, where
P is the code in the editor, P′ is the code recorded by the in-
spection tool. Preprocess the recorded data, once the number of

lines of code other than blank lines and comment lines reaches 20
lines, perform static analysis.It is set to 20 lines since that some
researchers once did a survey [13]. They invited more than 400
volunteers to view 90 C++source code and indicate if they felt
the program would be pleasant or unpleasant to review to deter-
mine typical characteristics of software that is pleasant to review.
Their results show that the average function length of programs
that were considered unpleasant to review is about 23 and the av-
erage length of programs that were considered pleasant to review
is about 15. Therefore it is reasonable to inspect every 20 lines.
Similarly,the average complexity of programs that were consid-
ered unpleasant to review is about 5.8and were considered pleas-
ant to review is about 3.2. It is reasonable to set the minimum
cyclomatic complexity of the code to be inspect to 4.

The Generate the IR and CFG step takes every 20-lines code
as input and produce its IR and CFG. Because the goal is to in-
spect for semantic errors based on implementation, IR needs to
be generated. In the process of programming, it is easy to ig-
nore control flow information, such as calls between functions,
and jumps between codes. The relationship between these codes
is also crucial in the inspection process.Therefore, the generation
of CFG is also essential.IR and CFG can be generated by existing
tool.

The Calculate the cyclomatic complexity step takes IR and
CFG as input to generate the priority of code segments to be in-
spected.As described in section 2.3, find out the decision node
according to the control flow graph, and then the cyclomatic com-
plexity can be obtained according to formula (3). According to
the survey by Michael Dorin et al., code with a cyclomatic com-
plexity not less than 4 is set as the high priority of inspection.
The greater the cyclomatic complexity, the higher the priority of
inspection.

The Generate the inspection syntax graph step takes IR,
CFG of the codes and priority of inspection as input to show
the components of the code that need to be inspected namely a
set of inspection targets. Each target, denoted by a node in the
graph. Retain all CFG components involved in functions with
cyclomatic complexity not less than 4, sort these components in
decreasing order of cyclomatic complexity, which means listing
the most complex function components first. So as to guide the
reviewer to inspect the code following this order.

The Establish the checklist step takes inspection syntax graph
as input to generate questions in checklist.The checklist is related
to the ISG: It contains a set of questions which can be derived
automatically from the inspection targets in the ISG. For exam-
ple, we can derive the following questions from the target ”while”
node, which represents the while loop instruction:”Is each symbol
in while loop correctly implemented?””Are the guard condition
and defining condition in while loop correctly implemented?”
These questions will facilitate a three-level analysis in an inspec-
tion, which is to be discussed next. Note that the phrase “correctly
implemented” used above, and in the rest of the paper, means that
the code without implementation-related bugs.

The Analyze the code to detect defects step uses the checklist
and ISG as guidelines to analyze the related codes. Since ISG
is generated by the IR and CFG of the code, it is easy to link

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 273

the checklist to the source code. So the tool can conduct that
when the mouse selects the checklist, the corresponding source
code will be highlighted to guide reviewer inspect the code. The
analysis of paths is aimed at answering all the questions on the
checklist. For example, to answer the above questions derived
from the target ”while” node, the analysis can be done at three
levels:
(1) the symbol level,
(2) the condition level, and
(3) the relation level.
The questions on symbol and condition level can be automatically
formed based on IR. The questions on the relation between codes
can be automatically formed based on control flow analysis.

4. An Example
We use part of a stock reservation and purchase system as an

example to illustrate the inspection process. The stock system can
provide the following functions:Customer registration, Cancel a
customer registration,Stock registration,Cancel a stock informa-
tion,Purchase a stock,Sell a stock. Since the inspection of every
operation follows the same process and uses the same principles,
we only choose the calculate stock price function as an example
here. The operation is implemented in Python. After preprocess-
ing the recorded data,generating IR and CFG, We calculate that
cyclomatic complexity of the calculate stock price function is 4,
which needs to be inspected.For symbol-level analysis, we de-
tected that the size of the dictionary changed due to the deletion
during the iteration process when canceling delisting stocks.For
relationship level analysis, through control flow information we
found the infinite loop defect caused by mutual calls between
functions when calculating stock prices.

5. Conclusion and Future Research
We have described a checklist-based human-machine pair in-

spection method to assure and improve reliability and quality
of software. The underlying principle of the method is based
upon the concept of cyclomatic complexity and IR: defects are
expected to be found during the inspection to check all com-
ponent of IR with high complexity. The process includes six
major steps:Preprocess the recorded data, Generate the IR and
CFG, Calculate the cyclomatic complexity, Generate the inspec-
tion syntax graph, Establish the checklist, Analyze the code to
detect defects.Furthermore, we have conducted a case study to
validate the method and presented our findings. The results show
that our method may effectively reduce.

Three things will be the focus of our future research.First, we
will continue to make efforts to build prototype tools to sup-
port more intelligent inspection.Second,make the problems in the
checklist more specific and add possible implementation-related
bugs in questions, such as stack overflow, etc. Finally, make the
inspection process more intelligent, record the individual mis-
takes that programmers often make, recognize similar codes, and
raise related questions in checklist.

Acknowledgments This work is supported by the Hiroshima
University Graduate School Research Fellowship.

References
[1] Gregory, F.: Software Formal Inspections Standard, Technical report,

Technical Report NASA-STD-2202-93,, NASA Office of, Safety and
Mission . . . (1993).

[2] Parnas, D. L. and Lawford, M.: The role of inspection in soft-
ware quality assurance, IEEE Transactions on Software engineering,
Vol. 29, No. 8, pp. 674–676 (2003).

[3] Liu, S., Chen, Y., Nagoya, F. and McDermid, J. A.: Formal
specification-based inspection for verification of programs, IEEE
Transactions on software engineering, Vol. 38, No. 5, pp. 1100–1122
(2011).

[4] Baum, T., Liskin, O., Niklas, K. and Schneider, K.: A faceted clas-
sification scheme for change-based industrial code review processes,
2016 IEEE International Conference on Software Quality, Reliability
and Security (QRS), IEEE, pp. 74–85 (2016).

[5] Fagan, M.: Design and code inspections to reduce errors in program
development, Software pioneers, Springer, pp. 575–607 (2002).

[6] Bacchelli, A. and Bird, C.: Expectations, outcomes, and challenges of
modern code review, 2013 35th International Conference on Software
Engineering (ICSE), IEEE, pp. 712–721 (2013).

[7] Davila, N. and Nunes, I.: A systematic literature review and taxonomy
of modern code review, Journal of Systems and Software, p. 110951
(2021).

[8] Liu, S.: Software Construction Monitoring and Predicting for Human-
Machine Pair Programming, International Workshop on Structured
Object-Oriented Formal Language and Method, Springer, pp. 3–20
(2018).

[9] Ciolkowski, M., Laitenberger, O. and Biffl, S.: Software reviews, the
state of the practice, IEEE software, Vol. 20, No. 6, pp. 46–51 (2003).

[10] Gilb, T. and Graham, D.: Software inspections, Addison-Wesley
Reading, Masachusetts (1993).

[11] McCabe, T. J.: A complexity measure, IEEE Transactions on software
Engineering, No. 4, pp. 308–320 (1976).

[12] Zuse, H.: Software complexity: measures and methods, Vol. 4, Walter
de Gruyter GmbH & Co KG (2019).

[13] Dorin, M.: Coding for inspections and reviews, Proceedings of the
19th International Conference on Agile Software Development: Com-
panion, pp. 1–3 (2018).

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 274

