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We propose a new method to optimize a PQC by continuous parameterization of both the angles
and the axes of its single-qubit rotations. The method is based on the observation that when
rotational angles are fixed, optimal axes of rotations can be computed by solving a system of linear
equations whose coefficients can be determined from the PQC with small computational overhead.
The method can be further simplified to select axes freely from continuous parameters with rotational
angles fixed to π. We show the simplified free-axis selection method has better expressibility against
other structural optimization methods when measured with Kullback-Leibler (KL) divergence. We
also demonstrate PQCs with free-axis selection are more effective to search the ground states of
Heisenberg models and molecular Hamiltonians. Because free-axis selection allows designing PQCs
without specifying their single-qubit rotational axes, it may significantly improve the handiness of
PQCs.

I. INTRODUCTION

Parameterized quantum circuit (PQC) is one of the most essential components of hybrid quantum-classical algo-
rithms on near-term quantum devices [1, 2]. With PQC, a quantum state is expressed by a sequence of one- and
two-qubit gates, in which the rotation angles and axes are classically controllable. The design of PQC is critical in
variational quantum algorithms. Oversimplified PQC cannot express the optimal quantum state even if it could be
implemented on noisy quantum devices. On the other hand, a PQC designed with a deep circuit for high express-
ibility cannot be implemented on currently-available noisy quantum devices. A physics-based ansatz such as unitary
coupled-cluster method in VQE is one of the examples of a deep circuit, in which the required number of two-qubit
gates is too large to execute on near-term quantum devices [3]. Highly expressible PQC can also be created in hard-
ware efficient (or heuristic) ansatz[4–9] by applying multiple layers. However, it often results in either too complicated
landscape of cost function to find the global minimum, or barren plateau in which the gradient vanishes[1, 10–15].
Hardware-efficient ansatz also suffers from initial guess of parameters. Preparing a suitable set of initial parameters
for typical sets of ansatz for various problem is challenging and has received a lot of attention.

Nevertheless, while the design of PQCs has been optimized by using rotations of qubit states around predetermined
axes, the choice of such axes are arbitrary and the optimal ones in various problem settings, which are obviously
influenced by the properties of the Hamiltonian, can be non trivial. For example, the so-called Ry (rotations around
the y-axis) gates are popular for molecular Hamiltonians whose ground states are of real-valued probability amplitudes,
but other rotational gates may be necessary for different types of Hamiltonians. Moreover, such additional rotations
may facilitate shortcuts to quickly find the ground states as demonstrated in [16].

We show it is possible to efficiently optimize over the continuous choices of rotational axes of single-qubit gates in a
PQC and thus obtain a significant improvement over structural optimization using limited set of rotations in [16–18].
The proposed method, which we refer to as Free-Axis Selection (or, in the hereafter shortened to Fraxis), handles
the task to find an optimal axis of rotation with a given rotational angle θ on a single-qubit gate of a PQC.

II. METHODS

We consider the problem of optimizing a PQC that consists of a sequence of parameterized unitary gates U =
U1 . . . UD so that from a given initial state ρ the PQC generates a quantum state UρU† minimizing an objective
function encoded in a Hamiltonian M . Namely, the value of 〈M〉 ≡ tr(MUρU†) is minimized over all parameter
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space of the PQC. We first present simple examples on why our proposed Fraxis can lead to more efficient PQCs and
describe the basics of optimizing PQCs by borrowing the techniques in [16]. We then derive Fraxis in its general form,
and present its simplified form that turns out to be computationally more efficient than the Rotoselect [16].

A. Motivating Examples

Here is an example why selecting axes of rotations can be better than fixing the axes and optimizing the continuous
angles. Let us consider a simple toy Hamiltonian H = X+Y +Z of a single qubit system. The ground state of H can
be computed from a single-qubit PQC with RyRz ansatz. Namely, a typical PQC consists of a Ry(θ1) gate followed
by a Rz(θ2) gate. Notice that if the initial quantum state is |0〉, then clearly no PQCs with single Ry or Rz gate can
find the ground state ρ = 1

2

(
I − 1√

3 (X + Y + Z)
)
.

This can be seen from the Bloch-vector representation of the ground state, which is rg = − 1√
3 (1, 1, 1)T , and that

of the initial state, which is r0 = (0, 0, 1)T . The Ry and Rz gates rotate a quantum state along the y and z axes,
respectively. Thus, it is not possible to obtain rg from r0 by either Ry or Rz alone (or, even by applying Rz and Ry
gate in that order). Thus, previously known approaches, such as, the Rotosolve and Rotoselect [16], need both Ry
and Rz rotational gates, must order them correctly, and tune the angles to obtain the ground state.

On the other hand, it is well known that single-qubit unitaries are rotations of the Bloch sphere [19], and each
rotation can be represented by a real unit vector n̂ = (nx, ny, nz)T ∈ R3 and an angle θ ∈ [0, 2π] so that the unitary
is

Rn̂(θ) = cos(θ/2)I − i sin(θ/2) (nxX + nyY + nzZ) . (1)

Notice that the Ry(θ) and Rz(θ) are instances of the above unitary. Rn̂(θ) rotates its input state by θ about the n̂
axis. With regards to the toy Hamiltonian H, by some algebra we can confirm that rotating the input state |0〉 by

θ = π about the axis n̂ =
(

1√
2

√
1
2 + 1

2
√

3 ,
1√
2

√
1
2 + 1

2
√

3 ,−
√

1
2 −

1
2
√

3

)T
results in the ground state. Therefore, should

we be able to optimize the axis of rotation of the corresponding unitary then we can obtain the ground state using
only a single gate. We will show later that optimizing the axis of rotation indeed results in quantum circuits with
better expressibility. In what follows, we first describe the steps to select axis of rotation in PQCs.

B. Optimizing PQCs

The PQCs are used to find an n-qubit quantum state ρ ∈ C2n×2n to minimize an objective function encoded in a
Hermitian matrix M . We follow a similar setting as the one in [16]. The quantum state ρ is generated by a PQC that
consists of a sequence of unitary gates U = U1U2 . . . UD acting on n qubits so that each Ud is either a fixed two-qubit
gate, or a parameterized single-qubit gate [29]. For ease of explanation, we consider only the single-qubit gates and
consider the d-th unitary Ud as a rotational gate with parameter θd written as:

Ud = e−i
θd
2 n̂d·−→σ = cos (θd/2)I − i sin (θd/2)n̂d · −→σ = Rn̂d(θd), (2)

where n̂d · −→σ = nd,xX + nd,yY + nd,zZ, for n̂d ∈ R3 so that |n̂d| = 1.
We want to optimize the following expected value on the objective function over the choice of parameters of all

single qubit gates, i.e., θd and n̂d for d = 1, . . . , D, that we can gather as θ = (θ1, . . . , θD) and (n̂1, . . . , n̂D). To
further simplify the notation, similar to [16] we write the expectation value as

〈M〉 = tr
(
MUD . . . Ud+1UdUd−1 . . . U1ρU

†
1 . . . U

†
d−1U

†
dU
†
d+1 . . . U

†
D

)
, (3)

which can be transformed as below because trace is invariant under cyclic permutations.

〈M〉 =
〈
M̂
〉

= tr
(
M̂Udρ̂U

†
d

)
. (4)

In the above, we utilize the following definitions

M̂ ≡ U†d+1 . . . U
†
DMUD . . . Ud+1, (5)

ρ̂ ≡ Ud−1 . . . U1ρU
†
1 . . . U

†
d−1. (6)
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In the hereafter, we simply write M̂ and ρ̂ as M and ρ, respectively, as they are clear from the context. Fixing all
parameters of single-qubit gates excepting the d-th ones, the value 〈M〉 is a function of θd and n̂d as below (see [16]
for the proof).

〈M〉n̂d,θd = cos2
(
θd
2

)
tr (Mρ) + i sin

(
θd
2

)
cos
(
θd
2

)
tr (M [ρ,Hd]) + sin2

(
θd
2

)
tr (MHdρHd) , (7)

where Hd ≡ n̂d · −→σ , and [A,B] ≡ AB −BA.
Now, we remark an important result of [16, 17]: given a fixed n̂d the optimal θ∗d can be computed efficiently because
〈M〉θd is a sinusoidal form that can be fully characterized by evaluating the circuits on three different parameters of
θd. The above fact is used to derive structural optimization of PQCs for finding the optimal angles θ under fixed
axes of rotations (e.g., Rotosolve in [16]), and for choosing (n̂1, . . . , n̂D) ∈ {Rx, Ry, Rz}D where each of Rx, Ry and
Rz corresponds to rotational axes n̂(x) = (1, 0, 0)T , n̂(y) = (0, 1, 0)T , and n̂(z) = (0, 0, 1)T , respectively. In the next
section we show how we can further extend the choices of rotational axes to all unit vectors n̂d ∈ R3.

C. The Proposed Method: Free-Axis Selection

Hereafter we describe how to optimize over the choice of a unit vector n̂d ∈ R3 that defines the rotation axis with
regards to a fixed rotation angle θd. For simplicity, we drop the subscript d. We want to determine the values of
nx, ny and nz to minimize 〈M〉n̂.

By the Lagrange multipliers, the objective function to optimize is

(n̂∗, λ∗) = min
n̂,λ

f(n̂, λ) ≡ 〈M〉n̂ − λ
(
n2
x + n2

y + n2
z − 1

)
, (8)

where λ is a scalar whose value can be determined later.
For ease of notation, let us define αθ ≡ i sin

(
θ
2
)

cos
(
θ
2
)
, and assume that αθ 6= 0 (it is zero if θ = 0, where there is

no need to change axis of rotation, or if θ = π which we will deal later). Differentiating f with respect to nx, ny, and
nz we obtain that the following system of linear equations has to be satisfied by an optimal (n̂∗, λ∗). The derivation
of the system of linear equations is given in Appendix (VIA).

sin2
(
θ

2

) 2rx 2r(x+y) − rx − ry 2r(x+z) − rx − rz
2r(x+y) − rx − ry 2ry 2r(y+z) − ry − rz
2r(x+z) − rx − rz 2r(y+z) − ry − rz 2rz

− 2λ∗I

n∗xn∗y
n∗z

 = −αθ

tr (M [ρ,X])
tr (M [ρ, Y ])
tr (M [ρ, Z])

 (9)

In the above equation, we use the following definitions which are the expectation values obtain from running the
circuits each of which its d-th single-qubit gate is replaced with X,Y, Z, (X + Y )/

√
2, (X + Z)/

√
2 and (Y + Z)/

√
2

gate, respectively.

rx ≡ tr (MXρX) , (10)
ry ≡ tr (MY ρY ) , (11)
rz ≡ tr (MZρZ) , (12)

r(x+y) ≡ tr
(
M

(
X + Y√

2

)
ρ

(
X + Y√

2

))
, (13)

r(x+z) ≡ tr
(
M

(
X + Z√

2

)
ρ

(
X + Z√

2

))
, (14)

r(y+z) ≡ tr
(
M

(
Y + Z√

2

)
ρ

(
Y + Z√

2

))
. (15)

Eq. (9) can be simply written as: (
sin2 (θ/2)R − 2λ∗I

)
n̂∗ = −αθb, (16)

where b ≡ (tr (M [ρ,X]) , tr (M [ρ, Y ]) , tr (M [ρ, Z]))T , and

R ≡

 2rx 2r(x+y) − rx − ry 2r(x+z) − rx − rz
2r(x+y) − rx − ry 2ry 2r(y+z) − ry − rz
2r(x+z) − rx − rz 2r(y+z) − ry − rz 2rz

 . (17)
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Algorithm 1 Free-axis selection (Fraxis)
Input A Hermitian matrix M of the objective function, a PQC with single-qubit gates U1 . . . UD, and a stopping criterion
Initialize: Choose random axes, i.e., n̂d ∈ R3 such that |n̂d| = 1 for d = 1, 2, . . . , D.
repeat

for d = 1, 2, . . . D do
Fix all axes n̂j for j 6= d
Compute elements of the Rd matrix as in Eq. (10)–(15)
Compute the eigenvectors r(1)

d , r
(2)
d , r

(3)
d of Rd

n̂d ← arg min
r∈{r

(1)
d
,r

(2)
d
,r

(3)
d

} 〈M〉r,π, where 〈M〉r,θ as in Eqs. (7)

until satisfying stopping criterion
Output Axes of rotation (n̂1, . . . , n̂D)

We can clearly see that R is a symmetric matrix and therefore its eigenvalues are real numbers. Moreover, provided
that sin( θ2 ) cos( θ2 ) 6= 0 there exists λ ∈ R such that Eq. (16) has a unique solution. In fact, the value of λ∗ is the
solution to the following identity:

1 = (n̂∗)T n̂∗ = (αθ)2 bT
((

sin2(θ/2)R − 2λI
)−1
)2

b.

Eq. (16) gives a method to determine an optimal way to select axis of rotation against a fixed θ by estimating
the matrix R and vector b. We notice that we can further simplify the equation when θ = π that corresponds to
replacing the single-qubit gate with a π-rotation gate around a particular axis. Although this type of gates is less
general than an arbitrary rotational gate, we will see in later sections that not only its expressibility is higher, but
also its computational cost to optimize the parameter is better than other ansatz.

D. Simplified Free-Axis Selection

We have derived a method to select a rotational axis minimizing the objective function by fixing θ. We refer to it
as θ-Fraxis. The method requires us to run the PQC nine times to estimate the elements of R and b, which is more
than previous methods. However, we can reduce the number of PQC runs by fixing θ = π as we do not need b in this
case. Moreover, the unit vector n̂∗ becomes an eigenvector of R. The axis that minimizes the objective function is
exactly the eigenvector whose eigenvalue is the smallest. We summarize the π-Fraxis in Algorithm 1. In the hereafter,
for ease of notation we simply call it Fraxis and omit the prefix π-.

Finally, we note an important and nice property of the Fraxis: its computational resources turn out to be less
than those of Rotoselect [16] despite the fact that it selects axis of rotation in continuous manner. While Rotoselect
requires evaluating seven energy estimations with the PQC, at each for-loop of Algorithm 1 Fraxis needs exactly six
energy estimations to compute all elements of Rd. The landscape of 〈M〉n̂d,π as in Eq. (7) is completely determined
by the eigenvalues and eigenvectors of Rd. We record this property in the following lemma.

Lemma 1. Let λ(i)
d and r(i)

d be, respectively, the i-th eigenvalue and eigenvector of Rd at each for-loop of Algorithm 1
for i = 1, 2, 3 so that λ(1)

d ≤ λ
(2)
d ≤ λ

(3)
d . Then, for all unit vector r ∈ R3 it holds that λ(1)

d /2 ≤ 〈M〉r,π ≤ λ
(3)
d /2, and

therefore n̂d = r
(1)
d .

Proof. It follows directly from transforming Eq. (7) to obtain 〈M〉r,π = (1/2) rT ·Rd · r, and therefore the minimum
(maximum) value is achieved when r is the eigenvector whose eigenvalue is minimum (maximum).

Figure 1 shows the relation between landscape of 〈M〉n̂d,π and three eigenvectors r(1)
d , r

(2)
d , r

(3)
d drawn for simple

model example. Eigenvectors denoted by blue and red arrows corresponds to the rotation axes for minimum and
maximum energy values, respectively.

Finally, we remark that the cost of energy estimations can be significantly reduced for special Hamiltonians (e.g.,
k-local Hamiltonians [20–22]) if we use locally-biased classical shadows [23]. Also, fixing the rotation angle of local
gates could be advantageous feature for device control, such as simplification of microwave control pulse calibration
for superconducting qubits. Some potential drawbacks of the Fraxis method are its reduced expressibility (such as,
lacking ability to represent identity gates), and its overfitting against the Ry-ansatz circuits that are popular for
molecular Hamiltonians (because such ansatz are sufficient for searching quantum states with real-valued probability
amplitudes). We show in practice those drawbacks are not significant in the next section.
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FIG. 1: (left) An illustration of the energy landscape of Fraxis determined by the matrix Rd. Red, green and blue areas
correspond to high, medium, low energy values. (right) Three eigenvectors corresponding to minimum (blue), maximum (red)
and saddle (black) points.

|0〉0 Rn̂1 (θ1) • Rn̂3 (θ3)

|0〉1 Rn̂2 (θ2) Rn̂4 (θ4)

FIG. 2: A 2-qubit PQC with θ-Fraxis.

III. RESULTS

In this section, we first apply θ-Fraxis to simple 2-qubit system and compare it to Rotosolve and Rotoselect,
and show its advantage in energy convergence, together with the potential of the simplified π-Fraxis. Next, using
Qiskit [24] we demonstrate the high expressibility of PQCs with the simplified π-Fraxis (or, Fraxis) in contrast to
PQCs with its traditional counterparts. For studying expressibility, we show the one-qubit PQCs with Fraxis can
generate quantum states covering the Bloch sphere more uniformly that its counterparts. We then show evidences
of better expressibility of multi-qubit PQCs with Fraxis when measured in KL divergences under different number
of entangled layers. Finally, we present numerical experiments showing Fraxis can further improve the efficacy of
variational quantum circuits for the Heisenberg model and molecular Hamiltonians.

A. Comparison with other structural optimization

For comparison, we tested Rotosolve, Rotoselect, θ-Fraxis, and Fraxis methods to a 2-qubit PQC system in Fig. 2
for finding the ground state of the Hamiltonian

H = 0.1(XX + Y Y + ZZ) + 0.01(IZ + ZI). (18)

The ground state energy is E0 = −0.3. The variational parameters to be optimized are four rotation angles
(θ1, θ2, θ3, θ4) and their corresponding rotational axes, (n̂1, n̂2, n̂3, n̂4). We applied the methods to start from the
same 50 random initial parameter sets.

Fig. 3 shows the optimized energy as a function of iterative number of optimization. One can see that θ-Fraxis
shows better convergence compared to Rotosolve or Rotoselect, while those methods seem to suffer from being trapped
in local minima. This is because Rotosolve and Rotoselect mainly optimize rotation angles (θ1, θ2, θ3, θ4) and leave
rotation axes unchanged (Rotosolve) or selected from the limited choice, Rx, Ry or Rz (Rotoselect). Although
Rotoselect result exhibits better convergence nature, i.e., less likely to be trapped in local minima when compared to
Rotosolve, some parameter sets could not lead to the exact ground state energy E0.

On the other hand, θ-Fraxis makes it possible to optimize rotation axis continuously with respect to given θ, which
results in fine convergence nature as shown in Fig. 3. We also applied the simplified Fraxis with θ = π (or, π-Fraxis) to
the same problem. Note that the initial parameters for axes are same as in Rotosolve, Rotoselect and θ-Fraxis cases,
while rotation angles (θ1, θ2, θ3, θ4) are set to (π, π, π, π). The result in Fig. 3 shows that the convergence behaviour
of π-Fraxis is still better than those of Rotosolve/select. We also remark that π-Fraxis has comparable performance to
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(a) Rotosolve (b) Rotoselect
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(c) θ-Fraxis (d) π-Fraxis (Fraxis)
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FIG. 3: Comparison of energy convergence as a function of number of iterations for optimization. (upper left : Blue lines)
Rotosolve, (upper right : Gray lines) Rotoselect, (lower left : Green lines) θ-Fraxis, (lower right : Red lines) Fraxis. Common
initial angular parameter set is used for Rotosolve, Rotoselect and θ-Fraxis, while (θ1, θ2, θ3, θ4) are overridden to (π, π, π, π)
in Fraxis trials.

θ-Fraxis. Nevertheless, estimation cost for matrix-elements in π-Fraxis is reduced from 9 to 6, which suggests π-Fraxis
is more practical than θ-Fraxis. Recall that we abbreviate π-Fraxis as Fraxis and will further investigate expressibility
of Fraxis ansatz/circuit to ensure the ability of this simplified method in the next subsection.

B. Circuit Expressibility

In general, a universal gate for a single qubit is represented as

U =
[

cos ψ2 −eiλ sin ψ
2

eiφ sin ψ
2 ei(φ+λ) cos ψ2

]
. (19)

In the case of Fraxis, the rotation angle is fixed at θ = π in Eq. 1, which is equivalent the constraint condition
φ + λ = π in Eq. 19. Hence, a single gate controlled by Fraxis is not universal any more. For instance, the identity
gate is not included with the Fraxis expression. However, it should be noted that any input state in a single qubit
system can be transformed to an arbitrary state. To intuitively understand this, let us suppose one qubit state in
|0〉. This |0〉 state can be transformed to any state on the Bloch sphere by π rotation around the axis that passes
through the dividing point of |0〉 and the target state. Therefore, the Fraxis ansatz seems to retain high expressibility.
To quantitatively evaluate the expressibility of the Fraxis circuit in comparison with Rotosolve and Rotoselect, we
evaluate Kullback-Leibler (KL) divergence as

E(C) = DKL(P (C,F )||PHaar(F )) =
∫ 1

0
P (C,F ) log P (C,F )

PHaar(F )dF, (20)

where F is the fidelity between two parameterized random states |ψ(θ)〉 , |ψ(θ′)〉 which is for two pure states defined as
F = | 〈ψ|ψ′〉 |2. Here, P (C,F ) is a probability distribution function (pdf) of fidelity F of a circuit ansatz C. PHaar(F )
is a probability distribution sampled uniformly according to the Haar measure, in which |ψ〉 is uniformly distributed
in Hilbert space. According to [25] the Haar-measure distribution is derived as, PHaar(F ) = (N−1)(1−F )N−2, where
N is the dimension of Hilbert space. Here, a product state of ⊗n |0〉 is employed as the initial state.

First, we confirmed the expressibility of single-qubit circuits as shown in Figs. 4 and 5, where |0〉 is employed as
the initial state. Since the rotation axis is fixed in Rotosolve ansatz, the expressibility is equivalent to that of a single

ⓒ 2021 Information Processing Society of Japan 6

IPSJ SIG Technical Report Vol.2021-QS-3 No.11
2021/7/2



|0〉 Ry |0〉 Rx/Ry

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

ba
bi

lit
y

DKL= 0.22

0.0 0.2 0.4 0.6 0.8 1.0
Fidelity

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
ro

ba
bi

lit
y

DKL= 0.066

(a) Rotosolve (b) Rotoselect

FIG. 4: Fidelity distribution obtained by single-qubit circuits with (a) Rotosolve(Ry), and (b) Rotoselect(Rx/Ry). Horizontal
lines in red represent Haar-uniform distribution. The evaluated KL divergence values are displayed over the respective plots
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DKL= 0.015
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(a) parameter-random Fraxis (b) state-random Fraxis

FIG. 5: Fidelity distribution obtained by single-qubit circuits with (a) parameter-random Fraxis, and (b) state-random Fraxis.
Horizontal lines in red represent Haar-uniform distribution. The evaluated KL divergence values are displayed over the respective
plots.

Ry(θ) gate. Then, the rotation angles θ were randomly generated in the range of (−π, π]. Due to symmetry, the
fidelity is analytically given as F = f(θ) = | 〈0|ψ(θ)〉 |2 = cos2(θ/2) where θ is uniformly distributed. Then, the pdf
of the fidelity P (F ) can be defined as P (F ) ∝ |f−1(F )/dF |. Because f−1(F ) = −2 arccos(F ), we obtain

P (F ) = 1
π
√
F (1− F )

. (21)

Substituting Eq.(21) into Eq.(20) gives theoretical value of DKL = log(4/π) = 0.24 for Rotosolve with Ry-ansatz.
As mentioned in the previous study [26], we confirmed the fact that the KL divergence is largely sensitive to the bin
width of the pdf histogram, and thus the proper width is not trivial. Here, we evaluated the histogram with bin width
of 0.001 and 100,000 fidelity sampling and obtained numerically the DKL = 0.22 for the Rotosolve (as in Fig 4), in
close agreement with the analytical value. Notice from the figure that the high value of the KL divergence is due to
discrepancies of probability distributions around the edges, i.e., F = 0, 1 and a wide range centered at F = 0.5. For
fair comparison, all expressibility evaluations are based on bin width of 0.001 and 100,000 sampling throughout this
paper.

In the Rotoselect circuit, the rotation gates are usually selected from Rx(θ), Ry(θ) and Rz(θ). Since the Rz(θ)
rotation does not change the initial state |0〉, we here randomly selected either Rx(θ) or Ry(θ) with equal probabilities
as well as the rotation angle that uniformly distributed in the range of (−π, π]. In other words, the resulting pdf of the
fidelity is a mixture of those of | 〈0|Ry(θ′)Ry(θ) |0〉 |2 and | 〈0|Rx(θ′)Ry(θ) |0〉 |2. While the former term contributes
in the same way as Rotosolve, the cross evaluation between Rx and Ry contributes in the peak at F = 0.5 that in
turn lifts the pdf closer to the Haar-random. This gives a better expressibility of Rotoselect ansatz.

In the Fraxis circuits, while the rotation angles are fixed θ = π, the rotation axis n̂ = (nx, ny, nz)T are generated
randomly. Since the Fraxis ansatz optimizes the target gate in a deterministic way without systematic search in
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|0〉0 Rn̂l+0 (π) • Rn̂L+0 (π)

|0〉1 Rn̂l+1 (π) • • Rn̂L+1 (π)

|0〉2 Rn̂l+2 (π) • • Rn̂L+2 (π)

|0〉3 Rn̂l+3 (π) • • Rn̂L+3 (π)

|0〉4 Rn̂l+4 (π) • Rn̂L+4 (π)

×L
jj

|0〉0 X Rn̂l+0 (π) • • Rn̂L+0 (π)

|0〉1 Rn̂l+1 (π) • • Rn̂L+1 (π)

|0〉2 Rn̂l+2 (π) • Rn̂L+2 (π)

|0〉3 X Rn̂l+3 (π) • • Rn̂L+3 (π)

|0〉4 Rn̂l+4 (π) • • Rn̂L+4 (π)

|0〉5 Rn̂l+5 (π) • Rn̂L+5 (π)

×L
jj

(a) 5-qubit circuit A (b) 6-qubit circuit B

FIG. 6: PQCs with Fraxis-ansatz
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FIG. 7: Relation between KL divergences and number of layers for circuits A (left) and B (right)

parameter space, it is not straightforward to compare the expressibility with conventional parameterized circuits.
Indeed, the description of randomness of Fraxis ansatz seems not to be unique and we have to arbitrarily choose to
describe randomness in either parameter space (parameter random) or Hilbert space (state random).

In parameter random, the rotation axis is represented as n̂ = (sin θ cosφ, sin θ sinφ, cos θ)T and θ and φ are randomly
sampled with uniform probability in ranges of [0, π) and [−π, π), respectively. In state random, each element of rotation
axis (i.e., nx, ny, nz) was randomly generated according to the normal distribution, and then normalized by the sum
of their squares.

For qualitative understanding of the difference between parameter and state randoms, let us consider the surface
area on Bloch sphere. Here, We can consider only the rotation axis pointing to the north sphere of the Bloch sphere
without loss of generality because of the symmetry of π rotation. A set of rotation axis pointing south from of latitude
45 degree transforms |0〉 to a state in the south sphere on Bloch sphere, while the rest of the axis group transforms
|0〉 to a state in the north sphere.

Since the surface area south from latitude 45 degree is larger than the rest, the uniform distribution of rotation axis
on Bloch sphere results in larger population of transformed state on south sphere. This bias will cause asymmetry
of the pdf of fidelity as shown in Fig. 5 In the parameter random, the rotation axis n̂ is likely to be more populated
around north/south pole on the Bloch sphere. Accordingly, the rotated states are also populated around |0〉, which
increases the probability around F = 0 and 1 as shown in Fig 5. Although the KL divergences vary depending on
how the random states are generated in Fraxis, it is notable that both pdfs are almost uniform close to Haar measure
even with the fixed rotation angle θ = π for 1-qubit systems.
Next, we evaluated expressibility of two multi-layer PQCs as shown in Fig. 6 consisting of 5 and 6 qubits respectively.

Fig. 7 shows the relation between the KL divergence and number of layers. It is notable that Fraxis always obtained
smaller KL divergences than Rotosolve and Rotoselect.
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FIG. 8: Relation between number of layer for circuit A and the optimized energy after 100 iterations. The averaged energy is
represented by filled circles and lines. The boxplots represent respective quantiles. The exact ground state energy is displayed
with dash line.

C. Heisenberg Model

We performed energy optimization using the Hamiltonian that is one dimensional Heisenberg model under the
periodic boundary condition with 5-qubit as

H = J
∑

(i,j)∈E

(XiXj + YiYj + ZiZj) + h
∑
i∈V

Zi, (22)

where J = h = 1. We employed circuit A in Fig. 6, in Rotosolve, Rotoselect and Fraxis ansatze, respectively. Although
the gate update order is arbitrary and can affect the final results, we here conducted gate update as: starting from
the first layer, (i) update the single-qubit gate at the 0-th qubit in the layer, (ii) update each single-qubit gate in the
ascending order of qubits in the layer, (iii) move to the next layer in ascending order, and (iv) go back to (i) from
the first layer until maximum number of iterations is reached.

Figure 8 shows the optimized energy after 100 iteration and thus the optimization is not necessarily converged.
Although KL divergence shows large difference among the ansatze in Fig 7, the obtained energy are consistent among
all ansatze for L = 1. In the multi-layer calculation with the Rotosolve ansatz, the energy were not improved except
for at L = 2. It is probably because the ansatz consisting of only Ry gates cannot cover the ground state of this
model. It is also notable that although the expressibility of Rotoselect was not improved by increasing the number of
layers from 1 to 2, the obtained energy was obviously improved in Rotosolve. Fraxis showed significant improvement
even at L = 3, 4, and 5, although the improvement of the expressibility was not as large as those of Rotosolve and
Rotoselect in Fig. 7. Altogether, although Fraxis showed the best performance, it seems that its performance cannot
be explained solely by the expressibility measured with KL divergence. And thus, it is also important to discuss the
circuit performance with the entanglement capability. However, it should be stressed that the Fraxis ansatz always
showed the best performance with the given circuit and the number of layers.

D. Molecular Hamiltonian Model: H2/6-31G

Here, we evaluated the electronic energy of H2 molecules with bond length of 0.75 Å. First we performed the
Hartree-Fock calculation with 6-31G basis set, which was followed by the fermionic Hamiltonian construction with
active space [2,3]. Then, the fermionic Hamiltonian was converted to the qubit Hamiltonian by Jordan-Wigner
transformation. The optimization continued until either reaching to convergence or 100 iterations, where respective
gates were sequentially updated as in the previous section. Since the optimization strongly depends on the initial
conditions, we evaluated statistical average by randomly generating the initial parameters. Paying attention to the
statistical error, the independent optimizations were performed 20 to 300 times with different initial conditions. In
the case of Fraxis, the initial states were generated in the manner of parameter random as described in Sec. III B.

In agreement with the result of the Heisenberg model, the obtained energy did not vary among ansatze at L = 1, 2
regardless of the diverse expressibility and all optimizations were stuck in local minimum at the Hartree-Fock energy
level in Fig. 9. Note that at L = 3 the averaged optimized energy by Rotosolve is lower than that by Rotoselect. For
qualitative understanding of this non-intuitive results, it should be noted that in quantum chemistry, the coefficients
of the CI expansion are in usual real values, which indicates that the eigenstates can be expressed by only Ry gates.
We suppose the high expressibility can bring two conflicting consequences, (1) inclusion of the crucial piece of Hilbert
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FIG. 9: The average of optimized energy after 100 iterations with standard error. The Hartree-Fock state energy is displayed
with dash line.

space spanned by the ansatz, which may lead to successfully the ground state. This also includes the ability to express
the ground state itself, (2) inessential extension of search space irrelevant to the efficient optimization. We suppose
that the latter effects emerged in the case of Rotoselect at L = 3 because the Rotoselect ansatz greedily selects a gate
that yields the lowest energy at each optimization state. Indeed, we confirmed that Rotoselect optimization did not
necessarily select Ry gate, which may not be the best choice to find the global minimum, although it can temporally
gain the largest energy decrease. In contrast, Fraxis resulted in the energy at the same level as Rotosolve. Although
we found the selected axes in Fraxis were not necessarily on the X-Z plain of the Bloch sphere expression, it may be
possible to express effective path to the ground state by utilizing complex space if the expresssibility is sufficiently
high. As supporting evidences, the optimized efficiency levels of Rotoselect and Fraxis are reversed at L = 4, which
is probably because as the number of layer increases, the confined search space in Rotosolve and Rotoselect may
outweight the expressibility.

IV. CONCLUSION

In this paper, we proposed a new method for optimizing rotational axes of single-qubit gates in a PQC. Since it
makes full use of the expressibility of a single qubit gate, the Fraxis ansatz can achieve high expressibility even with
shallow PQCs. Indeed, we confirmed the expressibilities estimated with KL divergence for both single- and multi-qubit
PQCs with Fraxis are significantly higher when compared to optimizing the rotation angles. Nevertheless, only six
energy estimations are required for each gate update to find the optimal axis, which is more efficient than Rotoselect
that requires seven of them.

Although Fraxis enables to find the optimal rotation axis for single qubit gate, the optimal order of gate update
still remains untouched. Indeed, as seen in the application to a H2 molecules, many optimization runs were trapped
in Hartree-Fock states, which also happened with Rotosolve and Rotoselect. This result implies the optimal choice
for a single qubit rotation is not necessarily the best strategy for the entire system to avoid local minima and Barren
plateaus. This may be avoided by randomizing the order of updates. Another possible remedy is by simultaneously
updating k axes, which is similarly shown in [17, 18] to update k angles simultaneously. However, updating k axes
by Fraxis requires 6k energy estimations in contrast to 3k energy estimation of structural optimization in [17, 18] and
for this reason we may have to combine Fraxis with other techniques, such as, matrix completion [27, 28].

On the other hand, we also remark that conventional stochastic and gradient approaches may still be compelling
for the global optimization in certain cases. In that sense, Fraxis can be combined with those approaches. For
instance, we can analytically evaluate the gradient of the cost functions using Eqs. (23) – (25). The obtained gradient
is then passed to the conventional gradient-based optimizers. In addition, Fraxis has high affinity with stochastic
optimizations, because it gives the exact energy landscape of the single qubit rotation accessible. This can be used to
sample the rotation axis at random according to the estimated energy instead of choosing the (local) minimum one.
We believe that Fraxis effectively elicits the potential of PQCs for the progress of quantum computation.
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VI. APPENDIX

A. Deriving Equations for Selecting Axis of Rotation with Fixed Angles

In this section we explain the derivation of Eq. (9), i.e., how to optimize over the choice of a unit vector n̂ ∈ R3

that defines the rotation axis with regards to a fixed rotation angle θ. We want to determine the values of nx, ny and
nz to minimize 〈M〉n̂ constrained with a unit n̂.
By the Lagrange multipliers, the objective function to optimize is

(n̂∗, λ∗) = min
n̂,λ

f(n̂, λ) ≡ 〈M〉n̂ − λ
(
n2
x + n2

y + n2
z − 1

)
.

Differentiating f with respect to nx, ny, and nz we obtain

∂f

∂nx
= αθtr (M [ρ,X])

+ sin2
(
θ

2

)
(2nxtr (MXρX) + nytr (MXρY +MY ρX) + nztr (MXρZ +MZρX))

− 2λnx, (23)

∂f

∂ny
= αθtr (M [ρ, Y ])

+ sin2
(
θ

2

)
(2nytr (MY ρY ) + nxtr (MXρY +MY ρX) + nztr (MY ρZ +MZρY ))

− 2λny, (24)

∂f

∂nz
= αθtr (M [ρ, Z])

+ sin2
(
θ

2

)
(2nztr (MZρZ) + nxtr (MXρZ +MZρX) + nytr (MY ρZ +MZρY ))

− 2λnz. (25)

At optimality, the value n̂∗ = (n∗x, n∗y, n∗z)T satisfies:

∂f

∂nx
= ∂f

∂ny
= ∂f

∂nz
= 0. (26)

Defining rx, ry, rz, r(x+y), r(x+z) and r(y+z) as in Eqs. (10)–(15), and noticing the following identities:

tr (MXρY +MY ρX) = 2r(x+y) − rx − ry, (27)
tr (MXρZ +MZρX) = 2r(x+z) − rx − rz, (28)
tr (MY ρZ +MZρY ) = 2r(y+z) − ry − rz, (29)

we can transform Eq. (23)–(25) and Eq. (26) to obtain Eq. (9).
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