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Abstract: The one-sided Jacobi method for performing singular value decomposition can compute all singular values
and singular vectors with high accuracy. Additionally, the computation cost is insignificant for comparatively small
matrices. However, in the case of the conventional implementation in Linear Algebra PACKage, the subroutine may
not be able to compute a singular vector with sufficient orthogonality. To avoid this problem, we propose a novel
implementation of the one-sided Jacobi method. In the proposed implementation, a Givens rotation with high accuracy
and fused multiply-accumulate are adopted.
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1. Introduction

Many mathematical applications require a generalized eigen-
value formula that comprises a symmetric matrix and positive
definite symmetric matrix. However, they use only some eigen-
values and the corresponding eigen vectors. The Sakurai–Sugiura
method [15], also called truncated eigenvalue decomposition,
uses a column space, which is computed by decomposing a rect-
angular matrix via singular value decomposition. Generally, a
given matrix is transformed into a bidiagonal one using a House-
holder transformation [3] as a preprocessing method. In Ref. [1],
a computation method for column space, adopted to a bidiagonal
matrix, was proposed. The method combined the differential qd
algorithm with shifts [7], [12] and orthogonal qd algorithm with
shifts (OQDS) [11]. The Sakurai–Sugiura method requires only a
column space, which is based on left singular vectors, in a given
upper bidiagonal matrix. Because the row space in a lower bidi-
agonal matrix is equal to the column space in an upper bidiago-
nal matrix, the row space can be computed using right singular
vectors, achieved by employing the OQDS method, which was
proposed in Ref. [1].

In Ref. [1], the test matrices were bidiagonal. However, in the
Sakurai–Sugiura method, the singular value decomposition of an
upper triangular matrix, whose dimension is small, is required.
In the case of bidiagonalization using the Householder transfor-
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mation, a rounding error may occur computationally. Thus, an
algorithm which does not employ the Householder transforma-
tion should be used.

The Jacobi method for performing singular value decomposi-
tion can compute all singular values and singular vectors. James
Demmel and Kresimir Veselic reported that the Jacobi method
was more accurate than the QR method [4]; additionally, the com-
putation cost for the former was insignificant for comparatively
small matrices. One- and two-sided Jacobi methods have been
proposed as the implementations of the Jacobi method for sin-
gular value decomposition [2], [5], [6], [8], [9]. They aim for
computation accuracy and speed, respectively. In this study, to
perform singular value decomposition with high accuracy, we
propose a novel implementation of the one-sided Jacobi method,
whose conventional implementation has theoretically high accu-
racy. Practically, there exist cases wherein singular vectors with
sufficient orthogonality cannot be computed. To avoid this prob-
lem, in the proposed implementation, a Givens rotation with high
accuracy and the fused multiply-accumulate are adopted. We
confirmed that our implemented one-sided Jacobi method has
higher accuracy than that of the one-sided Jacobi method imple-
mented in Linear Algebra PACKage (LAPACK) [10].

In Section 2, the outline of the one-sided Jacobi method is
shown. Section 3 introduces a conventional implementation of
the one-sided Jacobi method. In Section 4, we prepare the Givens
rotation with high accuracy. Section 5, proposes a novel imple-
mentation of the one-sided Jacobi method. Finally, in Section 6,
we compare the proposed implementation with the subroutine in
LAPACK.

2. Outline of the One-sided Jacobi Method

In a singular value decomposition, an m×n (m ≥ n) rectangular
matrix A ∈ Rm×n is decomposed to
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A ≈ UΣV�. (1)

Here, the columns in the orthogonal matrices U ∈ Rm×L and
V ∈ Rn×L consist of left and right singular vectors, respectively,
and the diagonal matrix Σ ∈ RL×L has singular values as diagonal
elements. These matrices satisfy the following conditions:

Avi = σiui, A�ui = σivi (i = 1, . . . , L), (2)

U :=
[
u1,u2, . . . ,uL

]
∈ Rm×L, (3)

V :=
[
v1,v2, . . . ,vL

]
∈ Rn×L, (4)

Σ := diag(σ1, σ2, . . . , σL) ∈ RL×L.

(σ1 ≥ σ2 ≥ · · · ≥ σL > 0), L = Rank(A) (5)

Here, the left and right singular vectors corresponding to the ith
singular value σi are ui and vi, respectively.

A and Ji denote an m × n real matrix and the following Jacobi
rotation of the n × n matrix, respectively.

Ji =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

I 0 · · · · · · 0

0 cos (θi) · · · − sin (θi)
...

...
... I

...
...

... sin (θi) · · · cos (θi) 0
0 · · · · · · 0 I

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
From the right side of the matrix A, the rotations of Ji(i = 1, · · · )
is effected so that the converged matrix B satisfies the column
orthogonality B�B = D (D is the diagonal matrix).

AJ1J2 · · · → B

Here, if the norm of the column vector b j( j = 1, · · · , n) of the jth
column of the matrix B is greater than zero, then the norm is the
singular value σ j( j = 1, · · · , n) of the matrix A. If V = J1J2 · · · ,
V is a matrix of the right singular vectors. For a column vector b j

with a positive value σ j for j = 1, · · · , n, if we divide a column
vector b j by the positive value σ j, then each jth column vector of
B is the jth left singular vector of the matrix A.

3. Conventional Implementation for the One-
sided Jacobi Method

Algorithm 1 shows a pseudo code of the one-sided Jacobi
method [4]. It requires an m × n (m ≥ n) real matrix A and a
convergence-judgment threshold tol and ensures Σ, U, and V .
The terms Σ, U, and V denote the matrices whose elements are
singular values, left singular vectors, and right singular vectors
in A, respectively. Generally, tol is set to tol =

√
mε, where ε

denotes a machine epsilon, which is adopted in xGESVJ imple-
mented in LAPACK, considering the error in the inner-product
computation.

The algorithm comprises a double loop with the main part. The
outer loop repeats until the result of the inner loop converges. The
inner loop performs through a subscript pairs, which is given us-
ing a subroutine jacobi pairs. This generates a pair that con-
tains at least one pair of all the integers from 1 to n. Thus, pairs

contains at least n(n − 1)/2 entries. As an example, we introduce
the pairs obtained in the simplest subroutine jacobi pairs,

Algorithm 1 Pseudo code of the one-sided Jacobi method
Require: A = [a1 a2 · · · an], tol

Ensure: (U,Σ,V )

1: V := [v1 v2 · · · vn] := In,n

2: repeat

3: maxt := 0

4: pairs := jacobi pairs()

5: for ( j, k) in pairs do

6: x := a�j a j

7: y := a�k ak

8: g := a�j ak

9: τ := |g|/√x × y
10: maxt := max(maxt, τ)

11: if τ > tol then

12: Computation of Jacobi rotation

13: f := (x − y)/2
14: t := g/

(
f + sign

( √
g2 + f 2, f

))
15: r :=

√
1 + t2

16: cos (θ) := 1/r

17: sin (θ) := t/r

18: Effect of Jacobi rotation

19: q := a j

20: a j := cos (θ) q + sin (θ) ak

21: ak := − sin (θ) q + cos (θ) ak

22: Effect of Jacobi rotation

23: q := v j

24: v j := cos (θ) q + sin (θ) vk

25: vk := − sin (θ) q + cos (θ) vk

26: end if

27: end for

28: until maxt > tol

29: for j = 1 to n do

30: σ j := ||a j ||2
31: end for

32: Σ := diag(σ1, σ2, · · · , σn)

33: U :=AΣ−1

pairs = (1, 2), (1, 3), · · · , (1, n), (2, 3), (2, 4), · · · , (2, n), · · · ,
(n − 2, n − 1), (n − 2, n), (n − 1, n). (6)

In xGESVJ implemented in LAPACK, the De Rijk method [13]
is adopted. In the subroutine jacobi pairs of Algorithm 1, the
construction of pair is arbitrary and can be freely designed. The
De Rijk method suggests an appropriate way to construct pair.
As the subroutine jacobi pairs, the proposed implementation
also swaps a j with the longest one of ak(k = i, · · · , n). Thus, one
can save computation cost and increase speed.

4. Givens Rotation with High Accuracy

Jacobi rotation in the Jacobi method involves the same compu-
tation as in Givens rotation. Givens rotation is performed using
vectors x and y as follows:

x ← cos(θ)x + sin(θ)y, (7)

y ← − sin(θ)x + cos(θ)y. (8)

For higher accuracy, Eqs. (7) and (8) are converted to adopt the
fused multiply-accumulate. Additionally, cos(θ) or sin(θ) is cor-
rected.
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Fig. 1 False-position method.

Fig. 2 Secant method.

4.1 False-position Method
We consider a real root in f (x) = 0. The false-position method

is depicted in Fig. 1. In the initial setting, x1 and x2 have different
values. The sign of f (x1) is set to be different from that of f (x2).

In the false-position method, xM in Eq. (9) is set to a new po-
sition to compute the real root x in f (x) = 0. Accordingly, xM is
expressed as follows:

xM =
x1 × f (x2) − x2 × f (x1)

f (x2) − f (x1)
. (9)

Here, if the sign of f (x1) is the same as that of f (xM), then
x1 ← xM . Alternatively, if the sign of f (x2) is the same as that of
f (xM), then x2 ← xM . As depicted in Fig. 1, xM is set to a new
x1.

4.2 Secant Method
The secant method is depicted in Fig. 2. In this method, the

following recurrence relation is adopted to compute the real root
x in f (x) = 0:

xn+1 = xn − f (xn) × xn − xn−1

f (xn) − f (xn−1)

=
xn−1 f (xn) − xn f (xn−1)

f (xn) − f (xn−1)
. (10)

From the initial setting x0 and x1, the sequence of x2, x3, · · · con-
verges to the real root x, as the point sequence is computed in
order. When n = 2 in Eq. (10), we obtain Eq. (9).

4.3 Correction of cos(θ)
Computationally, sin(θ) and cos(θ) are affected by rounding er-

rors. When θ is close to 0, sin(θ) is sufficiently accurate; however,
cos(θ) often contains computation errors. In these cases, cos(θ) is
close to 1. To obtain a correct cos(θ), we consider the following:

f (x) = (x)2 + (sin(θ))2 − 1 = 0. (11)

Because cos(θ) is close to 1, x in Eq. (11) is computed using the
false-position or scent method via x0 = 1,x1 = cos(θ) as follows:

x2 =
f (cos(θ)) − cos(θ) × f (1)

f (cos(θ)) − f (1)

= 1 − sin(θ) × sin(θ)
1 + cos(θ)

(12)

4.4 Givens Rotation Using Fused Multiply-accumulate
To adopt the fused multiply-accumulate, z1 is set to

z1 ← sin(θ)
1 + cos(θ)

. (13)

Accordingly, Eqs. (7) and (8) are transformed using z1 as fol-
lows [14]:

x ← sin(θ)

(
−z1x + y

)
+ x, (14)

y ← − sin(θ)

(
z1y + x

)
+ y. (15)

The fused multiply-accumulate can be adopted in the double un-
derlined part of these equations.

5. Proposed Implementation

5.1 Proposed Implementation
Six improvements have been made in the proposed implemen-

tation.
The first improvement is to adopt Givens rotation with high

accuracy.
The second improvement is to avoid fatal bugs that could create

an infinite loop. In the implementations using the Givens rotation,
rounding errors may occur during orthogonalization while com-
puting the pair of two vectors (a j,ak). Therefore, when there
is no effect of improving orthogonality in the pair of two vectors
(a j,ak), even upon performing orthogonalization, an infinite loop
occurs. To avoid this infinite loop, the orthogonalization compu-
tation should be terminated when the orthogonality in all the pair

becomes invariant. In other words, after the orthogonalization for
all pairs of two vectors (a j,ak), ĝ of all pairs of two vectors
(a j,ak) cannot satisfy ĝ ≤ tol · δ j · sk. Here, ĝ, δ j, and sk are
described in Section 5.2.

As the third improvement, the orthogonalization computation
should be minimized. In Algorithm 1, the same computation is
performed for all the vectors including those that possess suffi-
cient orthogonality. In other words, if ĝ of the pair of two vector
(a j,ak) satisfies ĝ ≤ tol · δ j · sk, then we regard that two vector
(a j,ak) possess sufficient orthogonality. Here, ĝ, δ j, and sk are
described in Section 5.2. In this case, it is redundant to orthogo-
nalize vectors that previously have sufficient orthogonality. Fur-
thermore, the effect of rounding errors increases by repeating un-
necessary orthogonalization computation. Therefore, vector a j,
which is orthogonal to all the other vectors in the previous iter-
ation, is excluded from the orthogonalization computation. This
exclusion can increase accuracy and speed.

The fourth improvement is to avoid overflow and underflow.
Computationally, Algorithm 1 includes the possibility of over-
flow and underflow while computing x and y. In the proposed
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implementation, lines 6 and 7 in Algorithm 1 are transformed
into an equation using the norm of the vector.

The fifth improvement is also to avoid overflow and under-
flow. Computationally, Algorithm 1 includes the possibility of
overflow and underflow while computing g. To avoid this, ĝ and
w j = a j × t j is introduced, where t j is define as follows:

ρ j ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SAFMIN
√
β̂ j, j < SAFMIN√

β̂ j, j otherwise

t j ≡ 1
ρ j

w j ≡ a j × t j

Here,
√
β̂ j, j, which is described in Section 5.3.1, is the estimated

norm of a j. Thus, the norm w j is almost equal to 1. Hereafter,
SAFMIN means such a safe minimum value that 1/SAFMIN does
not overflow. To be more precise, we set SAFMIN as follows,

SAFMIN = 1.17549435 × 10−38 in single precision,

SAFMIN = 2.22507386 × 10−308 in double precision.

Using the upper w j, we can compute ĝ =
(
a�j ak

)
× t j = w�j ak,

which is adopted in Section 5.2.
The sixth improvement is to compute an accurate norm of a

vector under the condition that the approximation of norm is
known. That is described in Section 5.3.2.

5.2 Computation with High Accuracy in cos(θ) and sin(θ)
Jacobi rotation matrix makes the off-diagonal components zero

as follows:

J1

⎛⎜⎜⎜⎜⎜⎝ a�j a j a�j ak

a�j ak a�k ak

⎞⎟⎟⎟⎟⎟⎠ J2 =

⎛⎜⎜⎜⎜⎝ β̂ j, j 0
0 β̂k,k

⎞⎟⎟⎟⎟⎠ , (16)

where,

J1 =

⎛⎜⎜⎜⎜⎝ cos(θ) sin(θ)
− sin(θ) cos(θ)

⎞⎟⎟⎟⎟⎠ , (17)

J2 =

⎛⎜⎜⎜⎜⎝ cos(θ) − sin(θ)
sin(θ) cos(θ)

⎞⎟⎟⎟⎟⎠ . (18)

Generally, cos(θ) and sin(θ) in Eqs. (17) and (18) are computed as
follows *1:

x = a�j a j, (19)

y = a�k ak, (20)

f =
1
2

(x − y) , (21)

g = a�j ak, (22)

t =
g(

f + sign
( √
g2 + f 2, f

)) , (23)

r =
√

1 + t2, (24)

cos(θ) =
1
r
, (25)

sin(θ) =
t
r
, (26)

*1 The proof for the Eqs. (19)–(28) is shown in an appendix.

β̂ j, j = a�j a j + t × a�j ak, (27)

β̂k,k = a�k ak − t × a�j ak. (28)

However, in the proposed implementation, instead of f and g, we
use f̂ and ĝ to avoid divergence. The following equations are
adopted to compute f̂ and ĝ:

δ j = s j × t j, (29)

δk = sk × t j, (30)

f̂ =
1
2

(√
a�j a j −

√
a�k ak

)

×
(√

a�j a j × t j +

√
a�k ak × t j

)
, (31)

=
1
2

(
s j − sk

) (
δ j + δk

)
, (32)

ĝ =
(
a�j ak

)
× t j = w�j ak, (33)

t =
ĝ(

f̂ + sign

(√
ĝ2 + f̂ 2, f̂

)) , (34)

r =
√

1 + t2, (35)

cos(θ) =
1
r
, (36)

sin(θ) =
t
r
, (37)

β̂ j, j = s2
j + t × ĝ/t j, (38)

β̂k,k = s2
k − t × ĝ/t j, (39)

where s j and sk denote the norm of a j and the norm of ak, re-
spectively. As a remark, δ j is almost 1. δk satisfies δk ≤ 1.
Hence f̂ ≤ s j − sk, where it is guaranteed by the De Rijk method
that s j ≥ sk. Thus, the overflow of f̂ can be avoided by using
the above computation. The fused multiply-accumulate can be
adopted in the double underlined part of these equations. For

computing
√
ĝ2 + f̂ 2, we employ xLARTG implemented in LA-

PACK.

5.3 Computation of the Norm of Vectors
5.3.1 Approximate Computation of the Norm of Vectors√
β̂ j, j and

√
β̂k,k represent the approximated norm of â j and

the approximated norm of âk, respectively.

√
β̂ j, j ≈ ||â j||2, (40)√
β̂k,k ≈ ||âk ||2, (41)

where

â j = cos(θ)a j + sin(θ)ak, (42)

âk = − sin(θ)a j + cos(θ)ak. (43)
√
β̂ j, j and

√
β̂k,k are computed as follows,

√
β̂ j, j =

√
s2

j + t ×
(
ĝ/t j

)
, (44)

= s j ×
√

1 + t ×
(
ĝ/

(
s j × δ j

))
, (45)

√
β̂k,k =

√
s2

k − t ×
(
ĝ/t j

)
, (46)
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= sk ×
√

1 − t × (ĝ/ (sk × δk)), (47)

where s j and sk denote the norm of a j and the norm of ak, re-
spectively. The fused multiply-accumulate can be adopted in the
double underlined part of these equations. If 1 − t × (ĝ/ (sk × δk))

is not positive, we must use xNRM2 implemented in LAPACK for
computing the norm of the vector ak.
5.3.2 Accurate Computation of the Norm of Vectors

Let x be the vector whose norm you compute.

x = (x1, x2, . . . , xm) . (48)

Under the condition that the approximation of the norm α is
known, the underflow and overflow can be avoided by using the
following computation.

||x||2 = α ×
√( x1

α

)2
+

( x2

α

)2
+ · · · +

( xm

α

)2
(49)

Concretely, the implementation is as follows.

β ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

SAFMIN α < SAFMIN

α otherwise
, (50)

γ ≡ 1
β
, (51)

�0 = 0, (52)

�1 = �0 + (γx1)2, (53)

�2 = �1 + (γx2)2, · · · , (54)

�m = �m−1 + (γxm)2, (55)

||x||2 = β ×
√
�m. (56)

The fused multiply-accumulate can be adopted in the double un-
derlined part of these equations.

6. Experiments

We evaluated the proposed implementation to see if it had
higher accuracy than those of the QR method, OQDS method
in Ref. [1], and xGESVJ implemented in LAPACK-3.9.0, which
is a routine for the one-sided Jacobi method. Because the test
matrices are upper triangular, the Householder transformation is
adopted as a preprocessing method for the QR and OQDS meth-
ods.

6.1 Environment
Table 1 summarizes the experimental environment. We use

four real random upper triangular matrices, whose dimensions
are 500 × 500, 1,000 × 1,000, 1,500 × 1,500, and 2,000 × 2,000,
respectively. The following Frobenius norms are used to evaluate
the computation errors:

||A −UΣV �||F , (57)

||U�U − I ||F , (58)

||V �V − I ||F . (59)

In the experiments, tol for the Jacobi method is set to tol =

Table 1 Experimental environment.

CPU Intel(R) Core(TM) i7-9700 CPU 3.00 GHz
OS Ubuntu 20.04.1 LTS

RAM 16 GB
Cache 12 MB Intel(R) Smart Cache

Compiler gfortran 9.3.0
Options -O3 -mtune=native -march=native
Software Lapack-3.9.0

Table 2 Number of iterations of xGESVJ and our method in single preci-
sion.

dimension size one-sided Jacobi Proposal
500 11 13

1,000 13 16
1,500 15 16
2,000 15 19

Table 3 Number of iterations of xGESVJ and our method in double preci-
sion.

dimension size one-sided Jacobi Proposal
500 14 16

1,000 18 17
1,500 20 21
2,000 22 24

√
mε, where ε denotes a machine epsilon. This setting is adopted

in xGESVJ implemented in LAPACK. In our implementation, if
ĝ < SAFMIN, then tol =

√
mε the otherwise tol = ε. From the

line 11 in the Algorithm 1, we obtain

a�j ak > tol · ||a j|| · ||ak ||,
g > tol · s j · sk,

t jg > tol · t j · s j · sk,

ĝ > tol · δ j · sk.

Thus, instead of the line 11 in the Algorithm 1, we adopt ĝ >
tol · δ j · sk.

6.2 Result and Consideration
Table 2 and Table 3 show iteration number of xGESVJ and our

method in single precision and double precision, respectively.
Figure 3 depicts the performance results in single precision.

Figure 4 depicts the performance results in double precision. Fig-
ure 4 has the same tendency as Fig. 3.

Table 4 and Table 5 show computation time in single precision
and double precision, respectively. From Fig. 3 (a), Fig. 4 (a), Ta-
ble 4 and Table 5, it is evident that the proposed implementation
is faster than xGESVJ. Computation cost in the Givens rotation
with high accuracy is higher than that in the Jacobi rotation in
xGESVJ. However, since we reduced redundant computation to
speed up the operation, we can archive the speed up of the pro-
posed implementation.

Table 6 and Table 7 show the comparison of ||A −UΣV �||F
in single precision and double precision, respectively. From
Fig. 3 (b) and Table 6, it is evident that ||A − UΣV �||F in the
proposed implementation is the highest among all the imple-
mentations. On the other hand, in Fig. 4 (b) and Table 7, the
||A − UΣV �||F in the proposed implementation is better than
that in the QR method and xGESVJ. It is caused that the QR and
OQDS methods are affected by rounding errors due to prepro-
cessing via the Householder transformation; the Givens rotation
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Fig. 3 Comparison in single precision.

of the proposed implementation with high accuracy is better than
that of xGESVJ.

Table 8 and Table 9 show the comparison of ||U�U − I ||F
in single precision and double precision, respectively. From
Fig. 3 (c), Fig. 4 (c), Table 8 and Table 9, it is evident that ||U�U−
I ||F in the proposed implementation is the highest among all the
implementations. It is caused for the same reason as Fig. 3 (b) and
Table 6. Especially, from Fig. 3 (c), we can see that the orthogo-
nality of left singular vectors in the proposed implementation is
approximately 10 times more accurate than that in xGESVJ.

Table 10 and Table 11 show the comparison of ||V �V − I ||F
in single precision and double precision, respectively. From
Fig. 3 (d) and Fig. 4 (d), we say that ||V �V − I ||F in the pro-
posed implementation is smaller than that in the QR method and
xGESVJ. From Table 10 and Table 11, ||V �V − I ||F in the pro-

Fig. 4 Comparison in double precision.

Table 4 Comparison of computation time in single precision (sec.).

dimension size QR OQDS one-sided Jacobi Proposal
500 0.17 0.15 0.71 0.68

1,000 1.39 1.13 6.47 5.77
1,500 5.32 3.92 24.69 21.88
2,000 20.42 9.99 58.76 53.85

Table 5 Comparison of computation time in double precision (sec.).

dimension size QR OQDS one-sided Jacobi Proposal
500 0.23 0.24 1.03 0.92

1,000 2.05 2.05 9.98 8.43
1,500 8.42 7.78 37.38 35.42
2,000 30.10 18.73 96.50 86.59

posed implementation is slightly larger than that in the OQDS
method but not considerably different.

In this study, we aimed to implement a highly accurate one-
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Table 6 Comparison of ||A−UΣV �||F in single precision (10−5).

dimension size QR OQDS one-sided Jacobi Proposal
500 43.30 34.17 63.29 28.13

1,000 113.15 86.04 253.96 77.41
1,500 216.14 155.80 411.77 146.04
2,000 336.20 236.57 677.04 216.10

Table 7 Comparison of ||A−UΣV �||F in double precision (10−13).

dimension size QR OQDS one-sided Jacobi Proposal
500 11.14 6.22 11.16 6.82

1,000 24.85 17.22 38.20 18.69
1,500 49.38 38.72 69.90 35.76
2,000 66.20 46.40 104.53 52.45

Table 8 Comparison of ||U�U − I||F in single precision (10−5).

dimension size QR OQDS one-sided Jacobi Proposal
500 5.11 3.17 19.13 1.91

1,000 9.98 6.16 55.07 3.79
1,500 15.21 9.28 100.45 5.77
2,000 20.55 12.29 149.97 7.65

Table 9 Comparison of ||U�U − I||F in double precision (10−13).

dimension size QR OQDS one-sided Jacobi Proposal
500 0.99 0.62 2.53 0.30

1,000 1.90 1.22 7.11 0.61
1,500 2.88 1.82 11.23 0.97
2,000 3.78 2.42 17.63 1.29

Table 10 Comparison of ||V �V − I||F in single precision (10−5).

dimension size QR OQDS one-sided Jacobi Proposal
500 4.86 3.12 8.20 4.14

1,000 9.73 6.29 17.83 8.34
1,500 14.16 9.48 28.11 12.46
2,000 19.09 12.61 39.14 16.75

Table 11 Comparison of ||V �V − I||F in double precision (10−13).

dimension size QR OQDS one-sided Jacobi Proposal
500 0.97 0.61 1.49 0.90

1,000 1.87 1.21 3.13 1.82
1,500 2.83 1.81 4.97 2.78
2,000 3.73 2.43 6.83 3.71

sided Jacobi method. Experimental results confirm that although
the computation time of the proposed implementation is smaller
than that of the conventional implementation, its accuracy is sig-
nificantly higher. In the Sakurai–Sugiura method, only left singu-
lar vectors U are required. Therefore, the orthogonality of right
singular vector V and the accuracy of singular value decomposi-
tion ||A−UΣV �||F are not relevant. Furthermore, ||V �V −I ||F
and ||A −UΣV �||F in the proposed implementation are compa-
rable to that in the OQDS method. Hence, the proposed imple-
mentation of the one-sided Jacobi method with high accuracy is
appropriate for the Sakurai–Sugiura method. In other words, a
column space, which is required of the Sakurai–Sugiura method,
can be computed higher accuracy with the proposed implementa-
tion.

7. Conclusion

We proposed a novel implementation of the one-sided Jacobi
method with high accuracy. In the implementation, a Givens
rotation with high accuracy and the fused multiply-accumulate
were adopted. Notably, overflow and underflow may occur in
the conventional method [4]. To avoid this problem, we have

carefully improved the one-sided Jacobi method. Because the
Givens rotation with high accuracy requires considerable compu-
tation time, we reduced redundant computation to speed up the
operation. The experimental result confirmed that the proposed
implementation is faster than the routine in LAPACK. Further-
more, the orthogonality of the left singular vectors in the pro-
posed implementation was the best among all the implementa-
tions. In the Sakurai–Sugiura method, only left singular vectors
are required. Consequently, the proposed implementation real-
ized the one-sided Jacobi method with high accuracy. Hence,
our proposed method might be applied to the Sakurai–Sugiura
method.

As a future work, we wish to further speedup the proposed
method.
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Appendix
The proof for the Eqs. (19)–(28) is shown in this appendix.

From,

J1

⎛⎜⎜⎜⎜⎜⎝ a�j a j a�j ak

a�j ak a�k ak

⎞⎟⎟⎟⎟⎟⎠ J2 =

⎛⎜⎜⎜⎜⎝ β̂ j, j 0
0 β̂k,k

⎞⎟⎟⎟⎟⎠ ,

where,

J1 =

⎛⎜⎜⎜⎜⎝ cos(θ) sin(θ)
− sin(θ) cos(θ)

⎞⎟⎟⎟⎟⎠ ,
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J2 =

⎛⎜⎜⎜⎜⎝ cos(θ) − sin(θ)
sin(θ) cos(θ)

⎞⎟⎟⎟⎟⎠ ,
we obtain,

cos2(θ)a�j a j + sin(2θ)a�j ak + sin2(θ)a�k ak = β̂ j, j, (A.1)

cos(2θ)a�j ak − sin(2θ)
2

(
a�j a j − a�k ak

)
= 0, (A.2)

sin2(θ)a�j a j − sin(2θ)a�j ak + cos2(θ)a�k ak = β̂k,k. (A.3)

From Eq. (A.2),

tan(2θ) =
2a�j ak

a�j a j − a�k ak
=
η

ζ
,

2θ = tan−1

(
η

ζ

)
,

sin (2θ) = sin

(
tan−1

(
η

ζ

))
=

η

ζ

√
1 +

(
η
ζ

)2
,

cos (2θ) = cos

(
tan−1

(
η

ζ

))
=

1√
1 +

(
η
ζ

)2
.

From,

tan (θ) =
sin (2θ)

1 + cos (2θ)
,

the following equations are satisfied,

tan (θ) =
η

ζ + ζ

√
1 +

(
η
ζ

)2
,

=
η

ζ + sign
( √
ζ2 + η2, ζ

) ,

cos (θ) =
1√

1 + tan2 (θ)
,

sin (θ) =
tan (θ)√

1 + tan2 (θ)
,

where sign(a, b) means |a| × sign (b). If tan (2θ) = 0, two vectors
(a j,ak) are orthogonal. In addition, θ is restricted by |θ| ≤ π

4 .
Thus, we can assume tan (2θ) � 0 and cos(θ) � 0. From,

cos(θ) − sin(θ)
tan(2θ)

= cos(θ) − sin(θ)

(
1 − tan2(θ)

2 tan(θ)

)
,

= cos(θ)

(
1 + tan2(θ)

2

)
,

=
1

2 cos(θ)
,

Equation (A.1), and Eq. (A.3), we obtain,

β̂ j, j = cos2(θ)a�j a j + sin(2θ)a�j ak + sin2(θ)a�k ak,

= a�j a j + sin(2θ)a�j ak + sin2(θ)
(
a�k ak − a�j a j

)
,

= a�j a j + sin(2θ)a�j ak − 2

(
sin2(θ)
tan (2θ)

)
a�j ak,

= a�j a j + 2 sin(θ)

(
cos(θ) − sin(θ)

tan (2θ)

)
a�j ak,

= a�j a j + tan(θ)a�j ak,

β̂k,k = sin2(θ)a�j a j − sin(2θ)a�j ak + cos2(θ)a�k ak,

= a�k ak − sin(2θ)a�j ak + sin2(θ)
(
a�j a j − a�k ak

)
,

= a�k ak − sin(2θ)a�j ak + 2

(
sin2(θ)
tan (2θ)

)
a�j ak,

= a�k ak − 2 sin(θ)

(
cos(θ) − sin(θ)

tan (2θ)

)
a�j ak,

= a�k ak − tan(θ)a�j ak.
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