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Abstract: This paper proposes a Bayesian Inference for mixture of sparse linear regression models with the exchange
Monte Carlo method. Mixture of linear regression model is a hybrid machine learning model that simultaneously per-
forms clustering and linear regression. Mixture of sparse linear regression model imposes sparsity on the regression
parameters and is expected to be applied to the analysis of real data in the field of materials science. The proposed
method calculates the mixture ratio of each cluster, the label of each data point, and the posterior distribution of the
sparse regression parameters by Bayesian inference using the exchange Monte Carlo method. Model selection based
on the Bayesian free energy determines the appropriate number of mixtures of clusters. Experiments on artificial data
confirmed that we obtained an appropriate posterior distribution of the parameters and showed appropriate model se-
lection results. We applied our method to the data on aluminum alloys in materials science, and model selection and
parameter estimation were performed by Bayesian inference.
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1. Introduction

Mixture of regression model [1] clusters given data and per-
forms regression within each class. This model extracts the struc-
ture that exists behind the data without directly dividing the data
space. It is considered to be an important model in data-driven
science. Among them, the Mixture of sparse regression model
is expected to improve the simplification, the clarification, and
the interpretability of the model itself by assuming sparseness for
regression parameters in each class.

Various methods have been proposed for the inference of Mix-
ture of sparse regression model. Khalili et al. and Städler et al. de-
rived Expectation Maximization (EM) algorithms for obtaining a
Maximum a posteriori (MAP) solution by regularizing Least ab-
solute shrinkage and selection operator (LASSO) and Smoothly
clipped absolute deviation (SCAD) for the regression parame-
ters [2], [3]. Blekas et al. proposed a mixture of sparse poly-
nomial regression model for time series data [4]. This study as-
sumed a Gaussian distribution for each element of the regression
coefficients to induced sparseness, and derived an EM algorithm
to obtain a MAP solution. Furthermore, in Ref. [5], a mixture of
regression model in which each component is a multi-kernel of
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Relevance vector machine was proposed and an EM algorithm
was derived for obtaining a MAP solution. These studies consti-
tute algorithms for obtaining MAP solutions and cannot handle
the uncertainty of the obtained parameters. A method based on
the Bayesian information criterion (BIC) has been proposed for
the estimation of appropriate mixture numbers [5]. However, it
is known that asymptotic normality does not hold in a statistical
model with hierarchical structure such as a neural network and
a mixture model focused in this study, and belongs to a singular
statistical model [6], [7]; therefore, it is doubtful whether BIC is
appropriate for model selection.

Zhang et al. performed Bayesian inference for Mixture of
sparse linear regression models using Gibbs Sampling and imple-
mented model selection using Reverse Jump Markov chain Monte
Carlo (RJMCMC) [8]. Lee et al. also performed Bayesian infer-
ence for mixture of sparse linear regression models using Gibbs
Sampling and model selection based on BIC and Akaike informa-
tion criterion (AIC) [9]. However, it is doubtful whether AIC is
also appropriate for model selection in singular statistical model.

In this study, we propose an implementation of Bayesian in-
ference for a mixture of sparse linear regression model with sam-
pling by the exchange Monte Carlo method. The exchange Monte
Carlo method avoids the local optimal solution and allows us to
perform global sampling from the posterior distribution of pa-
rameters. Furthermore, it is possible to calculate Bayesian free
energy based on the obtained sampling series, which enables us
to perform model selection of the number of mixtures in a mix-
ture of linear regression model. The proposed method is vali-
dated with artificial data and applied to the problem of regression
for material design and properties in materials science to show its
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effectiveness.
The rest of this paper is organized as follows. Section 2 deals

with mixture of regression models and mixture of sparse linear
regression models with sparsity introduced into the regression
coefficients. Furthermore, an exchange Monte Carlo method is
described. In Section 3, simulation of the proposed method on
artificial data and simulation of the proposed method on exper-
imental data in materials science are described and the results
are discussed. Finally, in Section 4, the future prospects are dis-
cussed.

2. Bayesian Inference for Mixture of Sparse
Linear Regression Model

In this section, we describe the formulation of generative
model and Bayesian inference of mixture of sparse linear regres-
sion models.

2.1 Mixture of Linear Regression Model
First, we describe the mixture of linear regression model. The

model assumes that given data are generated from multiple prob-
ability models, and deals with the task of estimating the probabil-
ity model from which each data point is generated (clustering) as
well as the task of estimating the parameters of each probability
model. Now suppose that N pairs of dx-dimensional input vectors
xn and dy-dimensional output vectors yn are given (n = 1, · · · ,N).
Denote this asD = {X,Y} = {xn, yn}Nn=1. Assuming that each data
is generated from a mixture of K probability models, let sn be a
K-dimensional discrete variable vector sn ∈ {0, 1}K , such that the
element indicating the mixture to which the data belong is 1 and
the others are 0. Then, the overall probability model can be ob-
tained using the mixture ratio π = (π1, · · · , πK)T ,

∑K
k=1 πk = 1 as

follows:

p(Y, S |X,K,Θ) =
N∏

n=1

K∏
k=1

{πk p(yn|xn, θk)}snk , (1)

where θk is a parameter of the k-th class, Θ = {θ1, · · · , θK} is
a set of parameters, and snk is the k-th element of the n-th hid-
den variable sn. The hidden variable S = {sn}Nn=1 is assumed
to occur stochastically according to the mixture ratio π. We
also assume a linear model y = Wk x between input and output.
Wk ∈ Rdy×dx is a weight parameter of the k-th model, and collec-
tively W = {Wk}Kk=1. In this model, let Θ = {π,W} and estimate
the parameters Θ and the hidden variable S .

A graphical model of mixture of linear regression model is
shown in Fig. 1. From Fig. 1, the data generation process can
be written as follows:
( 1 ) Mixture number K is derived from the prior p(K).
( 2 ) Mixture ratio π is derived from the prior p(π|K).
( 3 ) Weight parameters W are generated from the prior p(W |K).
( 4 ) Input X is given.
( 5 ) Hidden variables S are generated from the prior p(S |π).
( 6 ) The output Y is generated from the following relation:

yn =

K∑
k=1

snk (Wk xn) + εn, (2)

where εn is a noise vector.

Fig. 1 Graphical model of mixture of linear regression model.

Fig. 2 Graphical model of mixture of sparse linear regression model.

2.2 Introducing Sparsity
This section describes a mixture of sparse linear regression

model in which sparsity is imposed on each model parameter of
the mixture of linear regression model. We introduce indicator
vectors V = {Vk}Kk=1, Vk ∈ {0, 1}dy×dx , where each element is a
binary variable for each element of the weight parameter in each
stochastic model, taking 1 when the element is used and 0 when it
is not used. Using the indicator vectors, we define the relationship
between each input and output as

yn =

K∑
k=1

snk {(Wk ◦ Vk)xn} + εn, (3)

where ◦ is the element-wise product. Indicator vectors V are as-
sumed to be generated from the prior p(V |μ,K) conditioned on
the hyper-parameter μ ∈ (0, 1), which controls the sparseness. A
graphical model of this model is shown in Fig. 2. As in the previ-
ous section, the process of generating the data is
( 1 ) Mixture number K is derived from the prior p(K).
( 2 ) Mixture ratio π is derived from the prior p(π|K).
( 3 ) Weight parameters W are generated from the prior p(W |K).
( 4 ) Indicator vectors V are generated from the prior p(V |μ,K).
( 5 ) Input X is given.
( 6 ) Hidden variables S are generated from the prior p(S |π).
( 7 ) The output Y is generated from the relation ( 3 ).
In this model, let Θ = {W,V, π} and we estimate Θ and S .
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2.3 Bayesian Inference
For each input and output (xn, yn) in a mixture of sparse linear

regression model, we assume that Gaussian noise εn with mean 0
and variance covariance matrix Σ = Diag(σ2

1, · · · , σ2
dy

) is added.
The likelihood function p(Y, S |X,Θ,K) for the output Y and the
hidden variables S in this model is

p(Y, S |X,Θ,K) =
N∏

n=1

K∏
k=1

{πk p(yn|xn, θk)}snk

=

N∏
n=1

K∏
k=1

{πkN(yn|(Wk ◦ Vk)xn,Σ)}snk , (4)

where N(μ,Σ) is the Gaussian distribution of the mean μ and
variance covariance matrix Σ. Then, the error function E(Θ, S )
of this model is defined by negative logarithm of likelihood func-
tion p(Y, S |X,Θ,K) as follows,

E(Θ, S ; K) =
N∑

n=1

K∑
k=1

snk

dy∑
i=1

1

2σ2
i

{
yni − (wik ◦ uik)T xn

}2

+
N
2

dy∑
i=1

log 2πσ2
i −

K∑
k=1

Nk log πk, (5)

where Nk is the number of data points belonging to k-th class,
wik and uik are i-th row of Wk and Vk respectively, and yni is i-th
element of yn. In Bayesian inference, each parameter is treated
as a random variable. Firstly, we assume that the value of K is
given. The posterior distribution p(Θ, S |D,K) of the parameters
Θ = {W,V, π} and the hidden variable S given the training data
D = {X,Y} and the number K of mixture can be written using
Bayesian theorem as follows:

p(Θ, S |D,K) =
p(Y, S |X,Θ,K)p(Θ|K)

p(Y |X,K)

=
1

ZK(D)
exp (−E(Θ, S ; K)) p(Θ|K). (6)

where p(Θ|K) represents the prior distribution of the parameter Θ
and the normalization constant ZK(D), also called the marginal
likelihood, is expressed in the following way;

ZK(D) =
∫

exp (−E(Θ, S ; K)) p(Θ|K)dΘdS . (7)

In Bayesian inference, the negative logarithmic marginal likeli-
hood − log ZK(D) is called Bayesian free energy, and it is used
in model selection. From the Bayesian free energy, posterior dis-
tribution p(K|D) of the number of mixture can be calculated as
follows:

p(K|D) =
p(D|K)p(K)

p(D)

∝ p(D|K)p(K) = ZK(D)p(K), (8)

where p(K) is the prior distribution of the number of mixture
K. However, it is difficult to analytically calculate the Bayesian
free energy because of the integration of parameters. In this
study, Bayesian free energy is calculated numerically using the
exchange Monte Carlo method.

2.4 Calculation of Bayesian Free Energy
The Markov chain Monte Carlo method enables us to obtain

the normalized constant such as the marginal likelihood in Eq. (7).
An auxiliary variable β is introduced and zK(β) is defined as fol-
lows:

zK(β) =
∫

exp (−βE(Θ, S ; K)) p(Θ|K)dΘdS . (9)

Here, 0 ≤ β ≤ 1 is a parameter called inverse temperature, and
from the definition, zK(0) = 1, zK(1) = ZK(D) is clear. To obtain
zK(1) numerically, we consider the inverse temperature sequence
0 = β1 < β2 < · · · < βL−1 < βL = 1, and

zK(1) =
zK(βL)

zK(βL−1)
× zK(βL−1)

zK(βL−2)
× · · · × zK(β2)

zK(β1)

=

L−1∏
l=1

zK(βl+1)
zK(βl)

=

L−1∏
l=1

∫
exp (−βl+1E(Θ, S ; K)) p(Θ|K)dΘdS∫
exp (−βlE(Θ, S ; K)) p(Θ|K)dΘdS

=

L−1∏
l=1

〈
exp (−(βl+1 − βl)E(Θ, S ; K))

〉
q(θ,S ;βl) . (10)

This indicates that the marginal likelihood is obtained as the ex-
pected value of the following probability distribution:

q(Θ, S ; β) ∝ exp (−βE(Θ, S ; K)) p(Θ|K). (11)

Using the exchange Monte Carlo method, it is possible to obtain
the value of Eq. (10) depending on the samples obtained [10].

2.5 The Exchange Monte Carlo Method
The exchange Monte Carlo method is one of the Markov chain

Monte Carlo methods, which enables us to sample around the
global optimal solution even in problems with local solutions.
The specific algorithm of the exchange Monte Carlo method is
shown below.
( 1 ) We perform Monte Carlo sampling such as the conventional

metropolis method or Gibbs sampling from multiple proba-
bility distributions {q(Θl, S l; βl)}Ll=1.

( 2 ) Decide probabilistically whether or not to exchange the pa-
rameters {Θl, S l}, {Θl+1, S l+1}, of the neighboring distribu-
tions with the following probability u.

u = min (1, v)

v =
q(Θl+1, S l+1; βl)q(Θl, S l; βl+1)
q(Θl, S l; βl)q(Θl+1, S l+1; βl+1)

= exp ((βl+1 − βl)(E(Θl+1, S l+1; K) − E(Θl, S l; K))) .

By alternately repeating the procedure ( 1 ) and ( 2 ) above, a
sequence of samples {{Θ1, S 1} , · · · , {ΘL, S L}} at each temperature
is obtained.

Label-switching [11], in which the uniqueness of the order of
classes is lost by the exchange operation, is a problem in parame-
ter estimation of mixture models using the exchange Monte Carlo
method. In this study, we re-labeled with the method shown in
Section A.2
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3. Simulations

In this study, numerical simulations of the proposed method
are conducted on artificial data and real data of material science.
In this section, the simulations and the results are discussed.

3.1 Numerical Simulation on Artificial Data
Firstly, numerical simulations were conducted on artificial

data. For the generation of the artificial data, the number of mix-
tures was set to K = 3, and the dimensions of the input space and
output space were set to dx = 16 and dy = 1. The number of train-
ing data is set to N = 300. The variance of the observed noise is
set to σ2

1 = 0.1, and the hyper-parameter μ for the sparseness is
fixed at μ = 0.5. The prior distribution of each parameter is set as
follows:

p(Θ|K) = p(W |K)p(V |K, μ)p(π|K)

p(W |K) =
K∏

k=1

p(w1k) =
K∏

k=1

N(w1k |0, I), (12)

p(V |μ,K) =
K∏

k=1

dx∏
l=1

Bern(v1kl|1 − μ) (13)

=

K∏
k=1

dx∏
l=1

μ(1−v1kl)(1 − μ)v1kl , (14)

p(π|K) = Dir(π|α) =
1
β(α)

K∏
k=1

παk−1
k , (15)

α = (1, · · · , 1)T ∈ RK , (16)

where v1kl is l-th element of u1k. The prior distribution p(K) of
the number of mixture K is set to the uniform distribution from
K = 1 to K = 6.

Figure 3 shows the artificial data generated according to the

Fig. 3 Examples of generated artificial data (N = 300): The horizontal axis
of each figure shows the one-dimensional xi (i = 1, · · · , dx) with
input variables, and the vertical axis shows the output y. The first
element of the input variables is always taken to be 1. This means
that the first element of the weight parameter w1k of each class cor-
responds to the intercept of the regression hyperplane.

graphical model shown in Fig. 2. One hundred simulations were
conducted to generate artificial data, perform parameter estima-
tion and model selection. The number of replicas in the exchange
Monte Carlo method was set to L = 96. 20,000 samples were ob-
tained by the exchange Monte Carlo method, and the first 10,000
samples were discarded as burn-in period. See Section A.1 for
the specific updating rules of the exchange Monte Carlo method.

The results of the numerical simulations for artificial data are
described below. Figure 4 shows the results of the model selec-
tion based on Bayesian free energy in one case of 100 simula-
tions. From Fig. 4, we can see that the appropriate mixture num-
ber K = 3 is selected. Therefore, the simulation results for K = 3
are presented below. Figure 5 and Fig. 6 respectively show the
sampling results for the mixture ratio π and the weight parameter
W ◦ V . Figure 5 shows that the sampling of the mixture ratio π is
performed near the true value. In addition, Fig. 6 shows that the
sampling results for the weight parameters are around the true
value. The posterior distribution of the mixture ratio π and the
weight parameter W ◦ V are unimodal thanks to the appropriate
removal of label switching.

Next, in the same simulation in Fig. 3, 50 sets of indicator
vectors with high sampling frequency were extracted, and Fig. 7
shows the indicator vectors V when they were sorted in the or-
der of frequency. Figure 7 shows that the most sampled indicator
vectors match the true indicator vectors. This indicates that the
proposed method performs accurate variable selection.

Finally, the results of 100 times model selection experiments
are shown in Fig. 8. Figure 8 shows that the correct mixture num-
ber K = 3 could be selected 98 times out of 100 times. This

Fig. 4 Bayesian free energy and posterior probability of mixture number K:
The line in the figure shows Bayesian free energy, and the bar chart
shows the posterior probability of mixture number K, p(K|D).

Fig. 5 Sampling results for mixture ratio π (K = 3).
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Fig. 6 Sampling results for the weight parameter W ◦ V (K = 3): The hori-
zontal axis shows the axis wi (i = 1, · · · , d) for each dimension of the
weight parameter and the vertical axis shows the sampling frequency.
Values where the corresponding element of indicator vectors is zero
are excluded from the figures. The vertical line in each figure shows
the true value.

Fig. 7 The pattern of 50 frequently sampled indicator vectors: The top panel
shows the number of times sampled, and the three right panels below
show the actual indicator vectors sampled, respectively. The three
left plots show the true indicator variables, where black color indi-
cates 0 and white color indicates 1.

Fig. 8 Results of 100 times model selection simulations: The horizontal
axis shows the number of mixtures K, and the vertical axis shows the
number of times the mixtures were selected by Bayesian free energy.

Fig. 9 The regression results of training and test data: the left hand side
shows regression result for training data, and the right hand side
shows that of test data. The horizontal axis and the vertical of each
graph represent the true output and the output predicted from the in-
put data using the trained parameters, respectively.

shows that the proposed method can estimate the correct mixture
number from Bayesian free energy.

We conduct additional simulations to confirm prediction per-
formance of our model. Three hundred test input vectors and
their class labels are generated in random. In simulations on ar-
tificial data set, since the true weight parameters are known, we
obtain true output values. Predicted outputs are calculated using
optimal weight parameters: the weight parameters are obtained
sample series of the exchange Monte Carlo method, and mini-
mize error function for the training data the most. From Fig. 9,
we confirm our method can correctly predict output value.

3.2 Numerical Simulation for Material Data
In this simulation, the proposed method is applied to the ex-

perimental data summarizing the manufacturing conditions and
product characteristics of 7,000-series aluminum alloys in mate-
rials science. The input is a 16-dimensional variable, dx = 16,
that corresponds to the composition and process conditions. The
output is a 3-dimensional vector, dy = 3, representing the func-
tion of the aluminum alloy. Summarizing our simulation setting,
we use 17-dimensional weight parameters W = {Wk ∈ R3}Kk=1,
and indicator vectors V = {uk ∈ {0, 1}3×17}Kk=1, which are added to
the intercept parameters. In order to guarantee the confidential-
ity of the data, each input and output name is discussed without
mentioning them, and the experimental values are also discussed
in terms of values that have been pre-processed by standardiza-
tion and other means. The prior distribution of each parameter is
set up as follows:

p(Θ|K) = p(W |K)p(V |K, μ)p(π|K)

p(W |K) =
K∏

k=1

dy∏
i=1

p(wik) =
K∏

k=1

dy∏
i=1

N(wik |0, 10 × I),

p(V |μ,K) =
K∏

k=1

dy∏
i=1

dx∏
l=1

Bern(vikl|1 − μ)

=

K∏
k=1

dy∏
i=1

dx∏
l=1

μ(1−vikl)(1 − μ)vikl ,

p(π|K) = Dir(π|α) =
1
β(α)

K∏
k=1

παk−1
k ,

α = (1, · · · , 1)T ∈ RK .

The prior distribution p(K) of the number of mixture K is set to
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the uniform distribution from K = 1 to K = 12.
In the simulation, N = 297 data points were used. Since the

output is multidimensional, the noise variance of the first and sec-
ond element is set as σ2

1 = σ
2
2 = 0.01, one of the third element is

set as σ2
3 = 0.04, and the value of the hyper-parameter μ is fixed

at μ = 0.5. The number of replicas of the exchange Monte Carlo
method was set to L = 128. The appropriate number of mixtures
is estimated between K = 1 to K = 12. We obtained 50,000 sam-
ples by the exchange Monte Carlo method and discarded the first
25,000 samples as burn-in period.

Simulation results for model selection with free energy are
shown in Fig. 10. From Fig. 10, we can see that the appropriate
mixture number is K = 3.

Therefore, we discuss the simulation results for K = 3 be-
low. Figure 11 shows the sampling results for the mixture ratio π.
Compared to the sampling for the artificial data shown in Fig. 5,
there is a large variance in the sampling, but we can see that the
sampling was performed mainly at certain points. In addition,
Fig. 12 shows the sampling results of the weight parameters for
the first output y1. Comparing these results to those for the artifi-
cial data, The histogram has larger variance than that for artificial
data. However, some posterior distribution such as the weight pa-
rameter w are peaky and has good confidence accuracy. Hence,
we can see that the corresponding input has the importance for
regressing the output y1, which becomes a feedback information

Fig. 10 Bayesian free energy for mixture number K in material data: The
line shows the Bayesian free energy, and the bar chart is the pos-
terior probability of the number of mixture K, p(K|D) calculated
based on the Bayesian free energy.

Fig. 11 Sampling results for the mixture ratio π at K = 3: The black dots in
the figure represent the sample.

for experiments for materials science.
Figure 13 shows 50 indicator variables with high sampling

frequency, which were extracted and sorted in the order of fre-
quency. Unlike the results for the artificial data in Fig. 7, there
was a large variation in the indicator variables sampled, but there
was also a large number of specific indicator variables used, sug-
gesting that feature selection by class functioned properly.

Figure 14 illustrates the regression accuracy for the data. The
regression performance of the third output is worse than that of
the first and second outputs, and this is thought to be due to the
fact that a large noise variance was set for the third output only. In
order to discuss the appropriateness of this setting, it is important
to estimate the noise variance within the framework of Bayesian
estimation, and this is an issue to be addressed in the future.

Result of additional simulation is shown in Fig. 15. In this sim-
ulation, we conduct 10-hold cross validation using the same ma-
terials data set. We plot predicted output values of test data of
all cross validation subset. From Fig. 15, some of the third out-
puts have large variance, however, other output values can be pre-
dicted roughly.

4. Conclusion

In this paper, we proposed a Bayesian inference for a mixture
of sparse linear regression model using the exchange Monte Carlo
method. The proposed method is able to obtain appropriate pos-
terior distributions of parameters for artificial data. The number
of mixture is appropriately selected by a model selection based on
using Bayesian free energy. The proposed method was also ap-
plied to the data on aluminum alloys in materials science, and we
were able to estimate the appropriate mixture number and each
parameter.

Fig. 12 Sampling results for the weight parameter W ◦ V at the first output
y1 at K = 3: Histograms of the weight parameters, excluding the
intercept parameter, where the horizontal axis of each figure shows
the axes of each dimension w1i (i = 1, · · · , 16) of the weight param-
eter and the vertical axis shows the frequency of sampling. Samples
are excluded from the figures if the corresponding indicator variable
is zero.
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Fig. 13 The 50 most frequently sampled indicator vectors for each output: from left to right, these figures
relate to the first, second and third outputs and are viewed in the same way as in Fig. 7.

Fig. 14 Graphs showing the fit for the data used: from left to right are the
graphs of the first, second and third outputs. The horizontal axis
of each graph represents the true output and the vertical axis is the
output predicted from the input data using the trained parameters.
The closer the line in the figures, the better the fit of the prediction.

Fig. 15 The result of 10 hold cross validation: from left to right are the
graphs of the first, second and third outputs. The horizontal axis
and the vertical of each graph represent the true output and the out-
put predicted from the input data using the trained parameters, re-
spectively. The points of all test subsets are shown.

This work constructs an exact Bayesian estimation algorithm
of mixture of sparse linear regression model. One of our contribu-
tions is that it is possible to compare the effectiveness of previous
algorithm such as previous study [5] with that of exact Bayesian
estimation. Such comparison is important in constructing faster
approximation algorithm, and we address this issue as a future
work.

This work deals the mixture of linear regression model, of
course we can introduce non-linearity in this model like previous
study [9]. In that case, it is important to consider larger frame-
work of model selection problem that discuss appropriate model
whether linear or non-linear, which is also addressed as a future
work.

In this research, the variances of the noise were treated as a
constant. In the future, we need to estimate the noise variance for
each class.
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Appendix

A.1 Sampling Update Rules

In this section, we present the sampling update rules from the
probability distribution q(Θ; βl) of a mixture of sparse linear re-
gression model at each temperature. The graphical model in
Fig. 2 shows that the overall distribution of the entire model is

p(D,Θ) = p(X,Y,W,V, S ,π)

= p(K)p(W |K)p(V |K, μ)p(π|K)

· p(S |π,K)p(Y |X,W,V, S )p(X). (A.1)

c© 2021 Information Processing Society of Japan 99



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.14 No.3 93–101 (Aug. 2021)

The target distribution at inverse temperature β is

q(W,V,π, S ; β) ∝ exp (−βE(Θ, S ; K)) p(Θ|K), (A.2)

corresponding to Eq. (9), but it is difficult to sample all the param-
eters of Θ and S at the same time. Therefore, we perform Gibbs
sampling as

W (i+1) ∼ p(W |V (i), S (i),π(i); X,Y), (A.3)

V (i+1) ∼ p(V |W (i+1), S (i),π(i); X,Y), (A.4)

S (i+1) ∼ p(S |W (i+1),V (i+1), π(i); X,Y), (A.5)

π(i+1) ∼ p(π|W (i+1)V (i+1), S (i+1); X,Y), (A.6)

where (i) and (i + 1) denote the i, i + 1-th sample, respectively.
In the following subsections, we will show the updating rules for
the sampling of Eqs. (A.3) to (A.6).

A.1.1 Update Rules of Weight Parameters W
For the weight parameters W, we perform the following

Metropolis update. When only those dependent on the weight pa-
rameters W in the overall distribution in Eq. (A.1) are extracted,
we get

p(W |V (i), S (i),π(i); X,Y)

∝ p(Y |X,W,V (i), S (i))βp(W)

=

N∏
n=1

K∏
k=1

dy∏
i=1

{
N
(
yni|(wik ◦ uik)T xn, σ

2
i

)}βsnk

×
K∏

k=1

dy∏
i=1

N(wik |μ,Σ). (A.7)

Here, the adoption rate of the transitions to the candidate of the
i-th sample W (i) with small variations on the i-th sample W (i),

W (i+1) = W (i) + Δ, (A.8)

is set to min{1, r} using the

r =
p(Y |X,W (i+1),V (i), S (i))βp(W (i+1))

p(Y |X,W (i),V (i), S (i))βp(W (i))
, (A.9)

and the adoption of the transitions is determined probabilistically.

A.1.2 Update Rules of Indicator Vectors V
Extracting the terms depending on the indicator vectors V in

Eq. (A.1), we get

p(V |W (i+1), S (i), π(i); X,Y)

∝ p(Y |X,W (i+1),V, S (i))βp(V |μ)

=

N∏
n=1

K∏
k=1

dy∏
i=1

{
N
(
yni|(wik ◦ uik)T xn, σ

2
i

)}βsnk

×
K∏

k=1

dy∏
i=1

dx∏
l=1

μ1−vikl (1 − μ)vikl , (A.10)

where vikl denotes the l-th element of indicator variables uik. In
updating the indicator vectors V , after calculating the posterior
probability of each element becoming 0 and 1, respectively, its
value is determined according to the posterior probability. Let vikl

be the element of V of interest, the posterior probability for vikl is

p(vikl = 0|w(i+1)
ik , S (i))

∝ μ
K∏

k=1

{
N
(
yni|(wik ◦ u′ik)T xn, σ

2
i

)}βsnk
, and (A.11)

p(vikl = 1|w(i+1)
ik , S (i))

∝ (1 − μ)
K∏

k=1

{
N
(
yni|(wik ◦ u′ik)T xn, σ

2
i

)}βsnk
, (A.12)

respectively. In Eqs. (A.11) and (A.12), u′ik is the value of
vikl in V (i) as 0 and 1, respectively. The posterior probability
p(vikl|W (i+1), S (i), π(i); X,Y) can be obtained by calculating the val-
ues of Eqs. (A.11) and (A.12) and normalizing them. According
to this posterior probability, the value of v(i+1)

ikl is determined prob-
abilistically.

A.1.3 Update Rules of Hidden Variables S
For all the hidden variables sn (n = 1, · · · ,N) corresponding to

all data points, the posterior probabilities are calculated and prob-
abilistically updated using the following procedure. In Eqs. (A.1),
the terms depending on the hidden variable sn is extracted as fol-
lows:

p(sn|W (i+1),V (i+1),π(i); X,Y)

∝
K∏

k=1

dy∏
i=1

{
p(yni|xn,w

(i+1)
ik , u(i+1)

ik )
}βsnk

p(sn|π)β

=

K∏
k=1

dy∏
i=1

πβsnkN(yni|(w(i+1)
ik ◦ u(i+1)

ik )T xn, σ
2
i )βsnk . (A.13)

Calculate this value for all possible sn values, and by nor-
malizing the sum to be 1, we obtain the posterior probability
p(sn|W (i+1),V (i+1),π(i); X,Y) of sn. Using this posterior probabil-
ity, sn is determined probabilistically.

A.1.4 Update Rules of Mixture Ratio π
The mixture ratio π is assumed to be a Dirichlet distribution

as a prior distribution. Therefore, the posterior distribution of the
mixture ratio π in simulations of our study is also the following
Dirichlet distribution:

p(π|W (i+1)V (i+1), S (i+1); X,Y) = Dir(π|α), (A.14)

α = (βN1 + 1, βN2 + 1, · · · , βNK + 1)T ,

where Nk is the number of data points belonging to class k. We
sample from the above distribution when updating π.

A.2 Removal of Label Switching

The exchange of parameters between neighboring tempera-
tures in the exchange Monte Carlo method results in uncertainty
in the class label order in the samples. In this study, we sort the
class labels to achieve consistency in the class label order be-
tween samples. We now briefly explain the case where K = 3.
Let Θ∗ = {S ∗,W∗,V∗, π∗} be the parameter sample that best mini-
mizes the errors defined in Eq. (5). WithΘ∗ as the reference point,
we perform the following sorting:
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( 1 ) For w∗i1 ◦ u∗i1 and wi
ik ◦ uiik in the i-th sample, we assign label

1 to the class k1 that maximizes its inner product,
( 2 ) Similarly, for two classes other than class k1, we compute

inner product of (w∗i2 ◦ u∗i2) and assign label 2 to the larger
class and label 3 to the smaller one.

k1 = arg max
k

(w∗i1 ◦ u∗i1)T (wi
ik ◦ uiik) (A.15)

( 3 ) Repeat ( 1 ) and ( 2 ) above for all samples.
By sorting in this way, we can solve the uncertainty of class label
order in the exchange Monte Carlo method.
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