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Abstract: We improve a branch-and-bound algorithm called MCT （Tomita et al., FAW 2016, LNCS 9711,
pp.215–226, 2016) for finding a maximum clique. First, we devise a new efficient approximation algorithm
for finding a maximum clique. Second, we employ MIS vertex ordering with an appropriate precondition.
Third, we employ a combination of Re-NUMBER and Infra-chromatic bound. Finally, we devise an adaptive
change of stages of the search tree. The finally improved MCT algorithm is named MCT∗.
It is shown that MCT∗ algorithm is significantly faster than MCT by extensive computational experiments.

In addition, it is shown that MCT∗ algorithm is faster than the state-of-the-art IncMC2 algorithm（Li et
al., INFORMS J. Computing, 30, pp. 137–153, 2018）for many instances.

1. Introduction
Given an undirected graph G, a clique is a subgraph in

which all pairs of vertices are mutually adjacent in G. Many

important problems can be formulated as maximum clique

problems [16].

Algorithms for finding a maximum clique ([16], [14]) in a

given graph have received much attention especially recently,

since they have applications in many areas. There has been

much theoretical and experimental work on this problem

[16]. In particular, while finding a maximum clique is a typ-

ical NP-hard problem, considerable progress has been made

for solving this problem in practice. Furthermore, much

faster algorithms are required in order to solve many prac-

tical problems. Along this line, Tomita et al. developed a

series of branch-and-bound algorithms (MCQ [9], MCR [10],

MCS [11], [12] and MCT [13] among others) that run fast

in practice. It was shown that MCT is very fast for many
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instances [13].

In this report, we present improvements to MCT in order

to make it much faster. First, Kanahara et al. devise a new

approximation algorithm named New IKLS [1] for the max-

imum clique problem in order to obtain a better initial lower

bound on the size of a maximum clique. Second, we intro-

duce MIS vertex ordering [5] with an appropriate precondi-

tion. Third, we introduce a combination of Re-NUMBER

and Infra-chromatic bound [7], [8]. Finally, we introduce

adaptive change of stages of the search tree. The new algo-

rithm obtained from MCT with the above all improvements

is named MCT∗. It is shown that MCT∗ is significantly

faster than MCT by extensive computational experiments.

The definitions and notation of this report are based on

[13]. A more detailed version of this report is to appear in

[15].

2. Improved algorithms

2.1 New approximation algorithms for finding a

maximum clique

While MCT [13] used the KLS algorithm by Katayama

et al. [2], the improved algorithms in this report will use

New IKLS [3], which is an extended version of KLS.

Iterated k-opt Local Search (IKLS) [3] is an Iterated Lo-
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cal Search based metaheuristic. IKLS consists of a Local

Search process in which KLS [2] is employed as a dedicated

local search and Kick process that escapes from local op-

tima obtained by KLS. As an additional strategy performed

occasionally, Restart is employed to diversify the search by

moving to other search points. KLS is an effective local

search based on variable depth search (VDS) proposed by

Katayama et al. [2]. In KLS, k-opt neighborhood search,

consisting of add phase and drop phase, is repeated until a

maximal clique is found.

In this report, we devise and employ a further improved

approximation algorithm, named New IKLS, based on [1].

New IKLS consists of Multi-start KLS (MKLS), IKLS-

SFI and simplified Hyper-Heuristic IKLS (HH-IKLS). In

New IKLS, one of these algorithms (MKLS, IKLS-SFI and

HH-IKLS) is chosen for the search based on edge density

dens of a given graph.

Replacing KLS(V,Q′
max) in MCT (at line 17 of Fig. 4.

of [13]) by New IKLS(V,Q′
max) gives us a new algorithm

named MCT1.

2.2 Vertex ordering at the root of the search tree

It is well known that EXTENDED INITIAL SORT-

NUMBER (degeneracy ordering) especially at the root of

the search tree is effective in general for searching as in MCR

[10] and MCS [11].

On the other hand, Li et al. showed that their MIS vertex

ordering at the root of the search tree is remarkably effective

for searching for some types of graphs as in IncMaxCLQ [4]

and IncMC2 [5].

2.2.1 MIS vertex ordering

Given a graph G = (V,E), MIS vertex ordering for V is

defined as follows:

First, we extract a MIS in G and name it S1. Second, we

extract a MIS in G1 = (V \S1, E ∩ (V \S1)) = G\S1 and

name it S2. Third, we extract a MIS in G2 = G1\S2 and

name it S3. ... Until Gk = Gk−1\Sk = ∅. Then in each

Si (1 ≤ i ≤ k), we sort the vertices in Si in nonincreasing

order of their degrees. Finally, we obtain the MIS vertex

ordering V ′ for V as V ′ = S1 ∪S2 ∪S3 ∪ ...∪Sk, where the

vertices in S1 appear first in the same order as in S1, and

then the vertices in S2 follow in the same way, and so on.

This completes the definition of MIS vertex ordering.

In order to extract MISs S1, S2, ..., Sk from

G,G1, ..., Gk−1, we employ an algorithm consisting of

a simple maximum-clique-finding MCS1 algorithm [13]

to their compliment graphs Ḡ, Ḡ1, ..., Ḡk−1 successively.

Here, MIS vertex ordering is applied only if the density of

G is greater than or equal to 0.7+ϵ (ϵ = 0.01) where the

complement graph Ḡ is sparse and the MCS1 algorithm can

be easily carried out. In addition, MIS vertex ordering is

applied only if maxv∈V {No(v)} >| Qmax | because of the

bounding condition.

2.2.2 New precondition for MIS vertex ordering

MIS vertex ordering is not effective on all kinds of graphs,

and it should be applied very carefully. Li et al. [4]

restricted the application of MIS vertex ordering to the

case where |{i ∈ {1, 2, ..., k} | |Si| = 1}| ≤ 1. A similar

precondition is also applied in [5].

First, we applied MIS vertex ordering under the same pre-

condition of [4] or [5], and found that MIS vertex ordering

did not work well for some graphs in our environment.

So, we define a new precondition as follows:

Given G = (V,E), let vertices in V have been ordered by

EXTENDED INITIAL SORT-NUMBER and let No be the

numbers assigned herein. In addition, let the result of MIS

vertex ordering be a sequence of maximum independent sets

S1, ..., Sk as above, and let No′ be numbers assigned accord-

ing to this MIS vertex ordering. We pay attention to vertex

p (= V [|V |]) that is the last vertex after the application of

EXTENDED INITIAL SORT-NUMBER, that is to be vis-

ited first in this case, and vertex q = Sk[|Sk|] that is the

last vertex when MIS vertex ordering is applied, that is to

be visited first in this case. Let Qmax be a maximum clique

so far obtained. Now we consider two integers t1 and t2 such

that

t1 = | {v ∈ V ∩ Γ (p) | No(v) > |Qmax| − 1} |, and
t2 = |

{
v ∈ V ∩ Γ (q) | No′(v) > |Qmax| − 1

}
|.

Then our new precondition for MIS vertex ordering re-

quires the following (1) or (2) to hold:

t1
t2 + 1

× t1 − t2
|V | > 0.3 (1)

max
v∈R

{No′(v)} = |Qmax| (2)

When equation (2) holds, expansion of the search ter-

minates owing to the bounding condition. When the con-

dition (1) or (2) holds, we apply MIS vertex ordering to

V . Otherwise, vertices in V remains to be ordered by

EXTENDED INITIAL SORT-NUMBER. We give the pro-
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cedure of MIS vertex ordering combined with our new

precondition the name of MIS vertex ordering(V,No).

The new algorithm based on MCT1, equipped with this

MIS vertex ordering(V,No) is named MCT2.

2.3 Combination of Re-NUMBER and Infra-

chromatic bound

Numbering and Re-NUMBERing is very effective to get

an upper bound of the size of a maximum clique. But, it

is known that the gap between the chromatic number χ(G)

and the size of a maximum clique ω(G) can be arbitrarily

large for G = (V,E) [6]. In order to avoid this difficulty,

Li et al. [4], [5] introduced a new upper bound based on

MaxSAT. Subsequently, San Segund et al. [7], [8] devised

Infra-chromatic bound as its simplified version as follows:

Given a subgraph GR = (R,ER) with R ⊆ V , let a

sequence of independent sets be C1, C2, ..., Cmaxno where

C1 ∪ C2 ∪ ... ∪ Cmaxno = R, and let a maximum clique

found so far and the current clique be Qmax and Q, re-

spectively. Let Noth = |Qmax| − |Q| and Ta = CNoth
∪

CNoth+1 ∪ ... ∪ Cmaxno where vertices in Ta are ordered

as in R and only a vertex in Ta should be expanded. We

begin by letting the forbidden number of vertices F :=

∅. For each pi = Ta[i], i = 1, 2, ..., |Ta|, try to find

k1 ∈ {1, 2, ..., Noth}\F such that |Γ (pi) ∩ Ck1
| = 1. If

such k1 is found then let q ∈ Γ (pi) ∩ Ck1
. Subsequently,

try to find k2 ∈ {1, 2, ..., Noth}\F (k2 ≠ k1) such that

|Γ (pi) ∩ Γ (q) ∩ Ck2
| = ∅. If such k2 exists then we can

prune expansion from pi owing to Infra-chromatic bound

[7], [8] and let Ta := Ta\{pi} and F := F ∪ {k1, k2}. Such

a process as above is repeated in all possible ways. 2

We employ a procedure Re-Ic that first executes

Re-NUMBER if possible and otherwise executes Infra-

chromatic bound as in [8]. The new MCT2 algorithm ob-

tained from MCT2 by replacing Re-NUMBER at stages 2

and 3 by Re-Ic is named MCT3 algorithm.

2.4 Adaptive change of stages of the search tree

2.4.1 Stage value T and thresholds Th1, Th2 in MCT

We recall the preceding MCT algorithm for its stage value T

and thresholds Th1, Th2. In MCT, each node of the search

tree (subproblem) is classified in stage 1, stage 2, or stage 3

depending on the stage value T .

Let a set of candidate vertices in question be R, Noth :=

|Qmax| − |Q|, and Rp = R ∩ Γ (p) for p ∈ R, where Rp is

a child of R in the search tree. We define the stage value T

for Rp as follows:

T =
|{v ∈ Rp|No(v) > Noth}|

|Rp|
× dens (3)

In MCT, we defined that Th1 = 0.4 and Th2 = 0.1, and

determined the stages of Rp as follows: The stage of the

root of the search tree is in stage 1. If T ≥ Th1 and its

parent R is in stage 1, then Rp is in stage 1. Otherwise, if

Th2 ≤ T < Th1 or dens > 0.95 + ϵ, then Rp is in stage 2.

If T ≤ Th2 then Rp is in stage 3.

2.4.2 Adaptive change of threshold Th2

When the stage value T is large, the number of vertices to

be expanded becomes large.

If the threshold Th2 is set to be larger, then the portion

of stage 3 becomes larger compared to that of stage 2, where

the lightened procedure is carried out at the portion of stage

3. It is considered to be effective if the subproblem is large

then we set the threshold Th2 to be large, otherwise we set

the threshold Th2 to be small. Whether the subproblem is

large or not is determined by the threshold value T at depth

1 of the subproblem in question. In our new algorithm, we

let Th2 := 0.15 if T ≥ Th1 at depth 1 of the subproblem,

and we let Th2 := 0.05 otherwise.

By changing the setting of Th2 as above in MCT3, we

obtain the new algorithm named MCT∗.

3. Computational experiments

We carried out computational experiments in order to

demonstrate the effectiveness of the techniques given in the

previous section. All of KLS, New IKLS, MCT1, MCT2,

MCT3 and MCT∗ algorithms were implemented in C++

language. The computer had an Intel core i7-4790 CPU of

3.6 GHz clock with 8 GB of RAM and 8 MB of cache mem-

ory. It worked on a Linux CentOS7 operating system with

a compiler g++ 8.2.0 (Option -O3).

Table 1 shows stepwise improvements from MCT to

MCT∗ for selected graphs. Columns KLS and N I under

Sol in Table 1 show the solutions ( = the sizes of the nearly

maximum clique ) obtained by KLS and New IKLS, respec-

tively. We can confirm the stepwise improvements from this

Table 1. Especially, MCT∗ is remarkably faster than MCT

for frb family and keller5 owing to MIS vertex ordering un-

der our new precondition for it.
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Table 1 Comparison of MCT, MCT1, MCT2, MCT3, and MCT* algorithms

N I is short for New IKLS
Sol Times [sec] Branches [×10−6]

Graph KLS N I MCT MCT1 MCT2 MCT3 MCT* MCT MCT1 MCT2 MCT3 MCT*
Name n dens ω [2] [1] [11] [11]
brock400 3 400 0.748 31 25 31 60.0 17.6 17.7 14.9 13.1 27,096,288 9,583,440 9,583,440 13,624,073 2,935,638
brock400 4 400 0.749 33 25 33 47.2 9.49 9.58 8.02 7.15 21,666,083 4,645,207 4,645,207 1,385,863 1,433,259
gen400 p0.9 55 400 0.900 55 53 55 127 0.07 0.07 0.07 0.07 50,270,918 0 0 0 0
gen400 p0.9 65 400 0.900 65 65 65 0.46 0.24 0.06 0.08 0.07 57,932 57,932 0 0 0
p hat300-3 300 0.744 36 36 36 0.27 0.24 0.26 0.19 0.23 89,184 114,055 114,055 38,154 29,454
p hat700-2 700 0.498 44 44 44 0.66 0.66 0.66 0.57 0.47 196,742 196,742 196,742 96,409 52,454
p hat700-3 700 0.748 62 62 62 203 202 203 153 140 53,847,835 68,845,281 68,845,281 20,648,466 13,031,357
p hat1000-2 1,000 0.490 46 46 46 28.7 27.7 27.8 23.0 17.7 10,049,314 10,049,314 10,049,314 4,860,345 2,610,385
p hat1000-3 1,000 0.744 68 68 68 39,201 36,875 36,979 26,876 29,385 9,026,919,909 9,026,919,909 9,026,919,909 3,134,737,026 3,248,375,111
p hat1500-2 1,500 0.506 65 65 65 1,463 1,487 1,485 1,352 823 399,837,407 451,422,645 451,422,645 190,757,565 88,614,691
san400 0.9 1 400 0.900 100 100 100 0.28 0.06 0.06 0.08 0.08 0 0 0 0 0
sanr200 0.9 200 0.898 42 42 42 4.51 4.5 4.52 3.43 3.7 2,123,667 2,123,667 2,123,667 850,053 663,343
keller5 776 0.752 27 27 27 10,137 10,253 274 211 242 4,494,774,392 199,807,097 131,924,566 83,427,512 84,229,352
hamming10-2 1.024 0.990 512 512 512 7.53 0.93 0.91 0.91 0.88 0 0 0 0 0
frb30-15-1 450 0.824 30 28 29 151 155 0.22 0.22 0.22 83,357,094 85,329,599 112,481 96,126 95,729
frb30-15-2 450 0.823 30 30 30 124 123 0.06 0.06 0.06 64,620,862 64,620,862 0 0 0
frb30-15-3 450 0.824 30 28 29 126 115 0.15 0.15 0.15 73,217,126 65,548,985 59,654 52,363 51,885
frb30-15-4 450 0.823 30 29 30 537 226 0.06 0.06 0.06 314,921,319 120,629,113 0 0 0
frb30-15-5 450 0.824 30 29 29 151 150 0.09 0.09 0.09 85,333,028 85,333,028 19,468 16,735 16,652
frb35-17-1 595 0.842 35 32 34 5,070 4,909 0.26 0.25 0.25 2,556,662,455 2,504,087,791 79,823 68,333 68,308
frb35-17-2 595 0.842 35 33 34 18,846 18,958 4.82 4.65 4.63 9,997,474,079 9,940,818,787 2,604,325 2,251,618 2,251,495
frb35-17-3 595 0.842 35 33 34 4,534 4,324 1.09 1.07 1.07 2,305,493,121 2,196,967,869 559,379 481,089 480,425
frb35-17-4 595 0.842 35 32 34 7,069 6,808 0.26 0.25 0.25 3,493,698,010 3,255,677,248 72,925 63,386 63,356
frb35-17-5 595 0.842 35 33 35 16,717 6,794 0.11 0.11 0.10 8,679,207,631 3,348,191,463 0 0 0
frb40-19-1 760 0.857 40 38 40 >1day >1day 0.18 0.19 0.19 - - 0 0 0
frb40-19-2 760 0.857 40 37 39 >1day >1day 4.34 4.23 4.23 - - 2,064,228 1,792,513 1,791,884

In addition, we made comparisons between MCT and

MCT* for more DIMACS and BHOSLIB graphs and for

random graphs. We also added the results of execution of

the state-of-the-art IncMC2 algorithm by Li et al. [5] for

the same problem. As the results,

MCT∗ is faster than MCT for many instances tested, and

MCT∗ is faster than IncMC2 for many DIMACS and

BHOSLIB benchmark graphs tested.

MCT∗ is faster than IncMC2 for all random graphs except

for very dense random graphs and r10000.2. See

Table 2. Comparison of Algorithms (for benchmark

graphs) in [15], and

Table 3. Comparison of Algorithms (for random graphs)

in [15] for the details.

In conclusion, MCT∗ is significantly faster than MCT.

MCT∗ is faster than IncMc2 and the other algorithms in

[5] for many instances. Note that the number of branches

in IncMC2 is the smallest in many cases but the CPU time

is not necessarily smallest because of the heavy overhead of

time in IncMC2. IncMC2 is fast for dense graphs.
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