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Classical Shadow with Decision Diagrams
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Abstract: We consider the problem of estimating quantum observables on a collection of qubits, given
as a linear combination of Pauli operators, with shallow quantum circuits consisting of single-qubit
rotations. We introduce estimators based on classical shadow, which use decision diagrams to sample
from probability distributions on measurement bases. This approach generalises previously known
uniform and locally-biased classical shadows. The decision diagrams are constructed given target
quantum operators and can be optimised considering different strategies. We show numerically that
the estimators introduced here can produce more precise estimates on some quantum chemistry
Hamiltonians, compared to previously known randomised protocols and Pauli grouping methods.
The details are given at [Hillmich et al., arXiv:2105.06932]

1. Introduction
Variational quantum algorithms are based on a quantum-

classical optimisation feedback loop, in which a trial param-
eterised quantum state is prepared on a quantum computer,
a target quantum cost function is estimated on it, and a
classical optimiser changes the quantum parameters to min-
imise the target observable. This machinery has been instru-
mental to find ground state energies of quantum chemistry
systems, which are the smallest quantum systems believed
to deliver quantum advantage in the field of quantum simu-
lations.

Recent experiments on variational quantum algorithms (1;
2) have shown that precise estimates of complex quantum
operators are essential for a successful execution of the algo-
rithms. A finite single-qubit measurement budget can hin-
der the performance of the quantum-classical optimisation
cycle, by introducing stochastic noise on the quantum cost
function to be optimised. This problem is particularly severe
for quantum chemistry systems, whose molecular Hamiltoni-
ans are composed of a linear combination of Pauli operators
that grows, at worst, with the fourth power of the system
size (3).

To alleviate the measurement problem, a variety of al-
gorithms have been proposed. They all ultimately aim at
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obtaining precise estimations of multi-qubit quantum opera-
tors, typically given as linear combination of Pauli operators,
with the smallest amount of single-qubit measurements.

The idea of using the same single-qubit measurements to
estimate grouped Pauli operators that qubit-wise commute,
introduced in (1) as tensor-product basis sets, is at the core
of several measurements protocols. Some of them promise
a reduction in the number of measurements for quantum
chemistry systems, exploiting Pauli grouping heuristics, at
the expense of an increase depth in the quantum circuits
used to prepare the state to be measured (4; 5). However
increased circuit depths can impair the execution on noisy
quantum computers prone to decoherence. Furthermore,
even in the fault-tolerant regime, bigger circuit depths can
increase the overall runtime of the quantum algorithm. Ad-
dressing molecular systems, (6) shows a linear saving in the
number of grouped Pauli operators when addressing molec-
ular systems through unitary partitioning of a target Hamil-
tonian, while (7) finds a cubic reduction if the problem is
expressed in plane wave basis, at the expense of a linear
increase in circuit depth. (5) proposes sorted insertion to
group Pauli operators based on their weights, preprocessing
computations linear in the number of qubits and quadratic in
the number of Pauli operators. Ref. (8) exploit simultane-
ous measurability of partitions of commuting Pauli strings.
Exploiting the automated search for symmetries introduced
(9), (10) shows a linear scaling when applied to chemistry
problems, again at the expense of increased circuit depth.
(11) considers random Pauli sets, and uses greedy graph col-
oring algorithms to determine partition of Pauli operators
of Hamiltonians, conjecturing a linear saving in number of
measurements if arbitrary Clifford operators before measure-
ment are allowed.
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Other approaches address the measurement problem while
not increasing circuit depths. We refer to this specific case as
the shallow-circuit measurement problem. It has been tack-
led so far formulating it in terms of graph coloring, which
was solved with a variety of heuristics (10). Hybrid archi-
tectures made of quantum computers in conjunction with
trained neural-network quantum states have been employed
to reduce measurement variances (12).

The results contained in this work build on recent tech-
niques based on randomised sequences of single-qubit mea-
surements. A framework for efficiently estimating properties
of reduced subsystems of quantum states was introduced
in (13). There, collections of randomised measurement out-
comes, labeled classical shadows (14), are classically stored
to retrieve at a later stage expectation values of local observ-
ables. While this procedure is very well suited for retriev-
ing many generic local observables, the uniform distribution
used to draw measurement bases is not optimal in estimat-
ing with high precision specific observables such as molecular
Hamiltonians. Building on this result, (15) uses derandomi-
sation to deterministically change a sequence of measure-
ment bases drawn at random, with the goal of improving
precision in estimating specific sets of Pauli operators.

Improving on uniform distribution sampling, biased ran-
domised measurement protocols can be used to improve esti-
mate precision of given observables. The locally-biased clas-
sical shadows introduced in (16) are collections of random
measurements generated by probability distributions opti-
mised locally at the single-qubit level. While a bias on
single-qubit product probability distributions can outper-
form on uniform random distributions and Pauli grouping
heuristics, it still misses on improvements that can come
by considering generic measurement probability distribu-
tions on a set of qubits. Here we introduce a framework
to sample from probability distributions on measurement
bases that generalises the local product probability distri-
butions considered in (16). These probability distributions
are generated using decision diagrams, constructed from a
target quantum observable, given as a linear combination of
Pauli operators.

Decision diagrams are a well-known graph-based data
structure used in many disciplines of computer science to
enable compact representation of data in many cases. Exam-
ple applications include binary decision diagrams represent-
ing Boolean functions (17), zero-suppressed binary decision
diagrams with a focus on sets (18), tagged binary decision
diagrams as a combination of both (19), πDDs representing
permutations (20), as well as decision diagrams represent-
ing quantum states and quantum operations (21; 22; 23). At
their core, decision diagrams decompose the given data into
smaller parts by successively making decisions to remove de-
grees of freedom, recording these decisions, and exploiting
the emergence of parts that are equal. For probability dis-
tributions for the measurement problem, decision diagrams
provide a natural way to bias the selection of the next mea-
surement basis based on the previous decisions. Decision

diagrams have been used for efficient sampling on large sets
by applying dynamic programming methods (24).

We propose and discuss different strategies to build de-
cision diagrams and to optimise them in order to reduce
the variance of quantum observable estimators that rely
on them. We show numerically that they can improve es-
timation precision on some molecular Hamiltonians, com-
pared to locally biased probability distributions. The im-
plementation we base the results on is available https:
//github.com/iic-jku/dd-quantum-measurements.

2. The Shallow-Circuit Measurement
Problem

2.1 Problem Definition
Consider an n-qubit Hamiltonian

H =
∑

P∈{I,X,Y,Z}n
αPP ((1))

with poly(n) number of real coefficients αP acting on a
quantum processor, we say P is a Pauli operator con-
sisting of n single-qubit Pauli operators and write P =(
⊗i∈[n]Pi

)
∈ {I,X, Y, Z}n where I,X, Y, Z are 2× 2 Pauli

matrices. The Hilbert space is H := (C2)⊗n = C2n

. Let
D(H) denote the space of quantum densities and fix some
unknown ρ ∈ D(H). Our task is to estimate Tr(Hρ) to some
additive accuracy ε > 0.

We restrict our attention to algorithms for Tr(Hρ) which
are compatible with quantum processors of the current gen-
eration. Specifically we assume that the measurement bases
in which we may measure ρ are of the form B = ⊗i∈[n]Bi

where Bi = xiX+yiY +ziZ and x2
i +y2

i +z2
i = 1. If we then

prepare ρmany times, say S ∈ N, and for each s ∈ [S] choose
a measurement basis B(s) in which to measure ρ we can es-
timate, with progressively increasing accuracy, the value of
Tr(Hρ). We will make two further assumptions: the choice
of B(s) is independent of B(s′) for s′ < s; any such basis
B is a Pauli operator B ∈ Pn where P = {X,Y, Z}. The
shallow-circuit measurement problem is how to best choose
the measurement bases in order to estimate Tr(Hρ) within
accuracy ε with as few preparations of ρ as possible.

2.2 The General Probabilistic Measurement
Framework

We can solve the shallow-circuit measurement problem by
viewing it as the problem of how to best pick a probability
distribution β over the measurement bases Pn. In order to
see the relationship we fix some notation. First, for a fixed
Pauli operator P , let

Cover(P ) := {B ∈ Pn |Bi = Pi whenever Pi 6= I} .
((2))

This is the set of measurement bases which allow us to es-
timate Tr(Pρ). (We shall say that any such B covers P .)
Next, if B = ⊗i∈[n]Bi ∈ Pn, then measuring qubit i in
the Bi basis returns an eigenvalue µ(B, i) ∈ {±1}. For a
subset A ⊆ [n] let us declare µ(B,A) :=

∏
i∈A µ(P, i) with
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Algorithm 1 Shallow-measurement estimation of Tr(Hρ)

given β.
for shot s ∈ [S] do

Prepare ρ
Select basis B ∈ Pn from β-distribution
for qubit i ∈ [n] do

Measure qubit i in basis Bi giving µ(P, i) ∈ {±1}
Estimate observable expectation

ν(s) =
∑
P

αP ·
1Cover(P )(B)

ζ(P, β)
· µ(B, supp(P ))

return ν = 1
S

∑
s∈[S] ν

(s)

the convention that µ(P,∅) = 1. If we set supp(P ) :=

{i ∈ [n]|Pi 6= I} then we find that Tr(Pρ) is estimated by
µ(B, supp(P )) whenever B covers P . Penultimately, let 1Ω

represent the indicator function of a set Ω. That is 1Ω(x)

returns 1 if x ∈ Ω and 0 if x 6∈ Ω. Finally, if β : Pn → R+ is
a probability distribution then the probability that a basis
B is chosen such that Tr(Pρ) may be estimated is

ζ(P, β) =
∑
B∈Pn

1Cover(P )(B) · β(B) =
∑

B∈Cover(P )

β(B).

((3))
The shallow-circuit measurement problem reduces to find-

ing β : Pn → R+ which minimises the variance of the esti-
mator ν produced by Algorithm 1.

Let us say that β is compatible with the Hamiltonian H if
ζ(P, β) > 0 whenever αP 6= 0. In (25) we prove two results:
we show that this algorithm returns an unbiased estimator
for Tr(Hρ) provided β is compatible with H; we also cal-
culate the variance of the estimator. The details are given
at (25).

2.3 Existing Solutions and Drawbacks
2.3.1 Pauli Grouping via Graph Coloring

Pauli grouping via graph coloring has been used exper-
imentally in (1). A detailed explanation may be found in
(16, Section A.2). The core idea is to group the Pauli oper-
ators {P}αP 6=0 occurring in H into K collections and assign
one measurement basis B(k) ∈ Pn to each collection k ∈ [K]

such that B(k) allows all Pauli operators in the kth collection
to be estimated. That is, if P belongs to the kth collection
then B(k) ∈ Cover(P ).

The grouping is performed by coloring a specific graph us-
ing any graph-coloring heuristic. The graph is constructed
first by assigning vertices to each Pauli operator appearing
in the Hamiltonian. Second, if two vertices represent Pauli
operators P = ⊗i∈[n]Pi, and Q = ⊗i∈[n]Qi, then an edge
is added to the graph precisely when there exists a qubit
i ∈ [n] such that Pi, Qi ∈ P and Pi 6= Qi. It follows that
any vertices with the same color may be assigned a single
measurement basis. Graph coloring heuristics lead to col-
lections for which K � |Pn|.

The best assignment of the probability β : {B(k)}k∈[K] →
R+ has not been rigorously studied. In (1), the measure-
ment bases {B(k)}k∈[K] are effectively sampled uniformly,

but this is due to hardware considerations. In (16, Section
A.2) an improved sampling is proposed which is based on the
`1 weight of the coefficients of the Pauli operators appearing
in each collection. This proposal may be improved slightly
by observing that some Pauli operators may be assigned to
several collections. That is, sometimes, several bases from
{B(k)}k∈[n] may be used to estimate a single Pauli observ-
able. This will decrease slightly the variances obtained in
(16, Tables 1,2).

The main drawback of this approach is observational.
That is, on Hamiltonians thus far studied in the literature,
the variances are large compared to other proposals. This
is despite the preprocessing steps to solve a graph coloring
problem to reduce the choices of measurement bases. This
may be caused by two reasons. First, the Pauli grouping
stage makes no reference to the coefficients {αP }. Second,
the current proposals may not be optimally assigning the
distribution over {B(k)}k∈[K].
2.3.2 Locally-Biased Classical Shadows

One method of choosing the distribution β : Pn → R+

has been proposed in (16) and is called locally-biased classi-
cal shadows (LBCS). It may be seen as an extension of a pro-
posal to perform tomography, called classical shadows using
random Pauli measurements (13), to the problem of estimat-
ing a single observable. LBCS fits precisely into the frame-
work discussed in the preceding subsection. First, the class
of distributions from which β may be chosen is restricted:
only product probability distributions are considered, which
we may write as β =

∏
i∈[n] βi where βi : P → R+ is the

probability distribution for choosing to measure the ith qubit
in a basis Bi ∈ P. Second, after assuming this restriction
on the class of probability distributions, the choice of β is
made by optimising a convex cost function associated with
the Hamiltonian:

costdiag(β) :=
∑
P

α2
P

1∏
i∈supp(P ) βi(Pi)

((4))

Note that since β is assumed to be a product distribution,
the denominator

∏
i∈supp(P ) βi(Pi) is precisely ζ(P, β). In

(16), it was shown that this method leads to significant re-
ductions in the variance of energy estimation in the context
of quantum chemistry over the method of Pauli grouping via
graph coloring.

Both Classical Shadows and LBCS appear to be attrac-
tive when Pauli operators in the Hamiltonian are low-weight.
That is, when | supp(P )| is small relative to n, since in
this case the denominator of Eq. (4) remains relatively
small. This intuition leads to the following setup show-
ing a shortcoming of LBCS. Consider the toy Hamiltonian
H = ⊗i∈[n]Xi + ⊗i∈[n]Zi. LBCS would assign, for each
qubit, the probability 1/2 to measure it either in the X or
the Z basis. The lack of correlation in these choices implies
that the only two bases Xn and Zn which are useful for
energy estimation are rarely chosen. In the parameter n it
is with exponentially vanishing probability that such bases
are chosen. Pauli grouping via graph coloring would per-
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form much better on this example. This example motivates
the search for distributions β from a wider class of probabil-
ities. Although the preceding Hamiltonian is a toy example,
there does occur Hamiltonians with similar structure. For
example, for the purpose of self-testing quantum devices, the
Hamiltonian H = X1Z2 · · ·Zn + 1

n−1

∑
i≥2 Z1Xi is evalu-

ated to test Bell-type inequalities on star graphs (26).

3. Estimators of quantum observables
with Decision Diagrams

3.1 Decision Diagrams in General
Decision diagrams are a tried and tested data structure in

many areas of computer science to provide a compact repre-
sentation of entities in various domains. Example applica-
tions include binary decision diagrams representing conven-
tional Boolean functions (17), zero-suppressed binary deci-
sion diagrams with a focus on sets (18), tagged binary de-
cision diagrams as a combination of both (19), and πDDs
representing permutations (20). Also in the domain of quan-
tum computing, decision diagrams representing quantum
states and quantum operations received interest (21; 22; 23)
and found application, e.g., in the synthesis (27), simula-
tion (21; 28), or verification (29) of quantum circuits.

The common idea of all decision diagram-based repre-
sentations is to decompose a given original representation
(e.g., of a Boolean function or quantum state) in a struc-
tured fashion that recognizes and exploits redundancies of
the decomposed data in order to provide a more compact
representation. The repeatedly conducted decompositions
are represented by means of a directed and acyclic multi-
graph, where vertices represent the decomposed data and
redundancy is exploited through shared vertices.
Example 1. Consider a Boolean function f : {0, 1}4 →
{0, 1} = x̄1x̄2x̄3x4 + x̄1x2x3x̄4 + x1x̄2x3x̄4 + x1x2x̄3x4.
A straightforward complete representation of this function
would require the representation of a total of 24 input-output
mappings, e.g., in terms of a truth table. Encoding the
function as decision diagram results in a graph with only 9
nodes as illustrated in Figure 1. Here, the overall function f
is first decomposed with respect to variable x1 into two sub-
functions f6 (assuming x1 = 0) and f5 (assuming x1 = 1).
This is recursively continued for all remaining variables until
only terminals 0 and 1 result. Whenever this decomposition
yields equivalent (and, hence, redundant) sub-functions (as
it is the case, e.g., for f4), the sub-function is represented by
a single shared node only—providing a more compact repre-
sentation.

3.2 Proposed Decision Diagram
In this work, we propose a type of decision diagrams aim-

ing for a compact representation of a probability distribu-
tion over a given Hamiltonian. To this end, we first start by
providing the definition of the proposed type:
Definition 1. The decision diagram we propose is a rooted
directed acyclic multi-graph G = (V,E) such that all max-
imal directed paths consist of precisely n edges. Each edge

x1

x2 x2

x3 x3

x4 x4

0 1

f

f6 = x2x3x4 + x2x3x4 f5 = x2x3x4 + x2x3x4

f4 = x3x4 f2 = x3x4

f3 = x4 f1 = x4

0 1

1

0 0

1

1

0

1
0

1

0 0

1

Figure 1: Decision diagram representing the Boolean func-
tion f = x̄1x̄2x̄3x4 + x̄1x2x3x̄4 + x1x̄2x3x̄4 + x1x2x̄3x4

e ∈ E is equipped with two pieces of data: A traceless Pauli
operator B(e) ∈ P and a weight w(e) ∈ (0, 1] such that

( 1 ) for each vertex v ∈ V , there is at most one out-going
edge for each traceless Pauli operator, and

( 2 ) for each vertex v ∈ V and outgoing edges e ∈ out(v),
the weights are probabilistic, i.e.,

∑
e∈out(v) w(e) = 1

(therefore, each vertex except for the terminal has at
least one out-going edge).

Having this structure, the edge weights in the decision
diagram provide the probabilities by which a random walk
should follow each edge. Multiplying the edge weight along
a path gives the probability of encountering this path in a
random walk. Intuitively, the probability of a path corre-
sponds to the weight of the Pauli operators it covers. More
precisely, the sum of the absolute values of the coefficients
|αP | with P covered by the path is used as relative proba-
bility and is encoded in the decision diagram. An example
illustrates the idea.
Example 2. Consider the Hamiltonian H for the hydro-
gen molecule H2 with 4 qubits and Bravyi-Kitaev encoding,
namely:

H =− 0.811IIII + 0.120IZII − 0.045XZXI + 0.045XIXZ

+ 0.045XIXI − 0.045XZXZ

+ 0.120IZIZ + 0.172ZIII − 0.225IZZZ

− 0.228ZZII + 0.172IIZI + 0.168ZIZI

+ 0.166ZZZZ + 0.166ZZZI + 0.174ZIZZ .

The full-weight terms XZXZ or ZZZZ cover every Pauli
term in the Hamiltonian, hence, the corresponding decision
diagram encoding the probability distribution only has to in-
clude these two terms.
Figure 2a illustrates a compatible decision diagram that

has only two maximal paths XZXZ and ZZZZ . The edges
are labeled with a probability (edge weights of 1 are omitted
for the sake of readability). Using the decision diagram, one
can obtain the respectively desired probabilities by traversing
the decision diagram starting at the top-most node and fol-
lowing the edges strictly downwards until the terminal vertex
(depicted as rectangle) is reached. Generating measurements
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Figure 2: Decision diagrams for H2 with 4 qubits

from this decision diagram will result in XZXZ with a prob-
ability of 0.147 or ZZZZ with 0.853.
In Figure 2a, the encoded terms end with the Z operator

regardless of previous choices, hence the last decision is pre-
sented by a single vertex and edge. This may seem like a
small gain, but generally larger instances have more poten-
tial for sharing.
In a similar fashion, a decision diagram representing

the Jordan-Wigner encoding can be generated—yielding the
structure as shown in Figure 2b.

3.3 Sampling Using the Proposed Decision Dia-
grams

The definition in the previous subsection does not make
explicit reference to the prescribed Hamiltonian. In order to
use one such instance of these decision diagrams we augment
the definition with the following
Definition 2. The decision diagram is called compatible
with the Hamiltonian H if all Pauli observables P with
αP 6= 0 are able to be estimated. Precisely, if αP 6= 0

then we require at least one directed path (e1, . . . , en) such
that B ∈ Cover(P ) where B is the full-weight Pauli operator
⊗i∈[n]B(ei).

Let us make two observations that bring decision dia-
grams into the probabilistic setup of the shallow measure-
ment problem as explained in the previous section. First,
the decision diagram provides a probability distribution over
full-weight Pauli operators β : Pn → R+. For B ∈ Pn

such that B = ⊗i∈[n]B(ei) for some maximal directed path
(e1, . . . , en) then we set β(B) =

∏
i∈[n] w(ei). If no such

maximal directed path exists, then we set β(B) = 0. Con-
dition 2 in Definition 1 ensures that

∑
B β(B) = 1. Indeed,

using the decision diagrams proposed above, samples can be
drawn by perfoming a random walk. Starting at the root
vertex, a successor vertex is randomly selected according to
the weights on the out-going edges. This process is repeated
at the selected vertex until the terminal vertex is reached.
Second, if the decision diagram is compatible with H then,
for any quantum density ρ ∈ D(H), the estimator ν of Al-
gorithm 1 is an unbiased estimator of the energy.
Example 2 (continued). Consider again Figure 2a. Sam-
pling from this decision diagram, one starts at the root ver-

tex and randomly chooses the X or Z edge, according to the
edge weights. Continuing from successor vertex of the chosen
edge, the remaining decisions are fixed since each following
vertex only has one out-going edge, again, resulting in either
XZXZ or ZZZZ .

Decision diagrams provide a more powerful way to solve
the shallow measurement problem. Indeed Pauli grouping
via graph-coloring from Section 2.3 may be seen as one in-
stance of a decision diagram according to Definition 1 and 2.
Therefore any Pauli term which is covered by multiple bases
under that proposal will be estimated more often under the
framework here. Also, LBCS from Section 2.3 is a very
simplistic instance of a decision diagram. LBCS (which ob-
servationally is better than Pauli grouping) suffers from the
lack of correlation between choices of measurement bases on
each qubit. The more general decision diagram framework
presented here allows such correlated choices.

The larger class of distributions therefore allows us to ul-
timately reduce the variance associated with our estimator.
Importantly, our proposal for building decision diagrams
also leads to an efficient proposal for assigning weights lo-
cally such that an attractive distribution β is ultimately
found. We reemphasize the possibility that such an algo-
rithm could be extended further with the techniques of de-
randomisation.

3.4 Optimising the Probability Distribution on the
Decision Diagram

It is a computationally difficult problem to find the opti-
mal β. This would be the minimum-variance unbiased es-
timator (MVUE) over all such distributions β : Pn → R+.
It would be interesting to understand how close decision di-
agrams get to approximating the MVUE. Nevertheless, fol-
lowing the method of Lagrange multipliers used in (16) to
optimise the probability distribution of LBCS, we can de-
rive similar iterative procedure to fine tune the probability
distribution β based on the diagonal cost function similarly
as (16). The computational cost of the iterative updates is
proportional to the size of the decision diagram.

A direct implication of the use of probability-optimised
decision diagrams is to generalise and improve previous re-
sults (Theorem 3 in (30) and Theorem 1 in (15)) on estimat-
ing the expectation values of a collection of Pauli operators
(e.g., for partial tomography (31)) thanks to the ability to
compute ζ(P, β) efficiently from a decision diagram. For
example, the error bounds of previous results provide non-
trivial bounds when the size of supp(P ) for all Pauli P is
small (or, low-weight Paulis), while those of ours can give
non-trivial bounds even when some of the Paulis are of full
weight. We give the details in (25).

4. Efficient Construction of the Pro-
posed Decision Diagrams

The decision diagrams as introduced in the previous sec-
tion promise to give suitable probability distribution. Still,
the question remains how to efficiently transform the Hamil-
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tonian consisting of coefficients and Pauli terms into a de-
cision diagram. In the following, we describe the main
ideas. Please refer to (25) for details. The full imple-
mentation is available at https://github.com/iic-jku/
dd-quantum-measurements.

In a high-level view, the construction of the proposed de-
cision diagram consists of multiple steps. The first stage is a
preprocessing step of the Hamiltonian to reduce the number
of identity-terms. The second stage is the initialisation and
refinement of the decision diagram. This second stage has
several steps. Only after these steps have been performed are
we guaranteed that the decision diagram conforms to both
Definition 1 and Definition 2. These steps include normalis-
ing the information present in the prepocessed Hamiltonian
in order to maximise sharing and also removing identity-
edges through merging. The following paragraphs explain
the individual steps in more detail.
Preprocessing: Consider the Hamiltonian as presented in

Eq. (1). Immediately, we remove the term αInI
n as this

term does not need to be estimated using the quantum pro-
cessor. We also map coefficients to their absolute values
(αP 7→ |αP |) giving what we will call the positive Pauli list.
Then, compatible Pauli terms in this positive Pauli list are
merged to reduce the number of paths in the initial deci-
sion diagram. More precisely, for each of Pauli terms the
number of compatible terms is determined. The Pauli term
Phigh with the highest number of compatible terms ncomp

is subsequently merged into these compatible terms and the
fraction

αPhigh

ncomp
is added to the coefficient of each compatible

term. This merging procedure is repeated until no further
merging is possible. This preprocessing provides what we
shall refer to as the reduced positive Pauli list and shall de-
note it by R(H).
Initialisation of DD: From the reduced positive Pauli list
R(H), an initial decision diagram whose maximal paths are
all of length n is constructed. Each term in R(H) is asso-
ciated with a unique maximal path and the coefficients of
R(H) are assigned to the final edges in the respective path,
i.e., to the edge pointing to the terminal vertex.
Normalisation of DD: Afterwards the edge weights are

normalised such that the sum of weight of out-going edges
equals 1. This decision diagram at this stage has sharing for
common prefixes (but not suffixes) and at this point may
include edges with the identity operator.
Example 3. Consider the 4 qubit Hamiltonian for the hy-
drogen molecule in Jordan-Wigner encoding:

H =− 0.810IIII + 0.045YYXX

+ 0.045YYYY + 0.045XXXX + 0.045XXYY

+ 0.172ZIII − 0.225IZII + 0.172IIZI

− 0.225IIIZ + 0.120ZZII + 0.168ZIZI

+ 0.166ZIIZ + 0.166IZZI + 0.174IZIZ

+ 0.120IIZZ

The reduced positive Pauli list from H is

0

1

0.5I 0.5X

0

1

X 

(a) Combining identi-
ties
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Figure 3: Removing identity edges from the decision dia-
gram
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Figure 4: Merging two vertices

R(H) =0.045YYXX + 0.045YYYY + 0.045XXXX

+ 0.045XXYY + 1.714ZZZZ

Before considering removing potentially remaining iden-
tity edges in the decision diagram, functionally equivalent
vertices are merged. Two vertices are equivalent if they
have the same successors considering the Pauli operator and
respective weight. Given a suitable hash function, finding
equivalent nodes is linear in the number of nodes (23).

After the previous steps, the decision diagram may still
have identity edges, which have to be removed to get a
proper probability distribution over the Hamiltonian. The
potentially remaining identity edges are removed in three
steps.

The first two steps are local operations. Given two fixed
vertices u, v ∈ V the following checks are performed:

( 1 ) For fixed u, v ∈ V , if there is an edge u I−→ v and any

u
{X,Y,Z}−−−−−−→ v: Remove u I−→ v and add the weight to

the remaining edge from u
{X,Y,Z}−−−−−−→ v with the small-

est weight. Figure 3a illustrates this step in an example
with one further edge.

( 2 ) Again, for fixed u, v ∈ V , if there is only one edge
u

I−→ v: Split u I−→ v into virtual edges (denoted by

a dot above the operator) u Ẋ−→ v, u Ẏ−→ v, and u Ż−→ v

with weights 1
3 each. Figure 3b illustrates this step.

The remaining identity edges cannot be removed by only
considering individual pairs of nodes, but require a more
global approach. Recall that at this point there are no two
vertices with only an identity edge between them. So for

u
I−→ v and any u

{X,Y,Z}−−−−−−→ v′ we merge v into v′ and adjust
the weights accordingly. More precisely, the merging is han-
dled by checking the following list for each out-going edge
of v:

( 1 ) If the target vertex v′ does not have an out-edge with
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the same Pauli operator as the currently considered out-
edge of v, add this edge to v′.

( 2 ) If the currently considered out-edge of v and the out-
edge of v′ with the same operator point to same vertex
(which may be the terminal vertex), the weights stay
the same.

( 3 ) Otherwise the merging process has to recurse to merge
the successors of v and v′ with corresponding Pauli op-
erators.

During the merging of two edges, the resulting edge is only
virtual if both previous edges were virtual. Performing the
merging process from the terminal vertex upwards ensures
that the recursive applications never encounter an identity
edge. At this point there may be superfluous virtual edges
left, which are removed to reduce the number of paths. Af-
ter the merging process is completed, the decision diagram
is renormalised to ensure the sum of weights of out-going
edges on a node equals 1. An example illustrates the idea.
Example 4. Consider the left-hand side of Figure 4. This
decision diagram has a top vertex with two out-going edges
with the operators I and Y . To remove the identity edge,
the target vertex of the identity edge (1) is merged into the
target vertex of the Pauli-Y edge (2) (indicated by a solid
an arrow labeled “merge into”). Since both (1) and (2) have
an out-going Pauli-X edge to different target vertices, the-
ses targets (3) and (4) have to merged as well in a recursive
fashion (indicated by a dashed arrow).

Finally, the experimental evaluation on decision diagrams
constructed as described above and the comparison against
state-of-the-art methods can be found in (25).

5. Conclusion
We have introduced a new estimator for measuring quan-

tum operators defined as linear combination of tensor prod-
ucts of single-qubit Pauli operators. The estimator is de-
fined within a probabilistic measurement framework, where
single-qubit measurement bases are drawn from probability
distributions obtained using decision diagrams. The decision
diagrams used to sample from measurement bases are con-
structed from target quantum operators, typically Hamilto-
nians, by associating paths in the diagrams with Pauli oper-
ators present in the Hamiltonians. The diagrams can then
be simplified by removing paths with identities operators,
and merging equivalent sub-paths.

We have shown that representing probability distribu-
tions with decision diagrams generalises previous classical-
shadow randomises approaches to the measurement prob-
lem, namely the uniform (13) and the locally-biased
one (16). This generalisation comes with additional degrees
of freedom that characterize each diagram, and introduce
correlations between measurement bases for each qubit. We
presented different strategies to optimise these additional de-
grees of freedom, and have shown numerically in (25) that
they can outperform locally-biased approaches as well as

Pauli grouping strategies, on selected molecular Hamilto-
nian models. We foresee that future refined approaches in
the construction and optimisation of the diagrams could fur-
ther improve on the improvements in estimation precision
reported here, especially considering problem-specific deci-
sion diagram construction methods.
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