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Abstract: Software reliability plays an important role in the software lifecycle. Traditional defect prediction adopts static metrics 

as manual features to predict defects. Although static metrics can measure the complexity of software, they lack semantic and 

structural information about the code. This paper proposes a novel neural network: GB-ODCN, capable of capturing critical 

features from the source code to predict defects. GL-ODCN consists of a gated bi-directional long short-term memory network 

(Bi-LSTM) and a one-dimensional convolutional neural network (ODCN). Bi-LSTM constructs dependency of semantic features 

from the code. Besides, ODCN captures high-level semantic features for judging whether there are defects in the code. Moreover, 

attention mechanisms based on both networks enhance the importance of features by assigning weights. Experimental results show 

that GB-ODCN outperforms current state-of-the-art algorithms on several open-source repositories. 
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1. Introduction 

As software development continues to grow in the scale, it causes 

problems for testers and maintainers to find defects through manual 

debugging. The technique of software defect prediction facilitates 

the identification of defects in the early stages of software 

development. Therefore, academia [1] and industry [2] have 

focused their attention on the study of software defect prediction.  

Defect prediction plays a significant role in the field of software 

engineering. In recent years, most researchers aim to extract some 

static metrics of software, such as the number of lines of code 

(LOC) [3] and the cyclomatic complexity [4], to predict software 

defects. Traditional machine learning algorithms [5] are designed 

as classifiers, such as support vector machines (SVM), logistic 

regression, and random forests. Static metrics are fed into the 

classifier as manual features to identify defects. Although these 

static metrics can measure some statistical properties of the code, 

most of them are set by artificial rules resulting in a lack of 

syntactic, semantic, and structural information in the program. 

In recent years, several researchers have leveraged deep learning 

methods to extract semantic features from programs to identify 

software defects. These models, deep belief networks (DBNs) [6] 

and convolutional neural networks (CNNs) [7], are novel but suffer 

from some drawbacks: (1) code tokens, parsed from source code 

by abstract semantic trees, resulting in unmeasured distances 

between themselves, (2) DBN can only handle isolated code tokens, 

result in tokens that cannot generate correlation, and (3) CNN can 

only handle a limited range of code tokens, lacking wholeness. 
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Subsequent researchers have proposed recurrent neural networks 

[8] to construct semantic feature dependencies from source code, 

but it is not able to handle long sequences of code tokens efficiently. 

Therefore, the currently proposed approaches to extract semantic 

features from source code are not sufficient to effectively predict 

software defects.              

Inspired by these slights, we propose the GB-ODCN system, 

consisting of a Bi-LSTM network and an ODCN. LSTM is used by 

constructing dependencies of semantic features between code 

marks after AST parsing. ODCN constructs dependencies of local 

features. Then multiple attentions focus on assigning more weights 

from location information to features respectively to extract high-

level features, which are then fed to the classification layer for 

defect prediction. Our proposed GB-ODCN is experimentally 

verified to achieve state-of-the-art performance on the Promise 

dataset concerning the F-measure metric. The contribution of the 

proposed approach comes from the following aspects. 

(1) Propose a novel network called GB-ODCN to efficiently 

extract semantic and contextual features from source code. 

(2) Introduce firstly multiple attention mechanisms on GB-ODCN 

to obtain critical information from different perspectives 

(3) Verify that GB-ODCN outperforms the currently available 

mainstream deep learning algorithms on the PROMISE dataset. 

The remainder of this paper is organized as follows: Section 2 

presents the work on defect detection, Section 3 shows our 

proposed algorithm, Section 4 obtains experimental results and 

analysis, and Section 5 summarizes the conclusions of the 

proposed method.
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Figure 1. GB-ODCN model framework 

2. Related work 

2.1 Defect prediction based on static metrics 

In the early research on software defect prediction [1]-[5], most 

of them leverage static metrics as features to train classifiers based 

on machine learning. Some researchers have used specific rules to 

design static metrics with statistical properties [5] such as the 

number of lines of code, the number of methods. In the follow-up, 

some new metrics are proposed based on the previous ones. For 

example, Nagappan et al. [9] propose the Churn metric to explore 

potential defects. Hassan et al. [10] uses changes in entropy to 

predict defects. However, static metrics lack semantic and 

structural information in the program. In addition, there is no 

guarantee of redundancy in the features subsequently fed into the 

classifier. 

2.2 Defect prediction based on deep learning methods 

In recent years, deep learning has achieved remarkable success in 

the fields of computer vision, natural language processing, and 

speech recognition. Some researchers are becoming enthusiastic 

about exploring semantic features in programs through deep 

learning (DL) methods. For example, Wang et al [6]. leverages 

deep belief networks to learn semantic features from sign vectors 

extracted from AST trees to identify defects. Li et al [7]. combines 

semantic features learned by convolutional neural networks with 

manual features to identify defects. Deng et al [8]. cleverly exploits 

the learned long-term dependency of LSTM to predict software 

defects. 

3. The method of GB-ODCN 
Previous studies in DL on software defect prediction proposed a 

single model that did not perform satisfactorily on software defect 

prediction. Our proposed model combines the intrinsic 

characteristics of the code to propose a robustness model, GB-

ODCN, consisting of three modules, GB-LSTM, ODCN, and 

discriminative output, as shown in Figure 1.  

3.1 GB-LSTM module 

Most of the program utterances in the source code are repetitive, 

so it is possible to extract some predictable statistical properties 

from them by language models, such as word embedding and 

LSTM [11]. To meet the current scenario of software defect 

prediction. In particularly，we use a bidirectional LSTM network 

with gating units to learn semantic and contextual properties in the 

code. 

(1) Word embedding 

For subsequent model processing, the token vector parsed by AST 

needs to be transformed into an integer vector by word embedding 

for subsequent model processing, as described in the following 

formula: 

: d n nF M × →    (1) 
where M is the embedding matrix, d is the dimension of the 

dictionary, and n denotes the maximum length of the code token. 

(2) LSTM 

In this paper, we use LSTM to construct interdependencies 

between code signs. LSTM is a variant of a recurrent neural 

network (RNN). Unlike the RNN structure, it has a storage unit for 

information memory and a gating unit for filtering information. 

The forgetting gate fg  mainly selectively forgets the previous 

moment state cell; the input gate ig  determines the degree of 

acceptance of the current updated state; the output gate og

determines whether the current cell state is output or not. The 

gating cell is calculated by the following formula: 

1( [ ,, ] )f f t t fg w h x bσ −= +


  (2) 

1( [ ,, ] )i i t t ig w h x bσ −= +


  (3)

1( [ ,, ] )o o t t og w h x bσ −= +


  (4) 
where ( , ),( , ),( , )f f i i o ow b w b w b correspond to the weight and bias 

matrices of the forgetting gate fg , the input gate ig , the output gate

og . After the filtering of the information by the gating unit, the 
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memory unit, and the output states are tc  and th
→

, respectively. 

The equations are described as follows: 


1( [ , x ] b )t c t t cc Tanh w h −= +


  (5) 


1t i t f tc g c g c −= +    (6) 

( )t o th g Tanh c
→

=    (7) 

where ( , )c cw b represents the weight and bias of the updated state 
~

tc ， denotes an element-wise multiplication, σ (sigmoid) and 

Tanh denotes two nonlinear activation functions. However, the 

forward-structured LSTM can only represent the forward 

information of the code token sequence, but not the backward 

information. Defective codes are usually related to the preceding 

and following code tokens, so we use a Bi-LSTM in the current 

scenario. 

In addition, since LSTM is not ideal in dealing with long 

sequences, we introduce an attention mechanism [12] based on 

bidirectional LSTM, which can reduce the loss of information. 

Software defects often appear in some specific locations of the 

program, which is also the information we focus on. We assign 

different weights to the output states by the attention mechanism, 

which is beneficial to catch some key information. The formula for 

attention is described as follows: 

( ( ))T
hSoftmax W f hα =   (8) 

( )=f h h   (9)

1 1 2 2[ , ,..., ]n nS h h h hα α α α= =   (10) 

where 1 2 3=( , , ,..., )nα α α α α denotes the attention weight vector, the 

hW  is a random initialized attention matrix, and h denotes the 

fused state information. Function f can be viewed as one of the 

calculated ways in the attention mechanism, as shown in Figure 2. 

It can be interpreted as relating to all code tokens for the subsequent 

calculation of the contribution of the current code token in the 

corpus. The output states at each position are weighted to form a 

final state vector S. Thus, we view S as an intermediate 

representation of the sequence of code tokens. 

 
Figure 2. Attention model based on Bi-LSTM network 

3.2 ODCN 

The intermediate representation generated after GB-LSTM 

processing contains both contextual and semantic features. The 

intermediate representation consists of a two-dimensional matrix 

with temporal and feature dimensions, so we can consider it as an 

image to explore the dependencies between local features by 

ODCN. Compared to two-dimensional convolutional networks, 

ODCN is more suitable for processing each code symbol 

represented in the temporal dimension. In this paper, we use the 

depth-separable convolution [13] in ODCN. The advantage of 

depth-separable convolution is that it reduces the parameters of the 

operation to a certain extent and makes efficient use of the 

enhanced feature-dependent representation. During the processing 

of ODCN, the size of the intermediate representation is kept 

invariant. In particular, a gated linear unit (GLU) is used to 

compress the information of a single signature before using ODCN, 

which preserves the invariance of position and content to promote 

the processing efficiency of ODCN. 

 

Figure 3. Attention model based on ODCN 

In addition, we introduce self-attention [14] on the basis of ODCN. 

The importance of global features is established by applying 

weights to local features at arbitrary times as shown in Figure 3. In 

other words, it enhances the important node information and 

suppresses the less important ones. The formula of the attention 

mechanism is calculated as follows: 

Q( ) qx W x=   (11) 

K( ) kx W x=   (12) 

V( ) vx W x=                     (13) 

, ( ) ( )T
i j i jS Q x K x=                (14) 

,
,

,
1

exp( )

exp( )

i j
i j N

i j
i

S

S
β

=

=

∑
  (15) 

,
1

= ( V( ))
N

j j i i
i

o xν β
=
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where Q(x), K(x), and V(x) denote the semantic feature maps 

processed by the1 1× convolutional layers with initial weights qW , 

kW  and vW  , respectively. It could compress the number of 

channels, which are C/8, C/8, and C, respectively, assuming the 

original number of channels is C. The output at the end of the 

model is filtered for important information using maximum 

pooling. 

3.3 Trained GB-LSTM 

For effective prediction of defect information, we design decision 

output layers for extracting high-level semantic features, consisting 

of fully connected layer and output layers with Relu and Sigmoid 

function, respectively. Finally, for the training of the model, we use 

a cross-entropy loss function (L) to determine the error between the 

predicted and true values, as described by the following formula:                       

 
( )

( )

1 1
1

1 ( ) log
kT

m

T k
m

W XK M
k

m M W X
k m

m

eL y
K e

δ
= =

=

= ∑∑
∑

          (17) 

where X(k) denotes the kth sample out of the total K samples, 

1 2 3( , , ,..., )MW W W W W=  denotes the weight vector of all 

categories, and the total number of categories is M (defective and 

non-defective). ( )k
myδ  is an indicator function, denoting the 

label of the sample in class, e.g., when the real label and the 

predicted label are the same, it is 1, otherwise it is 0. 

4. Experiments 
In this section, we focus on verifying the performance of GB-

ODCN and develop the content around the following issues. 

Q1: How effective is the GB-LSTM network compared to the 

current mainstream deep learning methods in defect prediction? 

Q2: How do the parameters of the network affect the GB-LSTM? 

4.1 Evaluated data sets 

Supervised learning models need to be developed on a large 

number of labeled datasets. In contrast to the lack of labeled 

software defects, we use the Promise1 dataset, which is currently 

widely used in software defect prediction, and locate the 

corresponding repository in java language on Github2. The specific 

distribution of the data is shown in TABLE I, using the original 

version for training the model and the new version for testing the 

model, e.g., poi2.0-3.0 indicates that poi.2.0 is the training set of 

the model and poi3.0 is used as the test set of the model. 

For source code parsing, we follow the literature [6]. Three 

different types of nodes are parsed by AST: (1) nodes for method 

calls and instance creation, (2) declaration nodes, and (3) control 

 
1 [Online]. Available: https://zenodo.org/communities/seacraft 

flow nodes such as if statements in TABLE II. According to our 

statistics on the length of all code sequences, the length of the 

maximum word vector is 2025. For greater than the maximum 

length of 2000, we remove the code tokens and discard the files 

that are less than the minimum length of 3. The number of samples 

with defects is increased by oversampling [15]. 

            TABLE I. Java project dataset 

Project Versions Avg files Avg defect(%) 

poi 2.0-3.0 918 18.1 
lucene 2.0-2.4 170 58.7 
xalan 2.5-2.6 221 53.7 
camel 1.4-1.6 443 49.7 
xerces 1.3-1.4 202 23.0 
synapse 1.1-1.2 844 47.3 
velocity 1.5-1.6 413 64.0 

TABLE II. Select the type of node 

MethodInvocation             
SuperMethodInvocation 
InterfaceDeclaration           
VariableDeclarator            
WhileStatement              
ContinueStatement           
SynchronizedStatement      
TryResource             
EnhancedForControl         
SuperMemberReference      
ClassDeclaration            
FormalParameter            
DoStatement                
ReturnStatement                        
CatchClause                
ReferenceType             
SwitchStatement 

ClassCreator 
ConstructorDeclaration 
IfStatement 
AssertStatemen 
ThrowStatement 
BlockStatement 
SwitchStatementCase 
MemberReference 
PackageDeclaration 
MethodDeclaration 
ForStatement 
BreakStatement 
TryStatement 
CatchClauseParameter 
ForControl 
StatementExpression 
BasicType 

4.2 Baseline Methodology 

We reproduce some of the mainstream deep learning algorithms 

in software defect prediction as a baseline for the model to compare 

the performance of GB-LSTM. 

(1) DP-ALSTM: This model consists only of GB-LSTM and the 

decision output layer to identify defects. 

(2) DP-LSTM: Bi-LSTM networks learn semantic features from 

codes to predict defects [8]. 

(3) DP-CNN: a software prediction method adapts standard 

convolutional neural networks [7]. 

(4) DP-DBN: a DBN formed by multilayer Boltzmann machines 

uses to predict defects in the software [6]. 

For the evaluation of the models, we use metrics that are currently 

widely used in software forecasting [1]-[9], including precision, 

recall, F-measure, AUC, and MCC, for correlating the predicted 

results with the true categories

2 [Online]. Available: https://github.com/ 
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Figure 4. Comprehensive comparison of methods  

TABLE III. Precision, Recall, F-Measure of DP-DBN, DP-CNN, DP-LSTM, DP-ALST, AND EPR 

 DP-DBN DP-CNN DP-LSTM DP-ALSTM GB-ODCN 

Task P R F P R F P R F P R F P R F 

poi2.0-3.0 0.732 0.623 0.673 0.78 0.619 0.69 0.749 0.648 0.695 0.763 0.758 0.761 0.763 0.904 0.827 

lucene2.0-2.4 0.622 0.453 0.524 0.721 0.547 0.622 0.707 0.571 0.632 0.615 1.00 0.762 0.683 0.882 0.770 

xalan2.5-2.6 0.538 0.55 0.544 0.652 0.584 0.616 0.567 0.599 0.582 0.609 0.742 0.669 0.581 0.827 0.683 

camel1.4-1.6 0.22 0.559 0.316 0.261 0.585 0.361 0.328 0.606 0.425 0.503 0.489 0.496 0.483 0.516 0.499 

xerces1.3-1.4 0.66 0.455 0.539 0.628 0.577 0.601 0.714 0.399 0.512 0.851 0.347 0.793 0.793 0.413 0.543 

synapse1.1-1.2 0.379 0.581 0.472 0.346 0.512 0.413 0.402 0.51 0.471 0.46 0.733 0.565 0.496 0.651 0.563 

velocity1.5-1.6 0.412 0.603 0.49 0.474 0.692 0.562 0.465 0.769 0.58 0.458 0.846 0.595 0.485 0.821 0.61 

Average 0.509 0.546 0.508 0.551 0.588 0.552 0.561 0.586 0.557 0.608 0.701 0.62 0.612 0.752 0.657 

 

Figure 5. F-measure under different parameters 

4.3 Comparison with baseline method (Q1) 

To verify the effectiveness of GB-LSTM, we compare the above 

baseline methods, and the experimental results are shown in Figure 

4 and TABLE III. It can be seen from the figure that our proposed 

GB-LSTM is higher than the current baseline method in the 

average level of F-measure, AUC, and MCC, indicating the 

rationality of the GB-LSTM design. In addition, the specific 

distribution of values is shown in the table. The table shows that 

GB-LSTM achieves the highest level of mean value in the F-

measure. GB-LSTM is 14.9% higher than DP-DBN, 10.5% higher 

than DP-CNN, 10% higher than DP-LSTM, and 3.7% higher than 

DP-ALSTM. 

Compared with other baseline models, we skillfully design two 

different attention mechanisms to impose different weights from 

location information and feature importance, which can facilitate 

GB-LSTM to express more complex semantic features. It is worth 

noting that GB-LSTM is based on DP-ALTM with the introduction 

of ODCN module, and the experimental results show that ODCN 

enhances the performance of the model. 

(a) F-measure of different methods (b) AUC of different methods (c) MCC of different methods

   (a) Different Convolutional kernel sizes     (c) Different FC nodes        (b) Different convolutional feature maps
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4.4 Influence of parameters on GB-LSTM (Q2) 

In particular, we verify the influences of different types of 

parameters on the model. For both parameters, the embedding layer 

and the number of LSTM cells, we refer to previous work as a 

priori knowledge [8] to set 30 and 40, respectively. We only 

consider the effect of three parameters on the GB-LSTM, including 

the convolutional kernel size, the number of filters in the 

convolutional layer, and the number of hidden layer units. Limited 

by time and resources, we only consider poi, velocity, camel, and 

xalan as the test data, and the average value of the test data is used 

as the basis for our selection of parameters. Because of the 

differences in the amount of data in different repositories, the 

optimal parameters are not consistent. According to the different 

parameter types, the corresponding curve trend is shown in Figure 

5. It can be seen from the figure that the average value of the F-

measure of the size of the convolution kernel, the number of feature 

maps of the convolution, and the number of FC nodes are 3, 32, 

and 64. However, these may not be the best parameters in terms of 

the trend of the curve, but the increase in F-measure is not very 

obvious, which means that the use of other parameters does not 

make much sense. 

5. Conclusions 

In this paper, we propose a novel system called GB-LSTM, which 

achieves state-of-the-art performance compared to other related 

models on the Promise repository. Experimental results show that 

GB-LSTM can effectively obtain long-term dependencies from the 

code, followed by two different attention mechanisms to obtain 

important information from different perspectives. 

Regarding future work, our proposed model GB-LSTM will be 

tested in different scripting languages such as C#, C++, and python. 

In specially, semi-supervised learning will be an attractive work to 

improve the robustness of the model.  
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