
Combining Attention-based Gated Bidirectional LSTM and ODCN
for Software Defect Prediction

Dingbang Fang1, Shaoying Liu1, Ai Liu1

Abstract: Software reliability plays an important role in the software lifecycle. Traditional defect prediction adopts static metrics

as manual features to predict defects. Although static metrics can measure the complexity of software, they lack semantic and

structural information about the code. This paper proposes a novel neural network: GB-ODCN, capable of capturing critical

features from the source code to predict defects. GL-ODCN consists of a gated bi-directional long short-term memory network

(Bi-LSTM) and a one-dimensional convolutional neural network (ODCN). Bi-LSTM constructs dependency of semantic features

from the code. Besides, ODCN captures high-level semantic features for judging whether there are defects in the code. Moreover,

attention mechanisms based on both networks enhance the importance of features by assigning weights. Experimental results show

that GB-ODCN outperforms current state-of-the-art algorithms on several open-source repositories.

Keywords: Defect prediction, Neural network, Attention mechanism

1. Introduction

As software development continues to grow in the scale, it causes

problems for testers and maintainers to find defects through manual

debugging. The technique of software defect prediction facilitates

the identification of defects in the early stages of software

development. Therefore, academia [1] and industry [2] have

focused their attention on the study of software defect prediction.

Defect prediction plays a significant role in the field of software

engineering. In recent years, most researchers aim to extract some

static metrics of software, such as the number of lines of code

(LOC) [3] and the cyclomatic complexity [4], to predict software

defects. Traditional machine learning algorithms [5] are designed

as classifiers, such as support vector machines (SVM), logistic

regression, and random forests. Static metrics are fed into the

classifier as manual features to identify defects. Although these

static metrics can measure some statistical properties of the code,

most of them are set by artificial rules resulting in a lack of

syntactic, semantic, and structural information in the program.

In recent years, several researchers have leveraged deep learning

methods to extract semantic features from programs to identify

software defects. These models, deep belief networks (DBNs) [6]

and convolutional neural networks (CNNs) [7], are novel but suffer

from some drawbacks: (1) code tokens, parsed from source code

by abstract semantic trees, resulting in unmeasured distances

between themselves, (2) DBN can only handle isolated code tokens,

result in tokens that cannot generate correlation, and (3) CNN can

only handle a limited range of code tokens, lacking wholeness.

1 Hiroshima University, Higashi-Hiroshima, 739-8527, Japan

Subsequent researchers have proposed recurrent neural networks

[8] to construct semantic feature dependencies from source code,

but it is not able to handle long sequences of code tokens efficiently.

Therefore, the currently proposed approaches to extract semantic

features from source code are not sufficient to effectively predict

software defects.

Inspired by these slights, we propose the GB-ODCN system,

consisting of a Bi-LSTM network and an ODCN. LSTM is used by

constructing dependencies of semantic features between code

marks after AST parsing. ODCN constructs dependencies of local

features. Then multiple attentions focus on assigning more weights

from location information to features respectively to extract high-

level features, which are then fed to the classification layer for

defect prediction. Our proposed GB-ODCN is experimentally

verified to achieve state-of-the-art performance on the Promise

dataset concerning the F-measure metric. The contribution of the

proposed approach comes from the following aspects.

(1) Propose a novel network called GB-ODCN to efficiently

extract semantic and contextual features from source code.

(2) Introduce firstly multiple attention mechanisms on GB-ODCN

to obtain critical information from different perspectives

(3) Verify that GB-ODCN outperforms the currently available

mainstream deep learning algorithms on the PROMISE dataset.

The remainder of this paper is organized as follows: Section 2

presents the work on defect detection, Section 3 shows our

proposed algorithm, Section 4 obtains experimental results and

analysis, and Section 5 summarizes the conclusions of the

proposed method.

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 175

Figure 1. GB-ODCN model framework

2. Related work

2.1 Defect prediction based on static metrics

In the early research on software defect prediction [1]-[5], most

of them leverage static metrics as features to train classifiers based

on machine learning. Some researchers have used specific rules to

design static metrics with statistical properties [5] such as the

number of lines of code, the number of methods. In the follow-up,

some new metrics are proposed based on the previous ones. For

example, Nagappan et al. [9] propose the Churn metric to explore

potential defects. Hassan et al. [10] uses changes in entropy to

predict defects. However, static metrics lack semantic and

structural information in the program. In addition, there is no

guarantee of redundancy in the features subsequently fed into the

classifier.

2.2 Defect prediction based on deep learning methods

In recent years, deep learning has achieved remarkable success in

the fields of computer vision, natural language processing, and

speech recognition. Some researchers are becoming enthusiastic

about exploring semantic features in programs through deep

learning (DL) methods. For example, Wang et al [6]. leverages

deep belief networks to learn semantic features from sign vectors

extracted from AST trees to identify defects. Li et al [7]. combines

semantic features learned by convolutional neural networks with

manual features to identify defects. Deng et al [8]. cleverly exploits

the learned long-term dependency of LSTM to predict software

defects.

3. The method of GB-ODCN
Previous studies in DL on software defect prediction proposed a

single model that did not perform satisfactorily on software defect

prediction. Our proposed model combines the intrinsic

characteristics of the code to propose a robustness model, GB-

ODCN, consisting of three modules, GB-LSTM, ODCN, and

discriminative output, as shown in Figure 1.

3.1 GB-LSTM module

Most of the program utterances in the source code are repetitive,

so it is possible to extract some predictable statistical properties

from them by language models, such as word embedding and

LSTM [11]. To meet the current scenario of software defect

prediction. In particularly，we use a bidirectional LSTM network

with gating units to learn semantic and contextual properties in the

code.

(1) Word embedding

For subsequent model processing, the token vector parsed by AST

needs to be transformed into an integer vector by word embedding

for subsequent model processing, as described in the following

formula:

: d n nF M × → (1)
where M is the embedding matrix, d is the dimension of the

dictionary, and n denotes the maximum length of the code token.

(2) LSTM

In this paper, we use LSTM to construct interdependencies

between code signs. LSTM is a variant of a recurrent neural

network (RNN). Unlike the RNN structure, it has a storage unit for

information memory and a gating unit for filtering information.

The forgetting gate fg mainly selectively forgets the previous

moment state cell; the input gate ig determines the degree of

acceptance of the current updated state; the output gate og

determines whether the current cell state is output or not. The

gating cell is calculated by the following formula:

1([,,])f f t t fg w h x bσ −= +

 (2)

1([,,])i i t t ig w h x bσ −= +

 (3)

1([,,])o o t t og w h x bσ −= +

 (4)
where (,),(,),(,)f f i i o ow b w b w b correspond to the weight and bias

matrices of the forgetting gate fg , the input gate ig , the output gate

og . After the filtering of the information by the gating unit, the

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 176

memory unit, and the output states are tc and th
→

, respectively.

The equations are described as follows:

1([, x] b)t c t t cc Tanh w h −= +

 (5)

1t i t f tc g c g c −= + (6)

()t o th g Tanh c
→

= (7)

where (,)c cw b represents the weight and bias of the updated state
~

tc ， denotes an element-wise multiplication, σ (sigmoid) and

Tanh denotes two nonlinear activation functions. However, the

forward-structured LSTM can only represent the forward

information of the code token sequence, but not the backward

information. Defective codes are usually related to the preceding

and following code tokens, so we use a Bi-LSTM in the current

scenario.

In addition, since LSTM is not ideal in dealing with long

sequences, we introduce an attention mechanism [12] based on

bidirectional LSTM, which can reduce the loss of information.

Software defects often appear in some specific locations of the

program, which is also the information we focus on. We assign

different weights to the output states by the attention mechanism,

which is beneficial to catch some key information. The formula for

attention is described as follows:

(())T
hSoftmax W f hα = (8)

()=f h h (9)

1 1 2 2[, ,...,]n nS h h h hα α α α= = (10)

where 1 2 3=(, , ,...,)nα α α α α denotes the attention weight vector, the

hW is a random initialized attention matrix, and h denotes the

fused state information. Function f can be viewed as one of the

calculated ways in the attention mechanism, as shown in Figure 2.

It can be interpreted as relating to all code tokens for the subsequent

calculation of the contribution of the current code token in the

corpus. The output states at each position are weighted to form a

final state vector S. Thus, we view S as an intermediate

representation of the sequence of code tokens.

Figure 2. Attention model based on Bi-LSTM network

3.2 ODCN

The intermediate representation generated after GB-LSTM

processing contains both contextual and semantic features. The

intermediate representation consists of a two-dimensional matrix

with temporal and feature dimensions, so we can consider it as an

image to explore the dependencies between local features by

ODCN. Compared to two-dimensional convolutional networks,

ODCN is more suitable for processing each code symbol

represented in the temporal dimension. In this paper, we use the

depth-separable convolution [13] in ODCN. The advantage of

depth-separable convolution is that it reduces the parameters of the

operation to a certain extent and makes efficient use of the

enhanced feature-dependent representation. During the processing

of ODCN, the size of the intermediate representation is kept

invariant. In particular, a gated linear unit (GLU) is used to

compress the information of a single signature before using ODCN,

which preserves the invariance of position and content to promote

the processing efficiency of ODCN.

Figure 3. Attention model based on ODCN

In addition, we introduce self-attention [14] on the basis of ODCN.

The importance of global features is established by applying

weights to local features at arbitrary times as shown in Figure 3. In

other words, it enhances the important node information and

suppresses the less important ones. The formula of the attention

mechanism is calculated as follows:

Q() qx W x= (11)

K() kx W x= (12)

V() vx W x= (13)

, () ()T
i j i jS Q x K x= (14)

,
,

,
1

exp()

exp()

i j
i j N

i j
i

S

S
β

=

=

∑
 (15)

,
1

= (V())
N

j j i i
i

o xν β
=
∑ (16) 1h 2h 3h mh

()f a

1s 2s ms

1 1conv

11conv

11conv

1 1conv

Convolution
feature map(x)

Q(x)

K(x)

V(x)

Softmax
Layer

Attention
weight map

Context feature
map

v(x)

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 177

where Q(x), K(x), and V(x) denote the semantic feature maps

processed by the1 1× convolutional layers with initial weights qW ,

kW and vW , respectively. It could compress the number of

channels, which are C/8, C/8, and C, respectively, assuming the

original number of channels is C. The output at the end of the

model is filtered for important information using maximum

pooling.

3.3 Trained GB-LSTM

For effective prediction of defect information, we design decision

output layers for extracting high-level semantic features, consisting

of fully connected layer and output layers with Relu and Sigmoid

function, respectively. Finally, for the training of the model, we use

a cross-entropy loss function (L) to determine the error between the

predicted and true values, as described by the following formula:

()

()

1 1
1

1 () log
kT

m

T k
m

W XK M
k

m M W X
k m

m

eL y
K e

δ
= =

=

= ∑∑
∑

 (17)

where X(k) denotes the kth sample out of the total K samples,

1 2 3(, , ,...,)MW W W W W= denotes the weight vector of all

categories, and the total number of categories is M (defective and

non-defective). ()k
myδ is an indicator function, denoting the

label of the sample in class, e.g., when the real label and the

predicted label are the same, it is 1, otherwise it is 0.

4. Experiments
In this section, we focus on verifying the performance of GB-

ODCN and develop the content around the following issues.

Q1: How effective is the GB-LSTM network compared to the

current mainstream deep learning methods in defect prediction?

Q2: How do the parameters of the network affect the GB-LSTM?

4.1 Evaluated data sets

Supervised learning models need to be developed on a large

number of labeled datasets. In contrast to the lack of labeled

software defects, we use the Promise1 dataset, which is currently

widely used in software defect prediction, and locate the

corresponding repository in java language on Github2. The specific

distribution of the data is shown in TABLE I, using the original

version for training the model and the new version for testing the

model, e.g., poi2.0-3.0 indicates that poi.2.0 is the training set of

the model and poi3.0 is used as the test set of the model.

For source code parsing, we follow the literature [6]. Three

different types of nodes are parsed by AST: (1) nodes for method

calls and instance creation, (2) declaration nodes, and (3) control

1 [Online]. Available: https://zenodo.org/communities/seacraft

flow nodes such as if statements in TABLE II. According to our

statistics on the length of all code sequences, the length of the

maximum word vector is 2025. For greater than the maximum

length of 2000, we remove the code tokens and discard the files

that are less than the minimum length of 3. The number of samples

with defects is increased by oversampling [15].

 TABLE I. Java project dataset

Project Versions Avg files Avg defect(%)

poi 2.0-3.0 918 18.1
lucene 2.0-2.4 170 58.7
xalan 2.5-2.6 221 53.7
camel 1.4-1.6 443 49.7
xerces 1.3-1.4 202 23.0
synapse 1.1-1.2 844 47.3
velocity 1.5-1.6 413 64.0

TABLE II. Select the type of node

MethodInvocation
SuperMethodInvocation
InterfaceDeclaration
VariableDeclarator
WhileStatement
ContinueStatement
SynchronizedStatement
TryResource
EnhancedForControl
SuperMemberReference
ClassDeclaration
FormalParameter
DoStatement
ReturnStatement
CatchClause
ReferenceType
SwitchStatement

ClassCreator
ConstructorDeclaration
IfStatement
AssertStatemen
ThrowStatement
BlockStatement
SwitchStatementCase
MemberReference
PackageDeclaration
MethodDeclaration
ForStatement
BreakStatement
TryStatement
CatchClauseParameter
ForControl
StatementExpression
BasicType

4.2 Baseline Methodology

We reproduce some of the mainstream deep learning algorithms

in software defect prediction as a baseline for the model to compare

the performance of GB-LSTM.

(1) DP-ALSTM: This model consists only of GB-LSTM and the

decision output layer to identify defects.

(2) DP-LSTM: Bi-LSTM networks learn semantic features from

codes to predict defects [8].

(3) DP-CNN: a software prediction method adapts standard

convolutional neural networks [7].

(4) DP-DBN: a DBN formed by multilayer Boltzmann machines

uses to predict defects in the software [6].

For the evaluation of the models, we use metrics that are currently

widely used in software forecasting [1]-[9], including precision,

recall, F-measure, AUC, and MCC, for correlating the predicted

results with the true categories

2 [Online]. Available: https://github.com/

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 178

Figure 4. Comprehensive comparison of methods

TABLE III. Precision, Recall, F-Measure of DP-DBN, DP-CNN, DP-LSTM, DP-ALST, AND EPR

 DP-DBN DP-CNN DP-LSTM DP-ALSTM GB-ODCN

Task P R F P R F P R F P R F P R F

poi2.0-3.0 0.732 0.623 0.673 0.78 0.619 0.69 0.749 0.648 0.695 0.763 0.758 0.761 0.763 0.904 0.827

lucene2.0-2.4 0.622 0.453 0.524 0.721 0.547 0.622 0.707 0.571 0.632 0.615 1.00 0.762 0.683 0.882 0.770

xalan2.5-2.6 0.538 0.55 0.544 0.652 0.584 0.616 0.567 0.599 0.582 0.609 0.742 0.669 0.581 0.827 0.683

camel1.4-1.6 0.22 0.559 0.316 0.261 0.585 0.361 0.328 0.606 0.425 0.503 0.489 0.496 0.483 0.516 0.499

xerces1.3-1.4 0.66 0.455 0.539 0.628 0.577 0.601 0.714 0.399 0.512 0.851 0.347 0.793 0.793 0.413 0.543

synapse1.1-1.2 0.379 0.581 0.472 0.346 0.512 0.413 0.402 0.51 0.471 0.46 0.733 0.565 0.496 0.651 0.563

velocity1.5-1.6 0.412 0.603 0.49 0.474 0.692 0.562 0.465 0.769 0.58 0.458 0.846 0.595 0.485 0.821 0.61

Average 0.509 0.546 0.508 0.551 0.588 0.552 0.561 0.586 0.557 0.608 0.701 0.62 0.612 0.752 0.657

Figure 5. F-measure under different parameters

4.3 Comparison with baseline method (Q1)

To verify the effectiveness of GB-LSTM, we compare the above

baseline methods, and the experimental results are shown in Figure

4 and TABLE III. It can be seen from the figure that our proposed

GB-LSTM is higher than the current baseline method in the

average level of F-measure, AUC, and MCC, indicating the

rationality of the GB-LSTM design. In addition, the specific

distribution of values is shown in the table. The table shows that

GB-LSTM achieves the highest level of mean value in the F-

measure. GB-LSTM is 14.9% higher than DP-DBN, 10.5% higher

than DP-CNN, 10% higher than DP-LSTM, and 3.7% higher than

DP-ALSTM.

Compared with other baseline models, we skillfully design two

different attention mechanisms to impose different weights from

location information and feature importance, which can facilitate

GB-LSTM to express more complex semantic features. It is worth

noting that GB-LSTM is based on DP-ALTM with the introduction

of ODCN module, and the experimental results show that ODCN

enhances the performance of the model.

(a) F-measure of different methods (b) AUC of different methods (c) MCC of different methods

 (a) Different Convolutional kernel sizes (c) Different FC nodes (b) Different convolutional feature maps

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 179

4.4 Influence of parameters on GB-LSTM (Q2)

In particular, we verify the influences of different types of

parameters on the model. For both parameters, the embedding layer

and the number of LSTM cells, we refer to previous work as a

priori knowledge [8] to set 30 and 40, respectively. We only

consider the effect of three parameters on the GB-LSTM, including

the convolutional kernel size, the number of filters in the

convolutional layer, and the number of hidden layer units. Limited

by time and resources, we only consider poi, velocity, camel, and

xalan as the test data, and the average value of the test data is used

as the basis for our selection of parameters. Because of the

differences in the amount of data in different repositories, the

optimal parameters are not consistent. According to the different

parameter types, the corresponding curve trend is shown in Figure

5. It can be seen from the figure that the average value of the F-

measure of the size of the convolution kernel, the number of feature

maps of the convolution, and the number of FC nodes are 3, 32,

and 64. However, these may not be the best parameters in terms of

the trend of the curve, but the increase in F-measure is not very

obvious, which means that the use of other parameters does not

make much sense.

5. Conclusions

In this paper, we propose a novel system called GB-LSTM, which

achieves state-of-the-art performance compared to other related

models on the Promise repository. Experimental results show that

GB-LSTM can effectively obtain long-term dependencies from the

code, followed by two different attention mechanisms to obtain

important information from different perspectives.

Regarding future work, our proposed model GB-LSTM will be

tested in different scripting languages such as C#, C++, and python.

In specially, semi-supervised learning will be an attractive work to

improve the robustness of the model.

Acknowledgments

The work was supported by ROIS NII Open Collaborative

Research 2021-(21FS02).

Reference

[1] N. E. Fenton and M. Neil, "A critique of software defect prediction

models," IEEE Trans. Softw. Eng., vol. 25, no. 5, pp. 675-689, Sept.-Oct.

1999.

[2] R. Rana, M. Staron, J. Hansson, M. Nilsson, and W. Meding, "A

framework for adoption of machine learning in industry for software defect

prediction," in Proc. Int. Conf. Softw. Eng. Applica. (ICSOFT-EA), 2014,

pp. 383-392.

[3] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented

design quality assessment,” IEEE Trans. Softw. Eng., vol. 28, no. 1, pp. 4-

17, Jan. 2002,

[4] T. J. McCabe, “A complexity measure,” IEEE Trans. Softw. Eng., vol.

4, pp. 308-320, 1976.

[5] C. Catal, B. Diri, “Investigating the effect of dataset size, metrics sets,

and feature selection techniques on software fault prediction problem,”

Inform. Sci., vol. 179, no. 8, pp. 1040-1058, 2009.

[6] S. Wang, T. Liu, J. Nam, and L. Tan, “Deep semantic feature learning

for software defect prediction,” IEEE Trans. Softw. Eng., vol. 46, no. 12,

pp. 1267–1293, Dec. 2020.

[7] J. Li, P. He, J. Zhu and M. R. Lyu, "Software Defect Prediction via

Convolutional Neural Network," in Proc. IEEE Int. Conf. Softw. Quality.,

Rel. Secur. (QRS), 2017, pp. 318-328.

[8] J. Deng, L. Lu, S. Qiu “Software defect prediction via LSTM,” in IET

Softw., vol. 14, no. 4, pp. 443-450, 2020.

[9] N. Nagappan and T. Ball, “Using software dependencies and churn

metrics to predict field failures: an empirical case study,” in Proc. Int. Sym.

Emp. Soft. Eng. Meas. (ESEM 2007), pp. 364–373, September 2007.

[10] A. E. Hassan, “Predicting faults using the complexity of code changes,”

in Proc. 31st Int. Conf. Softw. Eng., 2009, pp. 78–88.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neur.

Compu., vol. 9, no. 8, pp. 1735–1780, 1997.

[12] T. M. Luong, H. Pham, D. C. Manning, “Effective approaches to

attention-based neural machine translation,” arXiv:1508.04025, 2015.

[13] F. Chollet, "Xception: Deep Learning with Depthwise Separable

Convolutions," in Proc. IEEE Conf. Comp. Visi. Patt. Recog. (CVPR), pp.

1800-1807, 2017.

[14] H. Zhang, I. Goodfellow, D. Metaxas, et al, “Self-attention generative

adversarial networks,” in Proc. Int. Conf. Machin. Lear., PMLR, pp. 7354-

7363. 2019.

[15] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online defect prediction for

imbalanced data,” in Proc. IEEE Int. Conf. Softw. Eng., pp. 99–108, May

2015.

ソフトウェアエンジニアリングシンポジウム 2021
IPSJ/SIGSE Software Engineering Symposium (SES2021)

c⃝ 2021 Information Processing Society of Japan 180

