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Abstract: Variational quantum algorithms (VQAs) are expected to become a practical application of near-
term noisy quantum computers. Although the effect of the noise crucially determines whether a VQA works
or not, the heuristic nature of VQAs makes it difficult to establish analytic theories. Analytic estimations of
the impact of the noise are urgent for searching for quantum advantages, as numerical simulations of noisy
quantum computers on classical computers are heavy and quite limited to small scale problems. In this work,
we establish an analytic estimation of the error in the cost function of VQAs due to the noise. The estimation
is applicable to any typical VQAs under the Gaussian noise, which is equivalent to a class of stochastic noise
models. Notably, the depolarizing noise is included in this model. As a result, we obtain an estimation of
the noise level to guarantee a required precision. Our formulae show how the Hessian of the cost function
affects the sensitivity to the noise. This insight implies a trade-off relation between the trainability and the
noise resilience of the cost function. As a highlight of the applications of the formula, we propose a quantum
error mitigation method which is different from the extrapolation and the probabilistic error cancellation.

Keywords: Quantum computing, NISQ, Variational quantum algorithms, Hybrid quantum-classical algo-
rithms, Quantum error mitigation, Effects of the noise

1. Introduction

To make use of noisy intermediate-scale quantum (NISQ)

devices in the near future [37], we have to seek a classi-

cally intractable task that hundreds of qubits can resolve

under the lack of the error correction. A promising frame-

work to realize it is hybrid quantum-classical algorithms,

where most of the processes are done on a classical computer,

receiving the output from a quantum circuit which com-

putes some classically intractable functions. Especially, vari-

ational quantum algorithms (VQAs) have attracted much

attention, where the cost function of a variational problem

is computed by utilizing low-depth quantum circuits and

the optimization of the variational parameters is done on

a classical computer. For example, the variational quan-

tum eigensolver (VQE) [1], [20], [36] is a VQA to obtain an

approximation of the ground state of a Hamiltonian, and

beyond [5], [15], [16], [18], [26], [27], [31], [33], [35], [38], [41].

The quantum approximate optimization algorithm (QAOA)
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[8], [9], [34] is another attracting VQA for combinatorial

optimization problems. The quantum machine learning al-

gorithms [2], [3] for NISQ devices have also been proposed

in various settings [6], [13], [21], [24], [28], [44].

The noise is one of the most crucial obstacles to over-

come toward achieving quantum advantage via VQAs. The

heuristic nature of VQAs makes it difficult to establish ana-

lytic theories on the effects of the noise on the performance

of VQAs. As numerical simulations of noisy quantum com-

puters on classical computers are heavy and limited to small

scale problems, analytic estimations of the impact of the

noise are urgent for obtaining knowledge about intermedi-

ate scale problems with potential quantum advantage. In

fact, this issue has been actively studied in recent years,

and some analytic results have been obtained, for example,

on the noise resilience of the optimization results [11], [39],

noise-induced barren plateaus [42], noise-induced breaking

of symmetries [10], effects of the noise on the convergence

property of the optimizations in VQAs [12].

In this work, we establish an analytic estimation formula

on the error in the cost function of VQAs due to the noise.

Especially, we focus on the the effect of the noise on the

expectation value in order to investigate ultimately achiev-

able and unachievable precision, aside from the statistical

error due to the finiteness of the number of measurements.

The estimation is applicable to any typical VQAs under the

Gaussian noise, which is equivalent to a class of stochastic

noise models. Notably, the depolarizing noise is included in

this model. As a result, we obtain an estimation of the or-
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der of magnitude of the noise level to guarantee a required

precision. Our formula shows how the Hessian of the cost

function affects the sensitivity to the noise. This insight

implies trade-off relations between the trainability and the

noise resilience of the cost function.

The correspondence from the stochastic noise model to

the Gaussian model is given by introducing virtual paramet-

ric gates associated with the noise. Our formula essentially

comes from the expansion of the cost function with respect

to the fluctuations in the parameters due to the noise. This

fact implies that a picture of the noise based on fluctua-

tions of parameters of virtual parametric gates can serve as

a powerful tool for performance analysis of VQAs. In fact,

we propose a quantum error mitigation method based on

this expansion including the virtual parameters, which is

different from existing error mitigation methods such as the

extrapolation [23], [40] and the probabilistic error cancella-

tion [7], [40].

2. Setup

2.1 Gaussian noise model of the parameterized

quantum circuit

We consider the following parameterized quantum circuit

U(θ⃗) =

M∏
i=1

Ui(θi)Wi, (1)

where Ui(θi) = exp[−iθiAi/2] with A2
i = I, and Wi is a

generic non-parametric gate. Typical parameterized quan-

tum circuits such as the hardware efficient ansatz [13], [20]

satisfy the above requirements. We focus on a VQA to

minimize the cost function C(θ⃗) given by the sum of the

expectation values of the target Hermitian operators Hl

(l = 1, 2, · · · , L) as

C(θ⃗) =
L∑

l=1

⟨ϕl|U(θ⃗)†HlU(θ⃗) |ϕl⟩ , (2)

where |ϕl⟩ (l = 1, 2, · · · , L) are the input states.

We consider the Gaussian noise in the parameter, where

the cost function Cnoisy(θ⃗) obtained by the noisy circuit is

given as

Cnoisy(θ⃗) =

∫
dµ(∆⃗) ⟨ϕ|U(θ⃗ + ∆⃗)†HU(θ⃗ + ∆⃗) |ϕ⟩

=

∫
dµ(∆⃗) C(θ⃗ + ∆⃗), (3)

where the components of the noise ∆⃗ = (∆1,∆2, · · · ,∆M )

are independent random variables following the Gaussian

distribution with the mean 0 and the variance σ2
i for the

i-th component, and µ denotes the measure. The Gaussian

noise model represents not only the fluctuation in the pa-

rameter but also the stochastic noise in general as shown in

Sec. 2.2.

In this paper, we only focus on the effect of the noise

on the expectation value in order to investigate ultimately

achievable and unachievable precision, aside from the statis-

tical error due to the finiteness of the number of measure-

ments.

2.2 Correspondence to the stochastic noise model

Here, we show the correspondence relation between the

Gaussian and stochastic noise models along the same lines

with Nielsen and Chuang’s textbook [32]. We consider the

case where M ′ stochastic noise channels

EA′
j ,pj

(ρ) := (1− pj)ρ+ pjA
′
jρA

′
j (4)

with respect to operators A′
j (j = 1, 2, · · · ,M ′), A′2

j = I

are inserted in the circuit, where ρ denotes a density oper-

ator and 0 < pj < 1/2 is the error probability. Hereafter,

the prime denotes the operator or parameter associated with

the stochastic noise to distinguish from that of the noiseless

circuit. We define a map

UA′
j ,∆

(ρ) := e−i∆
2
A′

jρei
∆
2
A′

j . (5)

Using the relation

e−i∆
2
A′

j = 1 cos
∆

2
− iA′

j sin
∆

2
, (6)

we have

UA′
j ,∆

(ρ) + UA′
j ,−∆(ρ) = 2ρ cos2

∆

2
+ 2A′

jρA
′
j sin

2 ∆

2
.

(7)

From Eq. (7), we obtain the equivalence between the Gaus-

sian noise channel GA′
j ,σ

′
j
with respect to A′

j with the vari-

ance

σ′2
j = −2 log(1− 2pj) (8)

and the given stochastic noise channel EA′
j ,pj

as follows:

GA′
j ,σ

′
j
(ρ)

=

∫ ∞

−∞
UA′

j ,∆
(ρ)

e
− ∆2

2σ′2
j

√
2πσ′

j

d∆

=2

∫ ∞

0

(
2ρ cos2

∆

2
+ 2A′

jρA
′
j sin

2 ∆

2

)
e
− ∆2

2σ′2
j

√
2πσ′

j

d∆

=(1− pj)ρ+ pjA
′
jρA

′
j

=EA′
j ,pj

(ρ). (9)

Hence, if we consider the stochastic A′
j-noise (j =

1, 2, · · · ,M ′), it can be treated as the Gaussian noise with

respect to the virtually inserted parametric gate U ′
j(θ

′
j) =

exp
[
−iθ′jA

′
j/2
]
at the place where the noise occurs, where

θ′j ≡ 0 throughout the optimization. In the following, θ⃗ de-

notes the abbreviation of the total parameters (θ⃗, θ⃗′) = (θ⃗, 0)

when the virtual parameters for the stochastic noises are

considered. Especially, the partial derivative of the cost

function with respect to a virtual parameter θ′j with θ⃗′ = 0

is denoted by ∂
∂θ′

j
C(θ⃗). We remark that Eq. (8) implies that
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σ′2
j = 4pj +O

(
p2j

)
(10)

for small error probability pj from the Taylor expansion

− log(1− x) = x+O(x2).

Especially, the depolarizing noise is one of the most ba-

sic and serious error sources for noisy quantum computers.

A key feature of the Gaussian noise model is its capability

of treating the depolarizing noise via the above correspon-

dence. The depolarizing noise is described by the depolariz-

ing channel Dk,q(ρ) = (1− q)ρ+ q(4k − 1)−1∑4k−1
i=1 PiρPi,

where Pi runs over all k-qubit Pauli operators except for the

identity I =: P0, and q is the error probability. Since we can

decompose the depolarizing channel into multiple stochastic

noise channels with respect to each single Pauli operator,

the above correspondence works.

Lemma 1. The k-qubit depolarizing channel Dk,q can be

decomposed as Dk,q =
∏

i GPi,σdep,k
into 4k − 1 Gaussian

noise channels with respect to k-qubit Pauli operators Pi

with the common variance

σ2
dep,k = − 1

4k−1
log

(
1− 4k

4k − 1
q

)
. (11)

Proof. We consider the vector space Vk consisting of the

operators acting on k-qubit. Then, the k-qubit Pauli opera-

tors {Pi|i = 0, 1, · · · , 4k−1} is a basis of Vk. It is convenient

to consider the matrix representation of quantum channels

with respect to this basis. Since the Pauli channels UPi
(ρ) =

PiρPi are mutually commutative, they are simultaneously

diagonalized in the Pauli basis {Pi|i = 0, 1, · · · , 4k − 1}.
Then, the calculation of the product

∏4k−1
i=1 [(1−p)I+pUPi

]

is reduced to the calculation of each diagonal component.

The (j, j)-component of (1− p)I + pUPi
is 1− 2p if Pi an-

ticommutes with Pj , otherwise 1 (i.e. if Pi commutes with

Pj). The number of the generators of the Pauli group which

anticommute to each element Pi is calculated as

2k
∑

r≤k,r:odd

(
k

r

)
= 2k2k−1 = 2 · 4k−1. (12)

Therefore, the matrix expression of
∏

i[(1 − p)I + pUPi
] in

the Pauli basis is

diag(1, (1− 2p)2·4
k−1

, · · · , (1− 2p)2·4
k−1

). (13)

On the other hand, the matrix expression of the k-qubit

depolarizing channel is

diag

(
1, 1− 4k

4k − 1
q, · · · , 1− 4k

4k − 1
q

)
. (14)

Thus,
∏

i[(1−p)I+pUPi
] is equal to the depolarizing chan-

nel with the error probability q if p satisfies

2 log(1− 2p) =
1

4k−1
log

(
1− 4k

4k − 1
q

)
. (15)

Hence, the variance of the corresponding Gaussian noise (8)

reads

σ2
dep,k = −2 log(1− 2p) = − 1

4k−1
log

(
1− 4k

4k − 1
q

)
.

(16)

We remark that Eq. (11) implies that

σ2
dep,k =

4

4k − 1
q +O

(
q2
)

(17)

for small error probability q in the same way as Eq. (10).

3. Universal Error Estimation

Our first main result is the following estimation of the er-

ror ϵ(θ⃗) := Cnoisy(θ⃗)−C(θ⃗) in the cost function due to the

noise.

Theorem 1. We have the following estimation of the de-

viation of the cost function due to the noise:∣∣∣∣∣ϵ(θ⃗)− 1

2

M∑
i=1

∂2

∂θ2i
C(θ⃗)σ2

i

∣∣∣∣∣
≤
∑L

l=1(Emax,l − E0,l)

16

(
M∑
i=1

σ2
i

)2

, (18)

where E0,l, Emax,l are the minimum and the largest eigen-

values of Hl, respectively.

Proof. Let us introduce the multi-index notation for α ∈
NM and θ⃗ ∈ RM as follows:

θ⃗α :=

M∏
i=1

θαi

i , α! :=

M∏
i=1

αi!, |α| :=
M∑
i=1

αi. (19)

The partial derivatives of a function f are denoted as

Dαf :=
∂|α|

∂θα1
1 ∂θα2

2 · · · ∂θαM

M

f. (20)

We also consider the scalar multiplication kα =

(kα1, kα2, · · · , kαM ) for k ∈ N, α ∈ NM . By apply-

ing the Taylor’s theorem to the integrand C(θ⃗ + ∆⃗), the

definition of the noisy cost function (3) reads

Cnoisy(θ⃗)

=C(θ⃗) +
3∑

|α|=1

1

α!
DαC(θ⃗)

∫
∆⃗αdµ(∆⃗)

+
∑

|α′|=4

1

α′!

∫
Dα′

C(θ⃗ + s(θ⃗, ∆⃗)∆⃗)∆⃗α′
dµ(∆⃗)

=C(θ⃗) +
1

2

M∑
i=1

∂2

∂θ2i
C(θ⃗)σ2

i

+
∑
|α|=2

1

(2α)!

∫
D2αC(θ⃗ + s(θ⃗, ∆⃗)∆⃗)∆⃗2αdµ(∆⃗) (21)

with 0 < s(θ⃗, ∆⃗) < 1, where we have used the fact that

all odd moments of the Gaussian random variable vanish.

Because of A2
i = 1 the second derivatives read

∂2

∂θ2i
C(θ⃗) = −1

2

[
C(θ⃗)− C(θ⃗ + πe⃗i)

]
, (22)
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where e⃗i denotes the vector whose i-th component is 1 and

the other components are 0. Similar relation is used in

Refs. [4], [17], [25], [29]. By recursively applying the re-

lation (22), it turns out that the derivatives D2αC(θ⃗) have

the form

D2αC(θ⃗) =
1

2

 1

2|α|−1

2|α|−1∑
i=1

(
C(θ⃗i,1)− C(θ⃗i,2)

) (23)

with some parameters θ⃗i,1(2). Since
∑L

l=1 E0,l ≤ C(θ⃗) ≤∑L
l=1 Emax,l holds for any parameter θ⃗, we obtain [22]

|D2αC(θ⃗)| ≤
∑L

l=1(Emax,l − E0,l)

2
. (24)

Then, applying the formula
∫
∆2αi

i dµ = σ2αi

i (2αi − 1)!! of

the even moments of the Gaussian random variable, where

(2k − 1)!! := (2k − 1)(2k − 3) · · · 3 · 1 denotes the double

factorial, we obtain∣∣∣∣∣ϵ(θ⃗)− 1

2

M∑
i=1

∂2

∂θ2i
C(θ⃗)σ2

i

∣∣∣∣∣
=

∣∣∣∣∣∣
∑
|α|=2

1

(2α)!

∫
D2αC(θ⃗ + s(θ⃗, ∆⃗)∆⃗)∆⃗2αdµ(∆⃗)

∣∣∣∣∣∣
≤
∑L

l=1(Emax,l − E0,l)

2

∑
|α|=2

(2α− 1)!!

(2α)!
σ⃗2α

=

∑L
l=1(Emax,l − E0,l)

16

(
M∑
i=1

σ2
i

)2

, (25)

where 2α − 1 := (2α1 − 1, 2α2 − 1, · · · , 2αM − 1) and

σ⃗ := (σ1, σ2, · · · , σM ).

Theorem 1 implies that the error ϵ(θ⃗) is approximated as

ϵ(θ⃗) ≈ 1

2

M∑
i=1

∂2

∂θ2i
C(θ⃗)σ2

i (26)

if the variances σ2
i (i = 1, 2, · · · ,M) are small enough

so that
∑L

l=1(Emax,l − E0,l)
(∑M

i=1 σ
2
i

)2
is sufficiently

small. For typical problems,
∑L

l=1(Emax,l − E0,l) ≤
2
∑L

l=1 ∥Hl∥ is in polynomial order of the number of qubit

n, i. e.,
∑L

l=1(Emax,l −E0,l) = O(nr) with a positive num-

ber r (e. g. r = 1 for locally interacting spin systems,

r = 4 for the Jordan-Wigner transformed full configura-

tion interaction Hamiltonian of molecules [14], [19], [36]).

Then, if all the variances are in the same order σ2
i =

O(σ2) (i = 1, 2, · · · ,M), this approximation is valid when

σ2 = o
(
n− r

2 M−1
)

in the sense that
∑L

l=1(Emax,l −

E0,l)
(∑M

i=1 σ
2
i

)2
= o(1).

Applying Theorem 1 to the stochastic noise through the

correspondence to the Gaussian model shown in Sec. 2.2

with the relations (9) and (10), we obtain the following corol-

lary:

Corollary 1. If the stochastic noise channels EA′
j ,pj

(ρ) =

(1−pj)ρ+pjA
′
jρA

′
j (j = 1, 2, · · · ,M ′) with the error prob-

ability 0 < pj < 1/2 are inserted in the circuit, we have

the following approximation of the error:

ϵ(θ⃗) =
1

2

M∑
i=1

∂2

∂θ2i
C(θ⃗)σ2

i + 2
M ′∑
j=1

∂2

∂θ′2j
C(θ⃗)pj

+O

 L∑
l=1

(Emax,l − E0,l)

( M∑
i=1

σ2
i

)2

+

M ′∑
j=1

pj

2 ,

(27)

where θ′j is the virtual parameter associated with EA′
j
in-

troduced in Sec. 2.2 to give the correspondence between the

stochastic noise and the Gaussian noise models.

Especially, as a typical model, we consider a model such

that the depolarizing noise Dk,qk
is inserted after each k-

qubit gate, where we set qk = (4k−1−4−1)ckq with q being

the scaling of the error probability, and ck being the con-

stant factor characterizing the difference in the error rates

between different number-qubit gates. Then, we can apply

Corollary 1 to this model in combination with Lemma 1 as

follows:

ϵ(θ⃗) =
1

2

M ′∑
i=1

∂2

∂θ′2i
C(θ⃗)ck′

i
q +O

(
L∑

l=1

(Emax,l − E0,l)M
2q2
)
,

(28)

where θ′i denotes the virtual parameter associated with each

stochastic Pauli noise channel in the decomposition of the

k′
i-qubit depolarizing channels, and the total number of the

stochastic Pauli noise channels M ′ satisfies M ′ = O(M).

Since the second derivatives are bounded as
∣∣∣ ∂2

∂θ′2
i
C(θ⃗)

∣∣∣ ≤∑L
l=1(Emax,l − E0,l)/2 from Eq. (24), the estimation

M ′∑
i=1

∂2

∂θ′2i
C(θ⃗)ck′

i
= O

(
M

L∑
l=1

(Emax,l − E0,l)

)
= O(Mnr)

(29)

holds, where θ′i denotes the virtual parameter associated

with each stochastic Pauli noise channel in the decomposi-

tion of the k′
i-qubit depolarizing channels. Hence, when

the error probability has the scaling

q = O
( ϵ

nrM

)
, (30)

we can achieve the precision ∼ ϵ as

ϵ(θ⃗) =
1

2

M ′∑
i=1

∂2

∂θ′2i
C(θ⃗)ck′

i
q +O

(
ϵ2

nr

)
=O(ϵ). (31)

For example, when r = 1, to achieve ϵ(θ⃗) ∼ 10−3 with

n ∼ 100 qubits and the number of gates M ∼ 100, the error

probability q ∼ 10−7 is sufficient, according to this order

estimation. As we will show in Sec. 4, a simple error miti-

gation method utilizing Theorem 1 can relax this stringent

error estimation. We also remark that this order estimation

does not mean that Eq. (30) is required to achieve the preci-

sion ϵ, but it only shows that Eq. (30) is sufficient for that.
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Hence, larger error probability than this estimation might

be acceptable in practice.

From another point of view, the coefficients ∂2

∂θ2
i
C(θ⃗) in

Eq. (26) give the sensitivity to the noise. Thus, low sensi-

tivity to the noise requires small diagonal components of the

Hessian of the cost function. Especially for a minimal point

θ⃗∗, this means that the trace norm of the Hessian should be

small for the low sensitivity to the noise since the Hessian is

positive, which implies the flat landscape of the cost func-

tion around the minima. However, the optimization in a flat

landscape tends to be hard, e. g. due to the required preci-

sion of the gradient in gradient descent methods, which in-

creases the required measurement number. Hence, Eq. (26)

implies a trade-off relation between the sensitivity to the

noise and the trainability of the cost function.

The above argument can also be extended to stochastic

noise models where the coefficients includes the derivatives

with respect to the virtual parameters as follows. To do so,

we have to separate the derivatives with respect to the vir-

tual parameters from those with respect to the real parame-

ters since the virtual parameters have nothing to do with the

optimization landscape. We define the noiseless precision δ

of the minimization as δ := C(θ⃗∗)−E0 which attributes to

poor expression power of the parameterized quantum circuit

U(θ⃗) and to the non-globality of the minimization (i. e. θ⃗∗

may be a local minimum). We assume that the parame-

ters giving the minima of the noisy cost function does not

significantly deviate from the noiseless ones [39]. To es-

timate the second derivatives of C(θ⃗) with respect to the

virtual parameters, let us consider a single variable function

Cj(θ
′
j) := C((θ⃗∗, θ′j e⃗j)) of one virtual parameter θ′j , where

e⃗j is the M ′-dimensional vector whose j-th component is 1

and the others are 0. Since Cj(θ
′
j) = aj cos

(
θ′j + bj

)
+ cj

holds [30], where aj ≥ 0 and bj and cj are real numbers,

we have ∂2

∂θ′2
i
C(θ⃗∗) = d2

dθ′2
j
Cj(0) = −aj cos(bj). Because

the virtual parameters are fixed to 0 and not optimized,
∂2

∂θ′2
j
C(θ⃗∗) may be negative. In this case, aj cos(bj) ≥ 0

holds. Since C((θ⃗, θ⃗′)) ≥ E0 for any value of the parame-

ters, we have Cj(θ
′
j) ≥ Cj(0)− δ, which implies

aj cos
(
θ′j + bj

)
≥ aj cos(bj)− δ ≥ −δ. (32)

Thus, we obtain aj ≤ δ, and hence

∂2

∂θ′2i
C(θ⃗∗) = −aj cos(bj) ≥ −aj ≥ −δ. (33)

We consider the case where all Aj are Pauli operators, and

the depolarizing noise Dk,qk
acting on the same qubit num-

ber k as Aj is inserted after each Uj(θj). We again set

qk = (4k−1 − 4−1)ckq with the scale q and the constant

factor ck depending on k. In this case, one of the stochas-

tic Pauli noise channels composing the depolarizing noise

is the stochastic Aj-channel, and hence the derivative with

respect to the virtual parameter associated with this chan-

nel is equivalent to the derivative with respect to the real

parameter θj . Such virtual parameters are not included in

θ⃗′ = (θ′1, θ
′
2, · · · , θ′M ′), where the total number M ′ of the

virtual parameter is again in the order O(M). Let ki be the

number of qubits Ai acting on. For convenience, we rescale

the parameter as θi =
√
cki

θ̃i. We also define k′
i in the same

way as in Eq. (28). Then, Eqs. (28) and (33) yield

ϵ(θ⃗∗)

=
1

2

 M∑
i=1

∂2

∂θ̃2i
C(θ⃗∗) +

M ′∑
i=1

∂2

∂θ̃′2i
C(θ⃗∗)ck′

i

 q

+O

(
L∑

l=1

(Emax,l − E0,l)M
2q2
)

≥1

2

[
M∑
i=1

∂2

∂θ̃2i
C(θ⃗∗)−M ′δ

]
q +O

(
L∑

l=1

(Emax,l − E0,l)M
2q2
)
,

(34)

and hence

ϵ(θ⃗∗)

q
+O(Mδ) +O

(
L∑

l=1

(Emax,l − E0,l)M
2q

)

≥1

2

M∑
i=1

∂2

∂θ̃2i
C(θ⃗∗) =

1

2
Tr

∣∣∣∣∣
(

∂2C

∂θ̃i∂θ̃j
(θ⃗∗)

)∣∣∣∣∣ (35)

since the Hessian of the cost function is positive at θ⃗∗.

For a successful minimization, δ should be small, and

hence O(Mδ) term is negligible for not so large scale M .

O
(∑L

l=1(Emax,l − E0,l)M
2q
)

term is also negligible for

sufficiently small error probability q. Then, Eq. (35) im-

plies that the trace norm of the Hessian of the cost function

should be small if the error probability q is not sufficiently

small compared to the required level of the error ϵ(θ⃗∗) < ϵ

due to the noise. This fact implies the hardness of the op-

timization due to the flat landscape of the vicinity of the

minima. Moreover, in this case, optimization algorithms

utilizing the Hessian become hard since high precision of

the estimation of the Hessian is required if the Hessian is

small. Oppositely, at least we need q = O(ϵ) to achieve

ϵ > ϵ(θ⃗∗) avoiding such hardness.

As another remark, recent result [43] has shown that the

trace of the Hessian of the loss function of the overparame-

terized networks decreases on average during the optimiza-

tion steps of the stochastic gradient descent (SGD). If this

result is extended to VQA, it implies that SGD may de-

crease the effect of the noise during the optimization steps,

which may hint on when and to what extent we should use

the error mitigation techniques in optimizations.

4. An error mitigation method

We can apply Theorem 1 to derive a error mitigation

method. We can cancel the error by subtracting the leading

term of the error 1
2

∑M
i=1

∂2

∂θ2
i
C(θ⃗)σ2

i given that we know the

error model, and σ2
i is small enough so that the sub-leading

order terms of O

(∑L
l=1(Emax,l − E0,l)

(∑M
i=1 σ

2
i

)2)
are

negligible. An advantage of this method is that we only
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use the noisy estimation of the derivatives of the cost func-

tion to mitigate the error, and we do not need to change

the noise strength as in the extrapolation method [23], [40],

nor to sample various circuits as in the probabilistic error

cancellation [7], [40]. Using the shift rule (22), we can cal-

culate the second derivatives from noisy evaluations of the

cost function. The effect of the noise in this noisy estima-

tion D2
iCnoisy(θ) of the second derivative is estimated by

applying Theorem 1 again, which reads

D2
iCnoisy(θ) =

∂2

∂θ2i
C(θ⃗) +O

(
L∑

l=1

(Emax,l − E0,l)
M∑
i=1

σ2
i

)
.

(36)

Therefore, we have

Cnoisy(θ)−
1

2

M∑
i=1

D2
iCnoisy(θ)σ

2
i

=C(θ) +
1

2

M∑
i=1

O

(
L∑

l=1

(Emax,l − E0,l)

M∑
i=1

σ2
i

)
σ2
i

+O

 L∑
l=1

(Emax,l − E0,l)

(
M∑
i=1

σ2
i

)2


=C(θ) +O

 L∑
l=1

(Emax,l − E0,l)

(
M∑
i=1

σ2
i

)2
 . (37)

In this way, we can mitigate the error up to the sub-leading

order O

(∑L
l=1(Emax,l − E0,l)

(∑M
i=1 σ

2
i

)2)
.

This method is also applicable to the stochastic noise in-

cluding the depolarizing noise by applying Corollary 1. The

overhead of this protocol is the evaluations of the noisy cost

function at the π-shift of every parameter including the vir-

tual parameters. In that case, the Pauli rotation gate of

each virtual parameter is inserted to calculate the deriva-

tive with respect to the virtual parameter, and the noise is

also added along with this gate. However, the order esti-

mation is not affected, since at most a single gate is added

for each evaluation. We again consider the same depolar-

izing noise model with the scaling of the error probabil-

ity q as the one to obtain Eq. (28). We also assume that∑L
l=1(Emax,l − E0,l) = O(nr). Then, in order to achieve a

given precision ϵ, it is sufficient to have

q = O

(
ϵ

1
2

n
r
2 M

)
(38)

by applying this error mitigation. In comparison to Eq. (30),

the order estimation of the sufficient noise level is relaxed

by
√

ϵ/nr via this error mitigation. For example, when

r = 1, to achieve the precision ∼ 10−3 with n ∼ 100 qubits

and the number of gates M ∼ 100, the error probability

q ∼ 3×10−5 is sufficient, which is about 102 times larger in

comparison with the one without the error mitigation shown

below Eq. (31), although it is still stringent. However, we

again remark that this estimation is only the sufficient or-

der of the error probability to achieve a given precision, but

not necessary. Moreover, we can take into account the next-

leading order in expansion (21) to improve the error mit-

igation if the overhead is acceptable. Further analysis on

the practical effectiveness of this error mitigation method

including the finiteness of the sampling and the comparison

with different error mitigation techniques will be done in a

successive work.

5. Conclusion

We have established an analytic formula for estimating

the error in the cost function of VQAs due to the Gaussian

noise. We can also apply our formula to a wide class of

stochastic noise including the depolarizing noise model via

their equivalence with the Gaussian noise. The first main

result Theorem 1 gives the leading-order approximation of

the error ϵ(θ⃗) in the cost function due to the noise. The

Hessian of the cost function as the coefficients of the noise

effect implies a trade-off relation between the hardness of

the optimization of the parameters and the noise resilience

of the cost function. We have derived an order estimation of

the sufficient error probability to achieve a given precision

based on this formula. This estimation offers stringently

small error probability if no error mitigation is taken into

account. This is partially because, the estimation is nothing

but a sufficient condition to achieve the given precision.

A highlight of the applications of our formula is the pro-

posal of a quantum error mitigation method shown in Sec. 4.

The essence of this error mitigation method is the cancella-

tion of the error based on the expansion of the error with

respect to the fluctuations of the parameters including the

virtual parameters. An advantage of this method is that

we only use the noisy estimation of the derivatives of the

cost function to mitigate the error, and we do not need to

change the noise strength as in the extrapolation method

[23], [40], nor to sample various circuits as in the probabilis-

tic error cancellation [7], [40]. Although the effectiveness of

this method is still inconclusive since we have only an es-

timation of the sufficient order of the error probability for

this method to work, there is a possibility of this method

to be efficient in some situations. It may also possible to

improve this method by taking into account higher order

expansions. In a future work, further analysis will be done

on this error mitigation method including the finiteness of

the sampling and the comparison with other error mitiga-

tion methods. To take into account the statistical error due

to the finiteness of the sampling, the effect of the noise on

the variance of the cost function should also be considered

in future works.
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[13] Havĺıček, V., Córcoles, A. D., Temme, K., Harrow, A. W.,
Kandala, A., Chow, J. M. and Gambetta, J. M.: Su-
pervised learning with quantum-enhanced feature spaces,
Nature, Vol. 567, No. 7747, pp. 209–212 (online), DOI:
10.1038/s41586-019-0980-2 (2019).

[14] Helgaker, T., Jorgensen, P. and Olsen, J.: Molecular
Electronic-Structure Theory, Wiley, Sussex (2002).

[15] Heya, K., Suzuki, Y., Nakamura, Y. and Fujii, K.:
Variational Quantum Gate Optimization, arXiv:1810.12745
(2018).

[16] Higgott, O., Wang, D. and Brierley, S.: Variational Quan-
tum Computation of Excited States, Quantum, Vol. 3, p. 156
(online), DOI: 10.22331/q-2019-07-01-156 (2019).

[17] Huembeli, P. and Dauphin, A.: Characterizing the loss
landscape of variational quantum circuits, Quantum Science
and Technology, Vol. 6, No. 2, p. 025011 (online), DOI:
10.1088/2058-9565/abdbc9 (2021).

[18] Jones, T., Endo, S., McArdle, S., Yuan, X. and Benjamin,
S. C.: Variational quantum algorithms for discovering Hamil-
tonian spectra, Phys. Rev. A, Vol. 99, p. 062304 (online),
DOI: 10.1103/PhysRevA.99.062304 (2019).

[19] Jordan, P. and Wigner, E.: Über das Paulische
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