
IPSJ SIG Technical Report

A Subquadratic-Time Distributed Algorithm
for Exact Maximum Matching

Naoki Kitamura1,a) Taisuke Izumi2,b)

Abstract: For a graph G = (V,E), finding a set of disjoint edges that do not share any
vertices is called a matching problem, and finding the maximum matching is a fundamental
problem in the theory of distributed graph algorithms. Although local algorithms for the
approximate maximum matching problem have been widely studied, exact algorithms has
not been much studied. In fact, no exact maximum matching algorithm that is faster than
the trivial upper bound of O(n2) rounds is known for general instances. In this paper, we

propose a randomized O(s
3/2
max + logn)-round algorithm in the CONGEST model, where

smax is the size of maximum matching. This is the first exact maximum matching algorithm
in o(n2) rounds for general instances in the CONGEST model. The key technical ingredient
of our result is a distributed algorithms of finding an augmenting path in O(smax) rounds,
which is based on a novel technique of constructing a sparse certificate of augmenting paths,
which is a subgraph of the input graph preserving at least one augmenting path. To establish
a highly parallel construction of sparse certificates, we also propose a new characterization
of sparse certificates, which might also be of independent interest.

1. Introduction

1.1 Background and Our Result

A fundamental graph problem is themaximum (un-

weighted) matching problem of finding the maximum

cardinality subset of edges not sharing endpoints. In

this study, we address the problem of computing exact

maximum matchings in a distributed setting, namely,

the CONGEST model. The CONGEST model is a

standard computational model for distributed graph

algorithms, where the network is modeled as an undi-

rected graph G = (V,E) of n nodes and m edges.

Each node executes the deployed algorithm following

round-based synchrony, and each link can transfer a

small message of O(logn) bits per round.

Many studies in the context of approximation al-

gorithms provide insight into the complexity of the

maximum matching problem. Table 1 lists the known

algorithms, where smax is defined the cardinality of

1 Nagoya Institute of Technology, Gokiso-cho, Showa-
ku, Nagoya, Aichi, Japan

2 Osaka University, Yamada-Oka, Suita, Osaka,
Japan.

a) ktmr522@yahoo.co.jp.
b) t-izumi@ist.osaka-u.ac.jp

The full version of this paper is available in
Arxiv [13].

the maximum matching. While O(1) approximation

admits local solutions (i.e., o(D)-round algorithms),

the complexity of the exact maximum matching prob-

lem makes it expensive. Precisely, following the lower

bound of Ben-Basat et al. [5], there exists an instance

of diameter Ω(n) and maximum matching size Ω(n)

that exhibits an Ω(n)-round lower bound. This lower

bound was originally proved in the LOCAL model,

but it trivially holds in the CONGEST model as well.

Therefore, the exact maximum matching problem is

placed in the class of global problems. Parametrizing

the complexity by both n and D, it is possible to ob-

tain the non-trivial lower bound of Ω(D+
√
n) rounds

for the exact computation of the maximum match-

ing*1. However, the corresponding upper bound is yet

to be found. For the exact maximum matching prob-

lem in general graphs, no known algorithm achieves

non-trivial O(n2) rounds. In addition, Bacrach et

al. [3] pointed out that the bound of Ω(
√
n+D) rounds

is a strong barrier because the standard framework

of two-party communication complexity is unlikely to

deduce any improved lower bound. These observa-

tions demonstrate the difficulty of revealing the in-

*1 This lower bound was not explicitly shown in pre-
vious literatures, but it is derived using the lower-
bound graph almost same as that used in the lower-
bound proof for the fractional maximum matching
by Ahmadi et al. [2]

ⓒ 2021 Information Processing Society of Japan 1

Vol.2021-AL-184 No.1
2021/8/25



IPSJ SIG Technical Report

herent complexity of the exact maximum matching in

the CONGEST model.

The objective of this paper is to shed light on the

complexity gap of the exact maximum matching prob-

lem in the CONGEST model. We present the main

theorem of this paper in the CONGEST model below.

Theorem 1. For any input graph G, there ex-

ists a randomized CONGEST algorithm to com-

pute the maximum matching that terminates within

O
(
s
3/2
max + logn

)
rounds with probability 1−1/nΘ(1).

To the best of our knowledge, the proposed algo-

rithm is the first to compute the exact maximum

matching algorithm in o(n2) rounds for general input

instances in the CONGEST model.

1.2 Technical Outline

Our algorithm follows the standard technique of

finding augmenting paths. If an augmenting path is

found, the current matching is improved by flipping

the labels of matching edges and non-matching edges

along the path. It is well known that the current

matching is the maximum if and only if there exists

no augmenting path in G with respect to the current

matching. Hence, the maximum matching problem

is reduced to the task of finding augmenting paths

smax times. In the CONGEST model, this approach

faces difficulty in the situation where any augment-

ing path with respect to the current matching is long

(i.e., consisting of Θ(n) edges). It should be empha-

sized that BFS-like approaches do not work for finding

augmenting paths in general graphs because the short-

est alternating walk is not necessarily simple because

of the existence of odd cycles. Thus, it is not trivial

to even compute an augmenting path with a running

time linearly dependent on its length. The key ingre-

dient of our approach is two new algorithms for find-

ing augmenting paths. They run in O(ℓ2) rounds and

O(smax) rounds respectively, where ℓ is the length of

the shortest augmenting path for the current match-

ing. Roughly, our algorithm switches between these

two algorithms according to the current matching size.

The running-time bound is obtained using the follow-

ing seminal observation by Hopcroft and Karp:

Proposition 1 (Hopcroft and Karp [11]). Given a

matching M ⊆ E of a graph G, there always exists

an augmenting path of length less than ⌊2smax/k⌋ if
the current matching size is at most the maximum

matching size smax minus k.

Our augmenting path algorithms utilize Ahmadi’s

verification algorithm of maximum matching [1], in

which each node returns the length of the shortest

odd/even alternating paths from a given source (un-

matched) node. The construction of the O(ℓ2)-round

algorithm is relatively straightforward. It is obtained

by iteratively finding the predecessor of each node in

an augmenting path by sequential O(ℓ) invocations of

the verification algorithm. The technical highlight of

the proposed algorithm is the design of the O(smax)-

round algorithm. The O(smax)-round algorithm con-

structs a sparse certificate, which is a sparse (i.e.,

containing O(smax) edges) subgraph of G preserv-

ing the reachability between two nodes by alternat-

ing paths. That is, a sparse certificate contains an

augmenting path if and only if the original graph ad-

mits an augmenting path. By the sparseness property,

a node can collect all the information on the sparse

certificate within O(smax) rounds, trivially allowing

the centralized solution of finding augmenting paths.

To establish a highly parallel construction of sparse

certificates, we also propose a new characterization of

sparse certificates, which might also be of independent

interest.

1.3 Related Works

In the LOCAL model, it is known that no o(1/ϵ)

algorithm exists for the (1 − ϵ)-approximate max-

imum matching problem [5]. Together with the

Ω(
√
logn/ log logn)-round lower bound reported by

Kuhn et al. [15], the lower bound in the LOCAL

model is obtained as Ω(1/ϵ +
√

logn/ log logn) =

((logn)/ϵ)Ω(1). Ghaffari et al. [10] showed a

((logn)/ϵ)O(1) upper bound for the (1 − ϵ) approx-

imate maximum matching problem. By combining

these results, we infer that the time complexity of

solving the (1 − ϵ) approximate maximum matching

problem is (log n/ϵ)Θ(1) in the LOCAL model. Ben-

Basat et al. also proved the lower bound as Ω(|M |)
in the LOCAL model [5].

Many literatures have addressed the maximum

matching problem in the CONGEST model (see Ta-

ble 1). Loker et al. [16] presented the first approx-

imation algorithm in the CONGEST model, which

is a randomized algorithm to compute (1 − ϵ)-

approximate maximum matching in O(logn) rounds

for any constant ϵ > 0. The running time of

the algorithm depends exponentially on 1/ϵ. Bar

Yehuda et al. [4] improved the algorithm and proposed

an O(log∆/ log log∆)-round algorithm of computing

(1− ϵ)-approximate matching for any constant ϵ > 0,

where ∆ is maximum degree of the graph. Fabin

et al. [14] has shown of Ω(log∆/ log log∆) rounds if

log∆ ≤
√
logn holds. Ben-Basat et al. [5] proposed

a deterministic Õ(s2max)-round CONGEST algorithm.

They also proposed a (1/2−ϵ) approximate algorithm

in Õ(smax + (smax/ϵ)
2) rounds. Ahmadi et al. [2]

proposed a deterministic (2/3− ϵ) approximate max-

imum matching algorithm in general graphs, which

runs in O(log∆/ϵ2 + (log2 ∆ + log∗ n)/ϵ) rounds.

They also presented an Õ(M)-round algorithm and

O((log2 ∆+ log∗ n)/ϵ)-round (1− ϵ) approximate al-

ⓒ 2021 Information Processing Society of Japan 2

Vol.2021-AL-184 No.1
2021/8/25



IPSJ SIG Technical Report

gorithm in bipartite graphs. However, no o(n2)-round

algorithm for solving the exact maximum matching

problem in the CONGEST model has been proposed

so far.

In addition to distributed computing, many studies

have considered centralized exact maximum matching

algorithms. Edmonds presented the first centralized

polynomial-time algorithm for the maximum match-

ing problem [7,8] by following the seminal blossom ar-

gument. Hopcroft and Karp proposed a phase-based

algorithm of finding multiple augmenting paths [11].

Their algorithm finds a maximal set of pairwise dis-

joint shortest augmenting paths in each phase. They

showed that O(
√
n) phases suffice to compute the

maximum matching and proposed an algorithm of

implementing one phase in O(m) time for bipartite

graphs. Several studies have reported phase-based

algorithms for general graphs that attain O(
√
nm)

time [6, 9, 17].

2. Preliminaries

2.1 CONGEST Model

The vertex set and edge set of a given graph G

are, respectively, denoted by V (G) and E(G). A dis-

tributed system is represented by a simple undirected

connected graph G = (V (G), E(G)). Let n and m

be the numbers of nodes and edges, respectively. The

diameter of a given subgraph H ⊆ G is denoted by

D(H). Nodes and edges are uniquely identified by in-

teger values, which are represented by O(logn) bits.

The set of edges incident to v ∈ V (G) is denoted by

IG(v). In the CONGEST model, the computation fol-

lows round-based synchrony. In one round, each node

v sends and receives O(logn)-bit messages through

the edges in IG(v) and executes local computation

following its internal state, local random bits, and re-

ceived messages. It is guaranteed that every message

sent in a round is delivered to the destination within

the same round. Each node has no prior knowledge of

the network topology, except for its neighborhood IDs.

We use the labeling of nodes and/or edges for spec-

ifying inputs and outputs of algorithms. Each node

has information on the label(s) assigned to itself and

those assigned to its incident edges. A walk W of G is

an alternating sequence W = v0, e1, v1, e2, . . . , eℓ, vℓ
of vertices and edges such that ei = (vi−1, vi) holds

for any 1 ≤ i ≤ ℓ. A walk W is often treated as a

subgraph of G. A walk W = v0, e1, v1, e2, . . . , eℓ, vℓ
is called a (simple) path if every vertex in W is dis-

tinct. For any walk W = v0, e1, v1, . . . , vℓ of G, we

define W ◦ u as the walk obtained by adding u, satis-

fying (vℓ, u) ∈ E(G), to the tail of W . For any edge

e = (vℓ, u), we also define W ◦ e = W ◦ u. Given

a walk W containing a node u, we denote by W p
u

and W s
u the prefix of W up to u and the suffix of

W from u, respectively. We also denote the inver-

sion of the walk W = v0, e1, v1, . . . , vℓ (i.e., the walk

vℓ, eℓ, vℓ−1, eℓ−1, . . . , v0) by W . The length of a walk

P is represented by |P |.

2.2 Matching and Augmenting Path

For a graph G = (V,E), a matching M ⊆ E

is a set of edges that do not share endpoints. A

node v is called a matched node if M intersects

IG(v), or an unmatched node otherwise. A path

P = v0, e0, v1, e1, . . . , vℓ is called an alternating path

if IM (ei)+IM (ei+1) = 1 holds for any 1 ≤ i ≤ ℓ−1*2.
If the length |P | of P satisfies |P | mod 2 = θ, P is

called θ-alternating. The value θ is called the parity

of P . By definition, any 0-alternating (1-alternating)

path from an unmatched node f finishes with a non-

matching (matching) edge. Oue to a technical issue,

we regard the path of length zero as a 0-alternating

path. For any θ ∈ {0, 1} and u, v ∈ V (G), we de-

fine rθ(u, v) as the length of the shortest θ-alternating

path between u and v. An augmenting path is an al-

ternating path connecting two unmatched nodes. We

say that (G,M) has an augmenting path if there ex-

ists an augmenting path in G with respect to M . The

following proposition is a well-known fact in the max-

imum matching problem.

Proposition 2. Given a matching M ⊆ E(G) of

graph G, M is the maximum matching if and only if

(G,M) has no augmenting path.

2.3 Approximate Maximum Matching

Our algorithm uses an O(1)-approximate upper

bound for the maximum matching size of the in-

put graph. To obtain the upper bound, we run the

O(logn)-round randomized maximal matching algo-

rithm [12] as a preprocessing step. Let M∗ be the

computed maximal matching. Since any maximal

matching is a (1/2)-approximate maximum matching,

one can obtain the bound 2|M∗| ≥ smax. The size

smax is at least half of the diameter D(G), and thus

we can spend O(D(G)) = O(smax) rounds for count-

ing and propagating the number of edges inM∗. That

is, it is possible to provide each node with the value

of 2|M∗| by the preprocessing of O(D(G) + log n) =

O(smax + log n) rounds. In the following argument,

we denote ŝ = 2s∗, the value of which is available to

each node.

2.4 Maximum-Matching Verification Algo-

rithm

Our algorithm uses the algorithm by Ahmadi

et al.’s [1] for maximum-matching verification as a

building block. Although the original algorithm is

*2 The indicator function IX(x) returns one if x ∈ X
and zero otherwise.

ⓒ 2021 Information Processing Society of Japan 3

Vol.2021-AL-184 No.1
2021/8/25



IPSJ SIG Technical Report

Table 1 Lower and upper bounds of the maximum matching in the CON-
GEST model

Algorithm Time Complexity Approximation Level Remark

Ben-Basat et al. [5] Ω(|smax|) exact LOCAL

Fabin et al. [14] Ω
(

log∆
log log∆

)
constant ϵ log∆ ≤

√
logn

Ben-Basat et al. [5] Ω
(
1
ϵ

)
1− ϵ LOCAL

Kuhn et al. [15] Ω
(√

logn
log logn

)
1− ϵ LOCAL

Ben-Basat et al. [5] Õ(s2max) exact

Ahmadi et al. [2] Õ (smax) exact bipartite

Bar-Yehuda et al. [4] O
(

log∆
log log∆

)
constant ϵ

Lotker et al. [16] O

(
2

2
ϵ2 log smax logn

ϵ4

)
1− ϵ

Ahmadi et al. [2] O
(

log2 ∆+log∗ n
ϵ

)
1− ϵ bipartite

Ben-Basat et al. [5] Õ
(
smax +

(
smax

ϵ

)2) 1
2 − ϵ

Ahmadi et al. [2] O
(

log∆
ϵ2 + log2 ∆+log∗ n

ϵ

)
2
3 − ϵ

Our result Õ
(
s3/2
max

)
exact

designed for the verification of maximum matching,

it provides each node with information on the length

of alternating paths to the closest unmatched nodes.

Precisely, the following lemma holds.

Theorem 2 (Ahmadi et al. [1]). Assume that a

graph G = (V,E) and a matching M ⊆ E are given,

and let W be the set of all unmatched nodes. There

exist two O(ℓ)-round randomized CONGEST algo-

rithms MV(M, ℓ, f) and PART(M, ℓ) that output the

following information at every node v ∈ V (G) with

a probability of at least 1 − 1/nc for an arbitrarily

large constant c > 1.

( 1 ) Given M , a nonnegative integer ℓ, and a

node f ∈ W , MV(M, ℓ, f) outputs the pair

(θ, rθ(f, v)) at each node v if rθ(f, v) ≤ ℓ holds

(if the condition is satisfied for both θ = 0 and

θ = 1, v outputs two pairs). The algorithm

MV(M, ℓ, f) is initiated only by the node f (with

the value ℓ), and other nodes do not require in-

formation on the ID of f and value ℓ at the ini-

tial stage.

( 2 ) The algorithm PART(M, ℓ) outputs a partition

V 1, V 2, . . . , V N of V (G) (as the label i for each

node in V i) such that (a) the subgraph Gi in-

duced by V i contains exactly two unmatched

nodes f i and gi as well as an augmenting path

between f i
1 and gi2 of length at most ℓ and (b)

the diameter of Gi is O(ℓ).

While the original paper [1] presents a single algo-

rithm returning the outputs of both MV and PART,

we intentionally separate it into two algorithms with

different roles for clarity. Note that our matching-

construction algorithm uses random bits only in the

runs of these algorithms. As our algorithm activates

them in O(poly(n)) time as subroutines, we can guar-

antee that our algorithm has a high probability of suc-

cess by taking a sufficiently large c. Hence, we do not

pay much attention to the failure probability of our

algorithm. Any stochastic statement in the following

argument also holds with probability 1 − nc for an

arbitrary constant c > 1.

3. Computing the Maximum

Matching in CONGEST

As explained in the introduction, the maximum

matching problem is reducible to the problem of find-

ing an augmenting path. We first present two key

results below.

Lemma 1. Let M be a matching of G. Provided that

(G,M) has exactly two unmatched nodes f, g ∈ VG

and contains an augmenting path of length at most

ℓ between f and g, there exists an O(ℓ2)-round ran-

domized algorithm that outputs an augmenting path

connecting f and g.

Lemma 2. Let M be a matching of G. Provided that

(G,M) has exactly two unmatched nodes f, g ∈ VG

and contains an augmenting path between f and

g, there exists an O(n)-round randomized algorithm

that outputs an augmenting path that includes f .

The outputs of both algorithms are the labels to

the edges in the computed augmented path. To prove

the lemmas, one can utilize the output of the al-

gorithm PART. We first run the verification algo-

rithm PART(M, ℓ) (for Lemma 1) or PART(M, ŝ) (for

Lemma 2) as a preprocessing step and then execute

the algorithms of Lemma 1 or 2 for each Gi output

by PART independently. Note that each Gi contains

only matched nodes and two unmatched nodes; thus,

|V (Gi)| ≤ 2|M | + 2 holds for any Gi. Then, the fol-

lowing corollary is deduced:

ⓒ 2021 Information Processing Society of Japan 4

Vol.2021-AL-184 No.1
2021/8/25



IPSJ SIG Technical Report

Corollary 1. There exist two randomized algo-

rithms A(M, ℓ) and B(M) satisfying the following

conditions, respectively:

• For any graph G = (V,E) and matching M ⊆ E,

A(M, ℓ) finds a nonempty set of vertex-disjoint

augmenting paths within O(ℓ2) rounds if (G,M)

has an augmenting path of length at most ℓ.

• For any graph G = (V,E) and matching M ⊆ E,

B(M) finds a nonempty set of vertex-disjoint

augmenting paths of (G,M) within O(|M |)
rounds if (G,M) has an augmenting path.

We present an O
(
s
3/2
max + logn

)
-round algorithm

for computing the maximum matching using the al-

gorithms A(M, ℓ) and B(M). The pseudocode of the

whole algorithm is presented in Algorithm 1. It ba-

sically follows the standard idea of centralized maxi-

mum matching algorithms, i.e., finding an augment-

ing path and improving the current matching itera-

tively. The first ŝ −
√
ŝ iterations use A(M, ℓ) (lines

1–4), and the remaining
√
ŝ iterations use B(M). In

the i-th iteration, the algorithm A(M, ℓ) runs with

ℓ = ⌈2ŝ/(2ŝ − i)⌉. This setting comes from Proposi-

tion 1. The improvement of the current matching by

a given augmenting path is simply a local operation

and is realized by flipping the labels of matching edges

and non-matching edges on the path.

Lemma 3. Algorithm 1 constructs a maximum

matching with high probability in O
(
s
3/2
max + logn

)
rounds.

The following sections are devoted to proving Lem-

mas 1 and 2. Since the presented algorithms are in-

tended to run in each Gi returned by the preprocess-

ing run of PART(M, ·), without loss of generality, we
assume that G has exactly two unmatched nodes f

and g with an augmenting path between them. In ad-

dition, it is assumed that one of f and g is elected as a

primary unmatched node (referred to as f hereafter).

This election process is easily implemented in O(ℓ)

rounds because the distance between f and g is at

most ℓ. When we argue the existence of augmenting or

alternating paths in a subgraph H = (V (H), E(H))

ofG, the matchingM∩E(H) of graphH is considered

without explicit notice. Given a subgraph H ⊆ G, we

denote the length of the shortest odd (even) alternat-

ing path from f to v in H by r1H(f, v) (r0H(f, v)). If

no odd or even alternating path exists from f to v in

H, then we define r1H(f, v) =∞ or r0H(f, v) =∞. As

sentinels, we also define r0H(f, f) as ∞ and r1H(f, f)

as 0.

4. Construction of Augmenting

Path in O(ℓ2) Rounds

Let P = v0, v1, . . . , vℓ be the shortest augment-

ing path from f to g (i.e., f = v0 and g = vℓ) and

Pi = P s
vi

for short. The key idea of the algorithm is to

find the predecessor of each node vi along P sequen-

tially. Note that it does not suffice to choose a neigh-

bor v of vi with rθG(f, v) = i−1 and IM (vi, v) = θ for

θ = (i−1) mod 2 as the predecessor. This strategy is

problematic in the scenario in which there exists two

neighbors v and u such that rθG(f, v) = rθG(f, u) =

i − 1 and IM (vi, u) = IM (vi, v) = θ for θ = (i − 1)

mod 2, where u is the correct successor. While v is

guaranteed to have the alternating path Q from f to v

of length i−1, it can intersect Pi. Then, the concate-

nation Q ◦ (vi, v) ◦ Pi is not simple. That is, it is not

an augmenting path. To avoid this scenario, the algo-

rithm finds the predecessor of vi in the graph G−Pi,

where G−Pi is the induced graph by V (G)\V (Pi). If

some neighbor v of vi satisfies r
θ
G−Pi

(f, v) = i−1 and

IM (vi, v) = 1−θ, the concatenated walkQ◦(vi, v)◦Pi

is guaranteed to be simple.

Algorithm 2 details the algorithm for constructing

the augmenting path in O(ℓ2) rounds. The algorithm

consists of ℓ steps. In the i-th step, it finds the pre-

decessor of vℓ−i. Assume that the algorithm has al-

ready found Pℓ−i+1 at the beginning of the i-th step.

Any node in V (Pℓ−i+1)\{vℓ−i+1} quits the algorithm
(with the information of the predecessor in Pi), and

thus, the nodes still running the algorithm are given

by V (G−Pℓ−i+1). If i is even, the edge (vℓ−i, vℓ−i+1)

is the matching edge, and thus, the algorithm deter-

mines the neighbor of vℓ−i+1 connected by the edge

with M as the predecessor. Otherwise, the nodes still

participating in the algorithm run MV(M, ℓ− i+1, f)

(that is, they run in the graph G−Pℓ−i+1) The algo-

rithm decides an arbitrary neighbor v of vi satisfying

r0G−Pℓ−i+1
(f, v) = ℓ − i − 1 and IM (v, vi) = 0 as the

predecessor of vℓ−i.

Lemma 4. Algorithm 2 constructs an augmenting

path between f and g with high probability in O(ℓ2)

rounds.

Theorem 1 trivially follows from Lemma 4.

5. Construction of Augmenting

Path in O(n) Rounds

We first introduce several auxiliary notions and def-

initions. Given a subgraph H ⊆ G and θ ∈ {0, 1}, a
node v ∈ VH is called θ-reachable in H if rθH(f, v)

is finite. In addition, v is called bireachable in H if

it is both 1-reachable and 0-reachable in H. A node

that is neither 1-reachable nor 0-reachable in H is

called unreachable in H. A node that is θ-reachable

for some θ ∈ {0, 1} in H but not bireachable in H

is called strictly θ-reachable in H. Given two span-

ning subgraphs H1 and H2 of G, we say that a node

v ∈ V (H1) preserves the reachability of H2 in H1 if

for any θ ∈ {0, 1}, the θ-reachability of v in H2 im-

plies that in H1. A graph H1 is said to preserve the

reachability of H2 if any node v ∈ V (H1) preserves

ⓒ 2021 Information Processing Society of Japan 5

Vol.2021-AL-184 No.1
2021/8/25



IPSJ SIG Technical Report

Algorithm 1 Constructing a maximum matching in O(n3/2) rounds.

1: for i = 1; i ≤ ŝ−
√
ŝ; i++ do

2: run the algorithm A(M, ℓ) with ℓ = ⌈2ŝ/(ŝ− i)⌉ for O(ℓ) rounds.

3: if A(M, ℓ) finds a nonempty set of vertex-disjoint augmenting paths within O(ℓ) rounds, then

4: improve the current matching using the set of vertex-disjoint augmenting paths.

5: for i = 1; i ≤
√
ŝ; i++ do

6: run the algorithm B(M) for O(ŝ) rounds.

7: if B(M) finds a nonempty set of vertex-disjoint augmenting paths within O(ŝ) rounds, then

8: improve the current matching M using the set of vertex-disjoint augmenting paths.

Algorithm 2 Construction of the augmenting path CAP ((G,M), f, g, ℓ) for node vi.

Require: The path P0 is an augmenting path with length ℓ from f to g.

1: P0, P1, . . . , Pℓ: initially ∅.
2: target = g

3: for i = 1; i ≤ ℓ; i++ do

4: if h is even then

5: target chooses the node vℓ−i that satisfies IM ((target, vℓ−i)) = 1.

6: Pℓ−i ← Pℓ−i+1 ∪ {(target, vℓ−i)}, target← vℓ−i.

7: else

8: run the algorithm MV(M, ℓ− i, f) with the subgraph Hℓ−i+1 induced by V (G−Pℓ−i+1) as the input.

9: for any v ∈ V (G− Pℓ−i+1), the node v sends r0Hℓ−i+1
(f, v) to its neighborhood.

10: target chooses the node vℓ−i that satisfies IM ((target, vℓ−i)) = 0 and r0Hℓ−i+1
(f, vℓ−i) = ℓ− i.

11: Pℓ−i ← Pℓ−i+1 ∪ {(target, vℓ−i)}, target← vℓ−i.

the reachability of H2 in H1, which is denoted by

H1 ≻ H2. We define rH(f, v) = minθ∈{0,1} r
θ
H(f, v)

and γH(v) = argminθ∈{0,1}r
θ
H(f, v). Note that

r0H(f, v) = r1H(f, v) does not hold, because r0H(f, v)

is even and r1H(f, v) is odd. When r0H(f, v) =∞ and

r1H(f, v) = ∞ hold, γH(v) is defined as zero. We as-

sume that any node v unreachable from f in G does

not join our algorithm. Therefore, without loss of

generality, we assume that none of the nodes v ∈ VG

are unreachable in G without loss of generality. In

addition, we assume that any node v ∈ VG has in-

formation on the values of r0G(f, v) and r1G(f, v) at

the beginning of the algorithm. This assumption is

realized by activating MV(M,n, f) as a preprocessing

step.

The key idea of our proof is to construct a sparse

certificate H, which is a spanning subgraph H ⊆ G

of O(n) edges satisfying H ≻ G. If such a graph

is obtained, the trivial centralized approach (i.e., the

approach in which f collects the whole topological

information of H) yields an O(n)-round algorithm

for constructing the augmenting path. For construct-

ing sparse certificates, we first introduce a novel tree

structure associated with G, M , and f :

Definition 1 (Alternating base tree). An alternat-

ing base tree for G, M , and f is the rooted spanning

tree T of G satisfying the following conditions:

• f is the root of T .

• For any v ∈ V (G), the edge from v to its par-

ent in T is the last edge of the shortest alter-

nating path from f to v in G. Formally, let-

ting parT (v) be the parent of v ∈ V (G) \ {f}
in T , r

γG(v)
G (f, v) = r

1−γG(v)
G (f, parT (v)) + 1

and IM ((v, parTI
(v))) = 1 − γG(v) hold for any

v ∈ V (G) \ {f}.
It is not difficult to check that such a spanning tree

always exists. Fixing T , the subscript T of the no-

tation parT (v) is omitted in the following argument.

We define ep(v) as the edge from v to its parent and

Tv as the subtree of T rooted by v. Any non-tree edge

e = (u,w) ∈ E(G)\E(T ) and the unique path from u

to w in T form a simple cycle in G, which is denoted

by cyc(e).

The sparse certificate is obtained by incrementally

augmenting edges to T . For any 1 ≤ k ≤ n, we de-

fine the level-k edge set Fk as Fk = {(u, v) | (u, v) ∈
E(G) \M ∧ max(r0G(f, u), r0G(f, v)) = k} ∪ {(u, v) |
(u, v) ∈ M ∧ max(r1G(f, u), r1G(f, v)) = k}. We also

define F≤k = ∪0≤i≤kFk and Gk = T + F≤k. More-

over, we define F0 = ∅ as a sentinel. Let Bk be the set

of all the bridges (i.e., the edge forming a cut of size

one) in Gk. Note that Bh is a subset of E(T ) because

T is a spanning tree of G. The following lemma is the

key technical ingredient of our construction.

Lemma 5. Let F c
k ⊆ Fk \E(T ) be an arbitrary sub-

set of non-tree edges in Fk satisfying Bk−1 \ Bk ⊆
∪e∈F c

k
E(cyc(e)). Then, (T+∪1≤i≤kF

c
i ) ≻ Gk holds.

In addition, the edge set F c = ∪0≤i≤kF
c
i contains at

ⓒ 2021 Information Processing Society of Japan 6

Vol.2021-AL-184 No.1
2021/8/25



IPSJ SIG Technical Report

most n− 1 edges.

This lemma naturally yields the following incremen-

tal construction of sparse certificates: each node v

identifies k such that ep(v) ∈ Bk−1 \Bk holds, and if

Tv has an outgoing edge e belonging to Fk, v adds e

to F c
k (if Fk contains two or more outgoing edges, one

is chosen arbitrarily). Since cyc(e) obliviously covers

ep(v), the constructed edge set F c
k satisfies the lemma.

Consequently, H = T + ∪1≤i≤nF
c
i ≻ Gn is satisfied,

and thus, H is a sparse certificate.

Considering the distributed construction of H, a

useful property of Lemma 5 is that one does not have

to wait for the computation of F c
k to start the com-

putation of F c
k+1. As the information on rθG(f, v) for

θ ∈ {0, 1} is available to v, each node can identify the

level of each incident edge. Thus, the construction of

F c
k for all k can be executed in parallel.

We explain how to implement the centralized sparse

certificate algorithm in the CONGEST model to ob-

tain the algorithm of Theorem 2. It is relatively

straightforward to construct the alternating base tree

T . From the preprocessing run of MV(M,n, f), each

node v has information on the values of r1G(f, v) and

r0G(f, v); thus, it has information on γG(v) as well.

Then, v chooses an arbitrary neighbor u of v satisfy-

ing the second condition of the alternating base tree

as its parent (i.e., it chooses (v, u) as an edge of T ).

Algorithm 3 presents the pseudocode of the alterna-

tive base tree construction. This algorithm is a local

algorithm, which is implemented in zero round.

The main idea of constructing the edge set F c =

∪1≤i≤nF
c
i in the distributed manner is implemented

by the CONGEST algorithm ConstF(k), where each

node v outputs an outgoing edge of Tv of level k if

it exists (or ⊥ otherwise). Let d be the height of the

constructed alternating base tree T . Given a non-tree

edge e = (u,w) ∈ E(G) \E(T ), the depth of the low-

est common ancestor of u and w is denoted by lca(e).

In addition, we introduce the ordering relation ≤lca

over all non-tree edges as e1 ≤lca e2 if and only if

lca(e1) ≤ lca(e2). The algorithm ConstF works under

the assumption that for any non-tree edge e = (u, v),

u and v have information on the value of lca(e). This

assumption is realized by the following O(d)-round

preprocessing.

( 1 ) Each node v computes its depth dv in T through

a downward message propagation from f along T .

The root f first sends to its children the value one.

The node v receiving message i decides dv = i

and sends the value i+ 1 to its chldren.

( 2 ) Each node v broadcasts the pair of its ID and

depth (v, dv) to all the nodes in Tv. First, each

node sends the pair to its children. In the fol-

lowing rounds, each node forwards the message

from its parents to the children. This task fin-

ishes within O(d) rounds.

( 3 ) The broadcast information of the previous step

allows each node v to identify the path pT (v) from

v to f in T . For all non-tree edges e = (u, v), u

and v exchange pT (v) (taking O(d) rounds) and

compute the value of lca(e).

The pseudocode of Algorithm ConstF(k) is pre-

sented in Algorithm 4. Let E∗(Tv) be the set of

non-tree edges e such that at least one endpoint of

e belongs to V (Tv). Each node v computes the min-

imum edge ev ∈ E∗(Tv) ∩ Fk with respect to ≤lca.

This task is implemented through a standard aggre-

gation over T . Each leaf node v sends the minimum

edge e in Fk ∩ E∗(Tv). If Fk ∩ E∗(Tv) = ∅ holds,

the leaf sends a dummy edge e such that lca(e) = ∞
holds (the edge sent to the parent is implicitly associ-

ated with the value of lca(e) to admit the comparison

based on ≤lca). Let X be the set of edges a non-leaf

node v received from its children. Then, v chooses ev

as the minimum edge in X ∪ (I(v) ∩ Fk ∩ E∗(Tv))

with respect to ≤lca and sends the chosen edge to

par(v). Finally, v outputs ev if lca(ev) < dv holds

or ⊥ otherwise. The edge set F c is constructed by

running ConstF(k) for all 1 ≤ k ≤ n. As this algo-

rithm is implemented by one-shot aggregation over T ,

one can utilize the standard pipelining technique for

completing ConstF(k) for all 1 ≤ k ≤ n, which takes

O(n) rounds in total (including the preprocessing step

of computing lca(e)). The result of ConstF provides

node v with the information of the minimum k, such

that ep(v) ∈ Bk−1 \ Bk, as well as an outgoing edge

of Tv in Fk. Each node v can decide the edge e that

should be added to F c = ∪1≤i≤nF
c
i .

6. Conclusion

We proposed the randomized O(s
3/2
max + logn)-

rounds (i.e. O(n3/2)-rounds) algorithm for comput-

ing a maximum matching in the CONGEST model,

which is the first one of attaining o(n2)-round com-

plexity for general graphs. Our algorithm follows the

standard augmenting-path approach, and the techni-

cal core lies two fast algorithms of finding augment-

ing paths respectively running in O(ℓ2) and O(smax)

rounds.

While we believe that our result is a big step toward

the goal of revealing the tight round complexity of the

exact maximum matching problem, the gap between

the upper and lower bounds are still large. It should

be noted that we leave the possibility of much faster

augmenting path algorithms. Once an o(ℓ2)-round

or o(smax)-round algorithm of finding an augmenting

path is invented, the upper bound automatically im-

proves. This direction is still promising.

ⓒ 2021 Information Processing Society of Japan 7

Vol.2021-AL-184 No.1
2021/8/25



IPSJ SIG Technical Report

Algorithm 3 Construction of the alternating base tree for vi: ABT((G,M))

Require: The graph induced by the edge set
∪

i:vi∈V Ei is an alternating base tree.

1: Ei: initially ∅.
2: if v ̸= f then

3: choose edge (u, v) that is incident on the vertex v and satisfies r
γ(v)
I (f, v) = r

1−γ(v)
I (f, u) and I((u, v)) =

1− γ(v) (if multiple edges satisfy these conditions, the node arbitrarily chooses one).

4: Ei ← Ei ∪ (u, v).

Algorithm 4 Construction of F c
k for vi: ConstF(k)

Require: The edge ei is an outgoing edge of Tvi if node vi outputs ei; otherwise, Tvi does not have an outgoing

edge.

1: for i = 1; i ≤ d; i++ do

2: if vi is a leaf node then

3: if I(vi) ∩ Fk ∩ E∗(Tv) = ∅ then
4: evi ← dummy edge e such that lca(e) =∞.

5: else

6: evi ← mine∈I(vi)∩Fk∩E∗(Tvi
) e w.r.t. ≤lca.

7: if vi ̸= f then

8: send evi to its parent.

9: else

10: if vi receives the set of edges X from all its children then

11: evi ← mine∈X∪(I(vi)∩Fk∩E∗(Tvi
)) e w.r.t. ≤lca.

12: if lca(evi) ≤ d(vi) then

13: output ev.

14: else

15: output ⊥.

Acknowledgement

This work was supported by JSPS KAKENHI

Grant Numbers JP19J22696, 20H04140, 20H04139,

and 19K11824.

References

[1] Ahmadi, M. and Kuhn, F.: Distributed maximum
matching verification in CONGEST, 34th Inter-
national Symposium on Distributed Computing
(DISC), pp. 37:1–37:18 (2020).

[2] Ahmadi, M., Kuhn, F. and Oshman, R.: Dis-
tributed approximate maximum matching in the
congest model, 32rd International Symposium
on Distributed Computing (DISC), pp. 6:1–6:17
(2018).

[3] Bacrach, N., Censor-Hillel, K., Dory, M., Efron,
Y., Leitersdorf, D. and Paz, A.: Hardness of dis-
tributed optimization, 2019 ACM Symposium on
Principles of Distributed Computing (PODC),
pp. 238–247 (2019).

[4] Bar-Yehuda, R., Censor-Hillel, K., Ghaffari, M.
and Schwartzman, G.: Distributed approxima-
tion of maximum independent set and maximum
matching, 36th annual ACM Symposium on
Principles of Distributed Computing (PODC),
pp. 165–174 (2017).

[5] Ben-Basat, R., Kawarabayashi, K.-i. and
Schwartzman, G.: Parameterized distributed
algorithms, 33rd International Symposium on
Distributed Computing (DISC), pp. 6:1–6:16
(2018).

[6] Blum, N.: A new approach to maximum match-
ing in general graphs, International Colloquium
on Automata, Languages, and Programming, pp.

586–597 (1990).
[7] Edmonds, J.: Maximum matching and a polyhe-

dron with 0,1-vertices, Journal of Research of the
National Bureau of Standards Section B Mathe-
matics and Mathematical Physics, p. 125 (1965).

[8] Edmonds, J.: Paths, trees, and flowers, Canadian
Journal of mathematics, pp. 449–467 (1965).

[9] Gabow, H. N. and Tarjan, R. E.: Faster scal-
ing algorithms for general graph matching prob-
lems, Journal of the ACM (JACM), pp. 815–853
(1991).

[10] Ghaffari, M., Kuhn, F. and Maus, Y.: On the
complexity of local distributed graph problems,
49th Annual ACM SIGACT Symposium on The-
ory of Computing (STOC), pp. 784–797 (2017).

[11] Hopcroft, J. E. and Karp, R. M.: An nˆ5/2
algorithm for maximum matchings in bipartite
graphs, SIAM Journal on computing, pp. 225–
231 (1973).

[12] Israeli, A. and Itai, A.: A fast and simple random-
ized parallel algorithm for maximal matching, In-
formation Processing Letters, pp. 77–80 (1986).

[13] Kitamura, N. and Izumi, T.: A Subquadratic-
Time Distributed Algorithm for Exact Maximum
Matching, arXiv preprint arXiv:2104.12057
(2021).

[14] Kuhn, F., Moscibroda, T. and Wattenhofer, R.:
The price of being near-sighted, 17th Annual
ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 1109557–1109666 (2006).

[15] Kuhn, F., Moscibroda, T. and Wattenhofer, R.:
Local computation: Lower and upper bounds,
Journal of the ACM (JACM), pp. 1–44 (2016).

[16] Lotker, Z., Patt-Shamir, B. and Pettie, S.: Im-
proved distributed approximate matching, pp. 1–
17 (2015).

[17] Vazirani, V. V.: A proof of the MV matching al-
gorithm, arXiv.

ⓒ 2021 Information Processing Society of Japan 8

Vol.2021-AL-184 No.1
2021/8/25


