
IPSJ SIG Technical Report

Towards Compute Flexibility for Genome Analysis in the
Hybrid Cloud

Takeshi Yoshimura1,a) Tatsuhiro Chiba1,b)

Abstract: Genome analysis has become an emerging research area in medical and life science. Genome Analysis
Toolkit (GATK), an industry-standard genome analysis tool, enables to run and speed up genome analysis in the cloud.
Cromwell, a workflow engine for GATK enables to define and reproducible pipelines for complex data processing as
files written in WDL, a domain-specific language for defining genome workflows. Their motivation is to efficiently
process a huge amount of genome data in the cloud. However, the current design of Cromwell and GATK has less flex-
ibility in terms of choices of the cloud vendors and storage due to vendor lock-in. In this paper, we extend Cromwell
to support OpenShift and multiple cloud object storage to avoid vendor lock-in. We also characterize performance
overheads and resource underutilization of existing Cromwell. It leads to our design leveraging copy bypassing with
container storage interface and cost-efficient pod scheduling with cluster autoscaling. This paper demonstrates early
experimental results of copy overheads and resource utilization under managed Red Hat OpenShift 4.6 on IBM Cloud.
The experiments show that copy reductions of our backend reduced the elapsed time for an example workflow by 14%
and 20% compared to existing backends. Also, cluster autoscaling reduced the cost of a best-practice workflow by
31%.

Keywords: Cloud, Container, Cloud object storage, Genomics, OpenShift

1. Introduction
Genome analysis has become an emerging research area in

medical and life science. In particular, understanding human
DNA structures is their essential element. DNA structures are
represented as a string of initials of four nucleic acids such as
TACTTGATC. Their variant discovery (insertion, deletion, etc.)
helps understand diseases, for example.

From the perspective of computing systems, genome analy-
sis poses challenges in its data scale and required computation
power. A single genome file is generated as a 100 GB dataset
including errors and redundancy. Typical genomics workflows
start from data preprocessing and eventually step into the variant
discovery of input datasets.

As well as other data analytics, much effort has been paid
to move genome analysis to the cloud [6]. Genome Analy-
sis Toolkit (GATK) [3], an industry-standard genome analysis
toolkit, enables genome analysis in the cloud while speeding up
their analysis with scatter-gather. Cromwell [5], a workflow en-
gine for GATK enables reproducible pipelines for complex data
processing as files written in WDL, a domain-specific language
for genome workflows. WDL files consist of multiple tasks of
GATK and Linux command lines and are submitted to backend
compute infrastructures by Cromwell. Supported backends are
cloud job execution engines (e.g., AWS Batch, Google life sci-
ence, and Tomcat-based deployments for Kubernetes) and on-

1 IBM Research — Tokyo, Hakozaki Chuo-ku, Japan
a) tyos@jp.ibm.com
b) chiba@jp.ibm.com

premise HPC clusters (e.g., LSF [7]). Cloud infrastructures en-
able users to easily leverage on-demand compute resources and
automated cluster management of cloud infrastructures to maxi-
mize analysis speed and minimize costs for computing and stor-
age. Cloud object storage (COS) is often used as primary storage
for its cheap, unlimited, and high-available capacity.

However, the current design of Cromwell and GATK has less
flexibility in terms of choices of the cloud vendors and storage
due to vendor lock-in. In particular, cloud backends for Cromwell
assume all the input and output resources are at the same cloud
as compute nodes. Deployments of compute nodes and storage
at the same site improve the performance of workloads, while it
prevents us from running them under complex situations. For ex-
ample, users may need to run a part of genome analysis on an
on-premise or non-supported cloud such as IBM Cloud to meet
constraints of data location and privacy. In that case, they need
to use on-premise backends with HPC schedulers to run GATK
on multiple locations. Unfortunately, it is more challenging for
users to set up and manage on-premise infrastructures than pub-
lic clouds.

In this paper, we introduce our OpenShift [12] backend for
Cromwell with multiple cloud object storage to avoid vendor
lock-in. Our backend enables users to reuse their workflows de-
ployed on OpenShift regardless of underlying clouds and data lo-
cation. OpenShift is now provided as a common managed enter-
prise Kubernetes at public clouds but also deployed as a cluster
manager for on-premise while offering standardized interfaces for
any sites. Cromwell translates WDL files to OpenShift batch jobs
and they are deployed as containers in a compute cluster. Users

c⃝ 2021 Information Processing Society of Japan 1

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

can manage and monitor each job as a container with existing
tools such as Grafana while reducing cloud costs with cluster au-
toscaling public OpenShift services offer.

Towards genome analysis in the hybrid cloud, our primary con-
cern is cost and performance since workloads may access remote
compute or storage in any sites. In this work, we also characterize
problems of current designs of Cromwell and GATK workflows.

First, Cromwell backends have an overhead to copy input and
output files between local filesystem (FS) and COS since data can
be located at COS but GATK workflows depend on local Linux
FSs. COS has different semantics from local FSs to provide its
simple and cheap functionality for massive data warehouses with
high availability. Therefore, every Cromwell backend needs to
copy input data from COS to local FS (localization) and syn-
chronize local outputs to COS (delocalization). Localization is
a common performance overhead of GATK workflows and exist-
ing backends.

Our backend leverages CSI (cloud storage interface) to solve
the copy overheads. CSI enables containers to mount multiple
COS as a normal Linux FS via FUSE (filesystem in userspace).
Unlike existing backends, legacy workflows do not need ad-
ditional localizations since they can directly access COS via
POSIX-like FS interfaces. Our backend translates COS reads and
writes to operations on mounted paths at container FSs so that
users still can specify unique file schemas for cloud object storage
such as s3:// and gs://. File readers from COS are directly trans-
lated into a file read on mounted paths. In contrast, Cromwell
splits writing a file to COS into temporal writes to a local file and
an indirect copy of it to COS since FSs for COS slowdown (or do
not provide) random writes due to the limitation of COS.

Second, GATK workflows tend to underutilize cluster re-
sources due to a scatter-gather execution model. Scatter jobs are
highly parallelized to consume data. In contrast, gather jobs tend
to run as a single job to combine outputs of scatter jobs. Thus,
it is difficult for users to determine the best cluster size for each
workflow.

To solve resource underutilization, our backend enables users
to specify job scheduling policies that are suitable to cluster au-
toscaling in OpenShift. Cluster autoscaling assumes to accumu-
late as many pods as possible to the minimum number of nodes,
but the default scheduling policy of Kubernetes is the opposite;
they try to balance resource usages among a cluster. As a result,
our backend enables each workflow to modify the pod sched-
uler to increase the chances to remove nodes. Also, it allows
advanced scheduling constraints such as node selector and taints
tolerations.

This paper demonstrates early experimental results of copy
overheads and resource utilization under managed Red Hat Open-
Shift on IBM Cloud. The experiments show that copy reductions
of our backend reduced the elapsed time for an example workflow
by 14% and 20% compared to existing backends. Also, cluster
autoscaling with our modified job scheduling reduced the cost of
a best-practice workflow by 31%. The used best-practice work-
flow assumed input files at Google Storage but we successfully
run it on IBM Cloud with IBM COS as our output destination.
The experimental result indicates that ClusterAutoscaler is essen-

tial to improve cost-efficiency, but we still underutilize compute
clusters.

2. Cromwell and GATK
GATK offers a Java-based command for genome analysis in

Linux. It supports various sub-commands for genome analy-
sis such as variant discovery with target and reference human
genome. Users also can implement complex genome pipelines
in Linux combining these sub-commands and Linux commands
such as python.

In this section, we pick up an example workflow from Ge-
nomics on AWS [1]. The workflow consists of GATK sub-
commands HaplotypeCaller and MergeGVCF. They generate
GVCF output files from input files for interval (how to par-
tition processing), BAM (analyzed human genome sequence),
and Reference (reference genome sequences to be com-
pared with). The example workflow defines scatter jobs with
HaplotypeCaller and a gather job with MergeGVCF.

In this paper, we do not deeply explain the details of each sub-
command internal and data format. However, we pick up and
discuss key characteristics of GATK and Cromwell from the per-
spective of their model of exectuion, storage, and engineering.
We then discuss their problems when we create a new backend
for Cromwell.

2.1 Scatter-gather executions
GATK supports the “scatter-gather” based pipeline execution.

Users can launch multiple GATK subcommands with different
interval files. Then, each scatter job utilizes interval files to de-
termine consumed region of input data and generates scattered
outputs. Finally, users can start combine all the scattered out-
puts with a gather job. Spark often shows better scalability
than scatter-gather, but many workflows still utilize scatter-gather
commands.

Scatter-gather execution in a static computing cluster underuti-
lizes computing resources because scatter requires many nodes
but gather uses only one. AWS Batch and Google life sciences
provide dynamic cluster autoscaling for on-demand resource us-
ages.

A solution to resource underutilization for OpenShift is its
cluster autoscaling add-on. However, we still need to carefully
build cluster environments since OpenShift tries to deploy many
system pods on cluster nodes. Also, we need to ensure storage
consistency to tolerate dynamic node join and release to cluster
storage.

2.2 Gap between COS and POSIX
BAM and Reference files can be from 10 to 100 GB. Thus, stor-

age capacity and cost are common challenges for GATK work-
flows. Many example genome inputs are stored on COS such as
Google storage and AWS S3.

Existing GATK workflows heavily depend on GATK and
Linux command lines running on a local POSIX FS. COS pur-
posely provides simplified APIs to improve costs and availability
compared to local FS. For example, COS does not support ran-
dom and even append writes to each file on a bucket. Random file

c⃝ 2021 Information Processing Society of Japan 2

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

reads are supported, but they still have huge latency.
Consequently, users need to manually copy files between COS

and local FSs unless they use an external workflow engine, i.e.,
Cromwell. A key role of Cromwell backends is to fill the gap be-
tween COS and local files. They automatically copy input/output
files before/after executing a GATK workflow between local FS
and COS.

Unfortunately, file copies between COS and local FSs cause
a performance bottleneck at storage for jobs including GATK
scatter-gather and normal Linux command lines. The AWS Batch
backend requires file copies before and after HaplotypeCaller
and MergeGVCF in the AWS example workflow. They read huge
input files and write intermediate files, which the next job may
read again. Also, scatter-gather execution easily causes dupli-
cated reads within a node. For example, many scatter tasks
(HaplotypeCaller in the example) assigned at a node read
the same BAM file from COS, but they are not cached or de-
duplicated.

Kubernetes (and OpenShift) provides rich functionality to cus-
tomize cluster storage as a persistent volume with container stor-
age interface (CSI). An S3 plugin for CSI enables us to directly
mount and access a COS bucket as a local FS. However, it still
does not fill the gap between COS and local FSs. Genome tasks
cannot randomly write or read with optimized performance on a
local FS for a COS bucket.

2.3 Legacy code with WDL
GATK and Cromwell enable analysis reproduction with WDL

files as a key part of scientific activities. WDL files contain a set
of GATK/Linux command lines to implement genome analysis.
These binaries are packaged as Docker container images. Users
can easily replay the same analysis on the same/different datasets
even if the analysis requires complex pipelines. WDL files are
distributed as best practice workflows on public code reposito-
ries.

Figure 1 and 2 show an example WDL file and input JSON
file. WDL files contain various built-in functions to easily define
complex pipelines. For example, read lines() enable to extract
inputs and pass the file content to other built-in functions or com-
mand lines. ‘scatter‘ clauses are used to define scatter tasks. Each
task can consume outputs of former jobs. Cromwell calculates
task execution flows and automatically requests task execution to
backends with input and output files.

So, the backend components need to translate given WDL files
to be suitable for backend infrastructures while preserving WDL
portability. To do so, all the backends must be able to start Docker
images with specified resource usages. Also, they need to trans-
late input and output files according to the configuration such as
COS as output destinations before/after file copies described in
Section 2.2. For our case, we need to translate WDL files to be a
container job with valid mount paths for inputs and outputs. Note
that files on COS can be accessed not only by genome tasks but
also Cromwell itself for built-in file functions such as read lines()
and size().

A problem of current Cromwell is that existing backends are
not flexible enough to support multiple COS. In particular, they

1 workflow Test {
2 File bam
3 File reference
4 File intervals
5 Array[File] invs = read_lines(intervals)
6 String gvcf = basename(bam, ".bam")+".g.vcf.gz"
7 scatter (interval in invs) {
8 call HCTask {
9 input:

10 bam = bam,
11 reference = ref_fasta,
12 interval = interval,
13 gvcf = gvcf
14 }}
15 call MergeTask {
16 input:
17 input_vcfs = HCTask.output_gvcf,
18 gvcf = gvcf
19 }
20 output { File hcgvcf = MergeTask.output_vcf }
21 }
22 task HCTask {
23 File bam
24 File reference
25 String interval
26 String gvcf
27 command {
28 /gatk/gatk HaplotypeCaller \
29 -R ${reference} -I ${bam} \
30 -O ${gvcf} -L ${interval}
31 }
32 runtime {
33 docker: "broadinstitute/gatk:4.0.0.0"
34 memory: "10 GB"
35 cpu: 1
36 }
37 output { File output_gvcf = "${gvcf}" }
38 }
39 task MergeTask {
40 Array [File] input_vcfs
41 String gvcf
42 command {
43 /gatk/gatk MergeVcfs \
44 --INPUT=${sep=’ --INPUT=’ input_vcfs}
45 --OUTPUT=${gvcf}
46 }
47 runtime {
48 docker: "broadinstitute/gatk:4.0.0.0"
49 memory: "30 GB"
50 cpu: 1
51 }
52 output { File output_vcf = ${gvcf}" }
53 }

Fig. 1 Example WDL.
The figure shows simplied job definitoin with scatter-gather. WDL enables
users to specify docker images and resource usages. Each task can execute

any command lines. WDL also has built-in functions such as read lines,
which extracts file contents.

1 {
2 "Test.bam":"s3://bucket/input.bam",
3 "Test.reference": "s3://bucket/ref.fasta",
4 "Test.intervals": "s3://bucket/intervals.txt"
5 }

Fig. 2 Example input JSON file.
Users can pass input variables to WDL files in JSON format. This increases
the reusability of WDL files. However, built-in functions such as read lines
make WDL files dependent on input sources.

do not optimize heterogeneity such as using AWS S3 from an on-
premise HPC cluster within the same workflow. Also, Cromwell
backends do not support changing API endpoints for COS to en-
able S3-compatible storage like IBM Cloud and local object stor-
age such as MinIO and Ceph [13]. To obtain optimized perfor-
mance, users need to manually migrate data to local storage or a
single COS and modify all the inputs to point to the storage loca-
tion. This is not an easy task for Cromwell users since they also

c⃝ 2021 Information Processing Society of Japan 3

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

Infrastructure Copy opt. Autoscaling Hybrid cloud
AWS, Google No Yes No
TESK (Kubernetes) No No No
LSF Yes Yes No
OpenShift (ours) Yes Yes Yes

Table 1 Comparison with existing infrastructures.

Cromwell supports various cloud infrastructures or software backends for
genome workflows. “Copy opt.” represents automation and optimization of

huge file copies between COS and local FS. The “Autoscaling” column
shows the Cromwell backend and its backend infrastructure supports cluster

autoscaling. Users can deploy any sites with any COS with OpenShift
(“Hybrid cloud”). Cromwell supports more infrastructures such as other
HPC clusters, Azure Batch, and Alibaba Cloud ?, but all of them do not

satisify the above properties.

need to check and update interval files (e.g., Figure 1). Thus, we
aim to ensure the portability of JSON input files as well as WDL
files.

2.4 Summary and Comparison with existing approaches
In summary, Cromwell causes a bottleneck at storage for many

legacy GATK workflows. A drastic approach is to rebuild a new
workflow engine to improve the storage model like Glow [11].
However, we rather retrofit existing backends to preserve rich
amounts of legacy genome analysis codes. Figure 5 lists the sum-
mary of comparison of Cromwell backends. Our OpenShift back-
end can resolve three requirements discussed in this section, but
others cannot.

Our backend design is strongly inspired by existing public
cloud backends for AWS Batch and Google life science. They
expose APIs to start containers with commands and specified re-
source usages on top of their virtualized infrastructures. They
automatically install Docker environments on the allocated nodes
and dynamically create/delete nodes according to a load of work-
flows. Unfortunately, they do not support multiple inputs and
outputs for S3-compatible COS (e.g., IBM COS) and depend on
simple file copies between COS and local FS.

Our backend simplifies job deployments compared to the ex-
isting Kubernetes backend, TESK. TESK additionally creates an
API service container, in which users can submit tasks via stan-
dardized APIs for genome tasks. Cromwell is deployed to the
same cluster as the API container and it communicates with each
other. Each genome task is deployed as a container, but its storage
model is different from ours. It creates a container to share input,
intermediate, and output files among task containers. Currently,
they assume using cluster-local storage to store all the data, but
the model is not suitable for external storage like COS. Also, they
cannot eliminate the bottleneck at storage due to huge file copies.
Their architecture is also difficult to apply cluster autoscaling be-
cause of the difficulty of restarting or migrating their API and
storage services. We utilize CSI and carefully manage file I/O to
avoid the bottleneck at storage.

Users can use HPC schedulers to build flexible compute envi-
ronments to meet our requirements. For example, LSF [7] sup-
ports cluster autoscaling at various public clouds and copy op-
timization with hard link and cached inputs. However, it does
not support S3-like COS such as IBM COS and the capability of
hard links are limited to specific devices. To obtain the optimized

FUSE FUSE FUSE

New node

FUSE

GATK GATK GATK Cromwell

Object storage

OpenShift

Fig. 3 Architecture overview.
Cromwell runs as a deployment pod to communicate with clients and

OpenShift master. Each genome task starts as a container job with COS
mounted as a container local FS. Cromwell configurations and COS

credentials are stored as config maps or secrets in OpenShift. OpenShift
automatically starts or shutdowns nodes according to cluster resource usages

with cluster autoscaling add-on.

performance, they need to manually mount a POSIX FS shared
among a cluster and specify them as input and output paths. How-
ever, the cluster setups require advanced knowledge to create con-
sistent distributed storage even under cluster autoscaling. Also, it
remains challenging for users to carefully migrate data to avoid
file copies. Our backends simplify user’s additional efforts to
optimize storage and manage clusters leveraging the features of
OpenShift.

3. OpenShift backend for Cromwell
In this work, we develop a new Cromwell backend to deploy

genome workflows on OpenShift. OpenShift abstracts backend
cloud infrastructure and provides advanced features including our
requirements (i.e., cluster autoscaling and CSI) to efficiently run
applications on a cloud cluster. Users can simplify cluster man-
agement regardless of underlying cloud infrastructure including
public and private ones.

Figure 3 overviews our backend architecture including COS.
We deploy Cromwell as a deployment pod in an OpenShift clus-
ter with special permissions assigned to manage jobs. COS is
mounted as a normal Linux FS in each container as persistent
volume for S3-like storage using CSI (deployed as daemonset).
When OpenShift cluster autoscaling decides to increase/decrease
nodes, the CSI daemonset is automatically deployed/destroyed
from/to the target nodes. Note that Cromwell already provides
Swagger Web UI so that clients can deploy their jobs to their
clusters. We need to expose the port for the Swagger Web UI in
OpenShift settings.

Problems described in Section 2 cannot be solved without care-
fully updating multiple software components. Cluster autoscaling
requires appropriate configurations of OpenShift as well as state-
less CSI daemonset. Storage bottleneck is solved by utilizing
node-wide shared mounts and Cromwell’s strategic file copies.
We enable hybrid cloud usages by enabling reading Kubernetes
secrets in Cromwell and Cromwell’s change to translate paths for
multiple COS. We describe individual solutions per logical soft-

c⃝ 2021 Information Processing Society of Japan 4

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

1 k8s {
2 auths = [{
3 name = "k8sauth",
4 scheme = "incluster"
5 }]
6 }
7 aws {
8 application-name = "cromwell"
9 region = "ap-northeast-1"

10 auths = [{
11 name = "s3_auth"
12 scheme = "k8s_secrets"
13 keys = [{
14 name = "s3-secret",
15 namespace = "cromwell"
16 }]
17 }]
18 }
19 google {
20 application-name = "cromwell",
21 auths = [{
22 name = "no_auth",
23 scheme = "no_auth"
24 }]
25 }
26 engine { filesystems {
27 s3 { auth = "s3_auth" },
28 gcs { auth = "no_auth" },
29 }}
30 backend {
31 default = "k8s"
32 providers { k8s {
33 actor-factory = "..."
34 config {
35 auth = "k8sauth"
36 filesystems {
37 s3 { auth = "s3_auth" },
38 gcs {auth = "no_auth" }
39 }
40 namespace = "cromwell"
41 k8sServiceAccountName = "cromwell-sa"
42 pullImageSecrets = ["regcred"]
43 s3PvcName = "cos-pvc"
44 root = "/cromwell_root/cos-bucket/cromwell"
45 schedulerName = "my-scheduler"
46 tolerations = "app=cromwell:NoSchedule"
47 nodeSelector = "nodeType:cromwell"
48 }
49 }}
50 }

Fig. 4 Example configuration

ware component in the following subsections.

3.1 Backend configuration
Cromwell users must provide a configuration to specify cre-

dentials for cloud infrastructures and how to utilize them. Specif-
ically, our backend requires to pass credentials for OpenShift (or
Kubernetes) as compute and COS as storage. We also enable con-
figurations to specify a namespace, scheduling constraints, and
other essential pieces to deploy a job to OpenShift as a container.

Figure 4 shows an example configuration for our backend. The
file is passed as an input argument for Cromwell. It has five top
blocks, “k8s”, “aws”, “google”, “engine”, “backend”. The first
three contain credential information to use OpenShift and COS.
The latter two specify Cromwell behavior such as which directory
is used as outputs.

The “k8s” block allows associating in-cluster credentials
for Kubernetes/OpenShift to Cromwell. In the case where
scheme="incluster" is specified as Figure 4, Cromwell can
directly communicate with the Kubernetes/OpenShift master to
deploy jobs as containers in the same cluster where Cromwell
is deployed. Note that users need to assign an appropriate role
to Cromwell pod so that Cromwell can deploy and look up

jobs, namespaces, etc. We also provide scheme="default"
credentials to pass current default credential that kubectl uses
to Cromwell. It can deploy jobs to a remote cluster as well as
kubectl users often use for their cluster management.

The “aws” and “google” blocks are used to pass credentials for
S3-like COS and Google storage, respectively. Figure 4 shows
a case where a user passes a Kubernetes secret as credentials for
S3-like COS (IBM Cloud in this case) and sets anonymous ones
for Google. By specifying these two block names in the “engine”
block, Cromwell can utilize these two credentials when it directly
reads input files with S3/Google APIs for built-in functions such
as read_lines(). Anonymous credentials are useful for many
example best-practice workflows distributed by Broad Institute,
which use example inputs on publicly available buckets. Users
can reuse Kubernetes secrets passed to CSI as described in Sec-
tion 3.3.

The “backend” block specifies essential configurations for de-
ployed containers. Cromwell uses k8s credentials with “k8sauth”
(from “auth”) to deploy containers to specified namespace
(“namespace”) with pull credential (“pullImageSecrets”). If
Cromwell needs to directly read files at built-in functions, it looks
up credential names in other blocks from attribute “filesystem”.
Many existing images for genome analysis assume root privi-
leges, and so, users need to set up service accounts for them
and pass it as “k8sServiceAccountName”, since OpenShift al-
lows limited permissions by default. Each container mounts
a persistent volume claim “s3PvcName” points onto the local
path at “root”. As described in Section 3.3, our CSI extracts
mount points for multiple COS under the path at “root” and
containers can easily access them via the path. Also, users
can pass scheduler costraints as schedulerName, tolerations,
nodeSelector to enable cluster autoscaling as described in Sec-
tion 3.4.

3.2 Task manager for OpenShift
Cromwell submits each task in WDL files (e.g., Figure 1)

as a container in OpenShift. As described in Section 3.1,
users can configure essential credentials and task management of
Cromwell. Then, Cromwell monitors the status of each deployed
job and terminates them if they are finished after collecting de-
bug information such as terminated container status on an output
directory. Users can also monitor each job status via Kubernetes
general command like kubectl or oc for OpenShift.

By default, Cromwell generates a bash script to run the com-
mand in WDL files (e.g., Figure 1) and collect standard outputs
and errors for it. We reuse the generated script to deploy a task as
a container. However, we need to modify input and output files if
users pass files with unique schemas (e.g., s3:// and gs://).

Cromwell traverses input WDL files and can determine which
files are used as inputs and outputs. The configuration for “aws”
and “gs” blocks enable us to know which schemas and buckets
can be used in WDL files. Our backend maps COS files with
schema://bucket/path to /cromwell_root/bucket/path
if the configuration root=/cromwell_root/ in the “backend”
block. We hook the command generation to replace the string for
inputs and outputs to be appropriate local paths. Details for how

c⃝ 2021 Information Processing Society of Japan 5

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

to mount COS as local paths are described in Section 3.3.
Compared to backends for AWS Batch and Google, our back-

ends support multiple schemes and buckets and set up endpoints.
If Cromwell needs to directly access a bucket for built-in func-
tions, we set environmental variables for credentials at every ac-
cess to the bucket. The library for S3 integrated to Cromwell
looks up and uses the particular keys for environmental variables
to access buckets. Also, we added anonymous credentials for
many best-practice workflows.

WDL files also enable users to specify resource usages for each
task. We reuse the Kubernetes resource claim to specify the re-
source usages. As far as our observation, AWS Batch and Google
life sciences utilize this information only for instance selection.
Thus, their resource usage includes ones of all the system services
on the instance. In contrast, our backend allocates the specified
resource usage only for a genome task.

A side-effect of this slightly different behavior is that users
need to be aware of the resource usages of system services for
OpenShift and file cache for the genome task. System services
consume a small part of every node memory (less than 1 GB),
and so, tasks cannot utilize less memory than users expect from
what the instance catalog shows. Also, OpenShift and Kuber-
netes count memory usages for inactive file caches in a container
as their memory usages. So, when users try to naively copy huge
amounts of files within a container, it can wake up out-of-memory
killers to stop the container. This is another motivation to utilize
CSI to indirectly access COS via a different container and try to
avoid huge copies as described in Section 3.3. We believe this
strict model for resource allocation reduces unpredictable perfor-
mance degradation.

3.3 CSI
CSI modules enable users to mount custom FSs on contain-

ers. As shown in Figure 4, the name of persistent volume claim
(“s3PvcName”) is mounted at a path of “root” in each task con-
tainer. Each CSI module is deployed as FUSE to every node as a
Kubernetes pod (i.e., daemonset). They are instantiated at the as-
sociated node startup and terminated at the node shutdown. FUSE
instances enable tasks to access files on COS as local FS in Linux.

Our CSI module interleaves each file read/write from/to multi-
ple COS. We reuse Goofys [8], an S3-like storage client for the
core logic of our CSI module. Goofys optimizes write perfor-
mance by utilizing multi-part uploads of COS and large prefetch
reads while allowing random reads. However, it does not sup-
port random writes. It also increases too much memory foot-
prints for containers if we mount multiple COS as different FUSE
instances. We solve these challenges by modifying Cromwell’s
backend and Goofys itself.

We modify file access operations depending on file operation,
i.e., read or write. As shown in Section 3.2, our Cromwell back-
end translates each COS file path to a corresponding local mount
path. Its path translation can also capture the operation type of
each file access. We directly specify a local path if the file ac-
cess is a read since Goofys supports random reads and most of
the reads from genome workflows are sequential. In contrast,
file writes are separated into temporal file writes to local FS and

copying it to COS. As reported in optimization work for overlay
FSs [15], writing container FSs may increase overheads, but we
take this simple approach because most file writes were small and
the writing throughput of genome analysis was bound to CPU.

The issue of utilizing too much memory footprint is resolved
by modifying Goofys to support multiple COS at a single FUSE
instance. Goofys is already well-structured to support multi-
ple COS, and thus, we added a new pseudo-COS client, which
changes target COS and calls the original backend for it accord-
ing to file paths. We currently put bucket names as the second
top directory of a path where Goofys is mounted. Our Cromwell
backend also assumes this directory structure to access each COS.

Our CSI module instantiates a single FUSE instance with a
single mount point for multiple COS and invokes Linux “bind-
mount” to virtually share the mount point among each task con-
tainer. By doing so, we can de-duplicate file accesses from mul-
tiple task containers in a node with the Linux page cache. This
situation is typical when users try to run scatter-gather jobs like
Figure 1 in a few huge instances. Scatter-gather jobs often read
the same input file with different intervals. In this case, existing
approaches like AWS and Google cannot utilize node-level page
cache although file accesses are duplicated.

An important design decision here is that Goofys is a state-
less client for COS with write-through cache. Goofys leverages
page cache, but it also writes through each write to COS and
keeps the container stateless. Stateful clients (e.g., Agni [9]) may
drastically optimize file accesses with cluster-wide buffering and
caching, but they also suffer from the complexity to handle cluster
autoscaling described in Section 3.4.

3.4 Cluster autoscaling
We utilize an add-on for cluster autoscaling in OpenShift. The

add-on monitors resource usages of tasks on a worker pool, and
creates new instances if a new container cannot run under avail-
able resource slots in the pool. Then, workers are terminated if
they are underutilized more than configured periods. Unfortu-
nately, we still need additional configurations of clusters to im-
prove resource usages in a cluster. As shown in Figure 4, users
need to assign custom scheduling policies.

The default Kubernetes scheduler tries to balance the resource
usage among cluster nodes. However, cluster autoscaling re-
quires packing more containers into fewer nodes before delet-
ing unused nodes. So, users should set a custom scheduler
ClusterAutoscalerProvider to each task. By doing so, the
scheduler tries to assign tasks to the most frequently used nodes.

Also, cluster autoscaling cannot delete nodes if there are any
system services on them. OpenShift offers various services to
users and they can install any services to a cluster to satisfy their
requirements. However, such services can be randomly assigned
to a worker node that cluster autoscaling manages. To avoid this,
users need to add taints (e.g., app=cromwell:NoSchedule) to
the worker pool that cluster autoscaling manages. The taints
prevent any pods without tolerations like Figure 4 from being
scheduled to the tainted nodes. The toleration attributes enable
Cromwell to automatically assign the tolerations to each task con-
tainer. In contrast, users may need to avoid scheduling task con-

c⃝ 2021 Information Processing Society of Japan 6

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

tainers on particular worker pools. An attribute “nodeSelector”
can enable to bind task containers to specific groups of nodes in
a cluster.

Users also need to enable task preemptions when the dae-
monset of our CSI module is scheduled after task containers
on a node. Without task preemptions, we sometimes observed
scheduling deadlocks.

4. Experiments
In this section, we examine the following characteristics of our

OpenShift backend for Cromwell.
• File copy reductions with direct access to COS
• Portability of workflows using different COS
• Cost efficiency of cluster autoscaling
To this end, we first conduct a performance comparison with

different backends to understand the benefits of direct access to
COS. Next, we present another experiment of cluster autoscaling
at IBM Cloud with a best-practice workflow for Google Cloud.
Our demonstration runs on Red Hat OpenShift 4.6 on IBM Cloud
Container Platform.

4.1 Backend performance
Our first experiment runs a sample scatter-gather workflow de-

scribed in Section 2 on LSF, TESK, and our OpenShift backends.
The workflow uses input files in IBM COS at jp-tok. It first
reads an interval file at COS and concurrently starts 50 scatter
tasks. The scatter tasks generate intermediate files, and then, the
workflow eventually starts a single gather task to combine the in-
termediate files into a compression file.

Our LSF, TESK, and OpenShift clusters consist of ten com-
pute nodes of bx2-8x32 in jp-tok at IBM Cloud (i.e, 8 virtual
CPUs and 32 GB RAM, 16 Gbps network, and 100-GB, 3000-
IOPS block storage). In this experiment, we do not enable cluster
autoscaling to focus on the performance difference of backends’
storage usages. As discussed in Section 2.4, three clusters differ-
ently behave around input and intermediate files.

The LSF cluster has an additional storage node for a shared
network filesystem (NFS) to store all the intermediate and output
files. The NFS is built with a bx2-8x32 node and 100-GB, 3000-
IOPS block storage. The LSF cluster is configured to copy and
cache input data to the NFS before tasks for the workflow starts.

Our TESK cluster runs an API server and executes tasks on
a managed OpenShift 4.6 cluster with ten nodes of bx2-8x32.
TESK creates a persistent volume claim (PVC) with 10 GB, 100-
IOPS block storage for each task to store cached input and inter-
mediate files. The API server launches a job pod and it then starts
ones for copying inputs from COS to a PVC, executing a task,
copying outputs from the PVC to COS.

Our OpenShift cluster uses the same environment as our TESK
cluster. However, it does not create additional storage. It reuses
the container default storage to store intermediate files and each
container eventually copies to COS.

To break down performance results, we divide a job execution
into file copies and task executions. For the LSF backend, we esti-
mate the time of file copies by subtracting the starting time for the
first task and a workflow submission. For the TESK backend, we

0 10 20 30 40 50
Elapsed time (min)

tesk

openshift

lsf

Ba
ck

en
d

merge_exec
merge_copy

hc_exec hc_copy

Fig. 5 Performance comparison and breakdown.
Figure shows estimated times for file copies (copy) and execution (exec) of
two tasks, HaplotypeCaller (hc) and MergeGVCF (merge). Each estimated
time is stacked and shows the total elapsed time for the workflow. The results
are the average of five runs.

retrieve the pod creation time for the very first task execution and
estimate file copies as well as the LSF backend. Our OpenShift
backend does not copy files, and thus, the time for file copies is
estimated as zero although files are transferred on-demand during
each task execution.

Figure 5 shows our experimental results and breakdowns of
the workflow under each backend. Our OpenShift backend re-
duced the total time for the workflow by 14% (7.2 minutes) and
19% (10.8 minutes) compared to LSF and TESK, respectively.
A major reason for the performance improvement is reduced file
copies. Surprisingly, our backend also reduced the execution time
for HaplotypeCaller.

TESK added a 10-minutes overhead to copy files for two tasks
and 1.2-minutes for HaplotypeCaller execution. The major
TESK overhead was derived from allocating a PVC for each task
as well as file copies between COS and the PVC. Also, on the
TESK cluster, many HaplotypeCaller execution pods waited
for completions of other pods because of CPU/memory slot short-
ages in the cluster. TESK created four pods for each task (con-
troller, input copier, task execution, and output copier) and it con-
sumed more resource slots than our OpenShift backend.

LSF showed the best performance on MergeGVCF tasks since
it stores intermediate data on a cluster-local NFS, which have
lower latency than COS. However, HaplotypeCaller tasks
spent more time than our OpenShift backend. Our OpenShift
backend enables each task to read files on node-local FS, while
LSF tasks access a remote NFS. Another possibility is that the
NFS became a bottleneck due to concurrent access. So, we are
planning to test other high-performance FSs such as IBM Spec-
trum Scale (GPFS) and CephFS.

4.2 Cluster autoscaling
As a demonstration for cluster autoscaling and multi-COS sup-

ports, we run a best-practice workflow [4] distributed by Broad
Institute. The workflow runs data preprocessing and variant dis-
covery with parallelized HaplotypeCaller on public datasets in
Google Storage, while we configured outputs are written into
IBM COS at jp-tok.

We set up from 1 to 24 worker nodes of bx2.32x128 (32 vcores
of Cascadelake and 128GB RAM) of OpenShift 4.6 in a Tokyo
availability zone with ClusterAutoscaler. we used a very aggres-

c⃝ 2021 Information Processing Society of Japan 7

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

metrics autoscaling static
runtime hours 3.4 2.8
node hours 26.9 66.4
billing node hours 50.0 72.0
estimated cost $25 $36

Fig. 6 Cost and performance.
We run the same workflow with autoscaling and static cluster. “Node hours”
are the total hours of node runtime during the experimental period. “Billing
node hours” represent an estimated cost based on the hourly billing model.

Fig. 7 Number of nodes

sive deletion policy: deleting nodes with 3 minutes of unused
time. For comparison, we also conduct the same experiment but
with a static cluster running on 24 worker nodes.

Figure 6 shows the estimated cost and performance of the
best-practice workflow [4] with or without autoscaling. Au-
toscaling increased the runtime hours of the workflow by 21%
(3.4 hours vs. 2.8 hours) but reduced the total cost by 44%
(25vs36). Many of the nodes under autoscaling stop within an
hour, and so, the node hours of the autoscaling cluster were
much lower than the static. The results of billing node hours
show that charges even one second from node start to termi-
nation as one-hour node usage. The autoscaling-enabled clus-
ter should need 0.5/hourx50.0 =25, while the static should cost
0.5/hourx72 =36.

Figure 7 show the time-series data of the number of nodes. The
best-practice workflow has two big spikes and one small spike in
terms of resource consumption. These spikes were derived from
scatter parallelization. After these scatters, the workflow uses
much fewer resources to gather phase. These workload charac-
teristics highly motivate using ClusterAutoscaler of OpenShift.

Figure 8 and 9 show the ratio of actual resource usage from the
total reserved one in the cluster. Autoscaling increased memory
utilization especially around the end of this workflow by reduc-
ing the number of nodes. However, CPU utilization was still up
to around 35%. This number was lower than we expected. A
major reason is that the required resources specified in WDL files
are overestimated. Precise resource estimation is practically chal-
lenging, but we believe other features of OpenShift like Horizon-
tal Pod Autoscaler solve this issue.

5. Related work
Our prior work [14] gives a performance analysis and opti-

Fig. 8 Cluster CPU utilization

Fig. 9 Cluster memory utilization

mization of GATK sub-commands using Spark and COS. In par-
ticular, HDFS showed performance advantages over COS be-
cause its implementation does not utilize multi-part uploads of
COS. Our CSI module leverages the multi-part uploads to ef-
ficiently write files onto COS. Our Cromwell backend can also
utilize Spark sub-commands, but HDFS is not suitable for clus-
ter environments like OpenShift and Kubernetes. Utilizing COS
with the insights of our prior work is still important for porting
workflows using Spark with our backend.

Our key observation of this work is that the dominant perfor-
mance factor of genome analysis is storage. Our architecture uti-
lizes stateless, write-through cache for COS based on Goofys [8].
In contrast, Agni [9] offers a stateful, write-back cache for COS,
which shows higher performance than Goofys. However, these
write-back cache mechanisms do not support the elasticity of
clusters since their consistency models assume a static cluster.
Snowflake [10] solves the elasticity of data warehouse by uti-
lizing COS as disaggregated storage. In particular, lazy con-
sistent hashing assumes its stateless storage service (i.e., write-
through cache) to easily maintain the data consistency regardless
of dynamic node joins and releases. We also take their approach
to avoid complex consistency issues under cluster autoscaling.
Pocket [2] also offers optimized cache for COS with NVMe while
supporting the cluster elasticity. Unfortunately, they assume users

c⃝ 2021 Information Processing Society of Japan 8

Vol.2021-OS-153 No.7
2021/7/20

IPSJ SIG Technical Report

access data via their unique client interfaces, not Linux FS ones,
which legacy workflows heavily depend on.

6. Conclusion
In this paper, we present our experiences of developing a new

OpenShift backend for Cromwell. Our initial motivation behind
it is to reuse legacy codes in the hybrid cloud environments, but
current Cromwell is locked in specific cloud vendors or soft-
ware stacks. In addition to the initial problem, our observation
of GATK workflows showed that their characteristics posed chal-
lenges of resource underutilization, a storage bottleneck, and a
lack of multi-COS usages in a compute cluster. We resolved them
by leveraging the rich customizability of OpenShift such as add-
on for cluster autoscaling and CSI module as well as our careful
design of a new backend. As a demonstration, we reused an exist-
ing legacy workflow for Google Cloud on a managed OpenShift
at IBM Cloud. The experimental results showed that cluster au-
toscaling improves resource utilizations although we still do not
fully utilize cluster resources.

References
[1] Amazon Web Services: Examples — Genomics Workflows on

AWS, (online), available from ⟨https://docs.opendata.aws/genomics-
workflows/orchestration/cromwell/cromwell-examples.html⟩ (ac-
cessed 2021-06-24).

[2] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle and Christos Kozyrakis: Pocket: Elastic Ephemeral Storage
for Serverless Analytics, In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’18)
(2018).

[3] Broad Institute: GATK, (online), available from
⟨https://gatk.broadinstitute.org/hc/en-us⟩ (accessed 2021-06-01).

[4] Broad Institute: gatk-workflows/gatk4-genome-processing-pipeline,
(online), available from ⟨https://github.com/gatk-workflows/gatk4-
genome-processing-pipeline⟩ (accessed 2021-06-15).

[5] Broad Institute: Home - Cromwell, (online), available from
⟨https://cromwell.readthedocs.io/en/stable⟩ (accessed 2021-06-01).

[6] Geraldine A. Van der Auwera and Brian D. O’Connor: Genomics in
the Cloud, O’Reilly Media, Inc. (2020).

[7] IBM: IBM Spectrum LSF Suites — IBM, (online), available
from ⟨https://www.ibm.com/products/hpc-workload-management⟩
(accessed 2021-06-01).

[8] Ka-Hing Cheung: Goofys, (online), available from
⟨https://github.com/kahing/goofys⟩ (accessed 2021-06-01).

[9] Kunal Lillaney, Vasily Tarasov, David Pease and Randal Burns: Agni:
An Efficient Dual-Access File System over Object Storage, In Pro-
ceedings of the ACM Symposium on Cloud Computing (SoCC ’19)
(2019).

[10] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong,
Ashish Motivala and Thierry Cruanes: Building An Elastic Query En-
gine on Disaggregated Storage, In Proceedings of the 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
’20) (2020).

[11] Project Glow: Glow, (online), available from ⟨https://projectglow.io⟩
(accessed 2021-06-01).

[12] Red Hat: Red Hat OpenShift, the open hybrid cloud platform built
on Kubernetes, (online), available from ⟨https://www.openshift.com⟩
(accessed 2021-06-01).

[13] Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long and
Carlos Maltzahn: Ceph: A Scalable, High-Performance Distributed
File System, In Proceedings of the 7th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI ’06) (2006).

[14] Tatsuhiro Chiba and Takeshi Yoshimura: Investigating Genome Anal-
ysis Pipeline Performance on GATK with Cloud Object Storage, In
Proceedings of the 28th International Symposium on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunication Systems
(MASCOTS ’20) (2020).

[15] Yu Sun, Jiaxin Lei, Seunghee Shin and Hui Lu: Baoverlay: A Block-
Accessible Overlay File System for Fast and Efficient Container Stor-
age, In Proceedings of the 11th ACM Symposium on Cloud Computing
(SoCC ’20) (2020).

c⃝ 2021 Information Processing Society of Japan 9

Vol.2021-OS-153 No.7
2021/7/20

