Hardness of efficiently generating ground states in postselected quantum computation

Yuki Takeuchi ${ }^{1, a)}$ Yasuhiro Takahashi ${ }^{1}$ Seiichiro Tani ${ }^{1}$

Abstract

Generating ground states of any local Hamiltonians seems to be impossible in quantum polynomial time．In this talk，we give evidence for the impossibility by applying an argument used in the quantum－computational－supremacy approach．More precisely，we show that if ground states of any 3－local Hamiltonians can be approximately generated in quantum polynomial time with postselection， then $P P=$ PSPACE．Our result is superior to the existing findings in the sense that we reduce the impossibility to an unlikely relation between classical complexity classes．

1．Introduction

Quantum computing is expected to outperform clas－ sical computing．Indeed，quantum advantages have al－ ready been shown in terms of query complexity［1］and communication complexity［2］．Regarding time complex－ ity，it is also believed that universal quantum computing has advantages over classical counterparts．For example， although an efficient quantum algorithm，i．e．，Shor＇s al－ gorithm，exists for integer factorization［3］，there is no known classical algorithm that can do so efficiently．How－ ever，an unconditional proof that there is no such classi－ cal algorithm seems to be hard because an unconditional separation between BQP and BPP implies $P \neq$ PSPACE． Whether $P \neq$ PSPACE is a long－standing problem in the field of computer science．

To give evidence of quantum advantage in terms of com－ putational time，a sampling approach has been actively studied．This approach is to show that if the output probability distributions from a family of（non－universal） quantum circuits can be efficiently simulated in classical polynomial time，then the polynomial hierarchy（PH）col－ lapses to its second or third level．Since it is widely be－ lieved that PH does not collapse，this approach shows one kind of quantum advantage（under a plausible complexity－

[^0]theoretic assumption）．This type of quantum advantage is called quantum computational supremacy［4］．The quantum－computational－supremacy approach is remark－ able because it reduces the impossibility of an efficient classical simulation of quantum computing to unlikely re－ lations between classical complexity classes（under con－ jectures such as the average－case hardness conjecture）． Since classical complexity classes have been studied for a longer time than quantum complexity classes，unlikely relations between classical complexity classes would be more dramatic than those involving quantum complex－ ity classes．As sub－universal quantum computing models showing quantum computational supremacy，several mod－ els have been proposed，such as boson sampling［5］，［6］，［7］， instantaneous quantum polynomial time（IQP）［8］，［9］and its variants［10］，［11］，［12］，［13］，deterministic quantum computation with one quantum bit（DQC1）［14］，［15］， Hadamard－classical circuit with one qubit（HC1Q）［16］， and quantum random circuit sampling［17］，［18］，［19］，［20］． A proof－of－principle demonstration of quantum computa－ tional supremacy has recently been achieved using quan－ tum random circuit sampling with 53 qubits［21］．Regard－ ing other models，small－scale experiments have been per－ formed toward the goal of demonstrating quantum com－ putational supremacy［22］，［23］，［24］，［25］，［26］，［27］．
On the other hand，the limitations of universal quantum computing are also actively studied（e．g．，see Refs．［28］， ［29］，［30］）．Understanding these limitations is impor－ tant to clarify how to make good use of universal quan－
tum computers．For example，it is believed to be im－ possible in the worst case to generate ground states of a given local Hamiltonian in quantum polynomial time， while their heuristic generation has been studied using quantum annealing［31］，variational quantum eigensolvers （VQE）［32］，and quantum approximate optimization algo－ rithms（QAOA）［33］．Since deciding whether the ground－ state energy of a given 2－local Hamiltonian is low or high with polynomial precision is a QMA－complete prob－ lem［34］，if efficient generation of the ground states is pos－ sible，then BQP $=$ QMA that seems to be unlikely．As well as the gap between quantum and classical computing in terms of time complexity，it is hard to unconditionally show the impossibility of efficiently generating the ground states．

In this talk，we utilize a technique from the quantum－ computational－supremacy approach to give new evidence for this impossibility．More precisely，in Theorem 1，we show that if the ground states of any given 3－local Hamil－ tonians can be approximately generated in quantum poly－ nomial time with postselection，then PP $=$ PSPACE．Sim－ ilar to the quantum－computational－supremacy approach， this consequence leads to the collapse of a hierarchy，i．e．， the counting hierarchy (CH) collapses to its first level $(\mathrm{CH}=\mathrm{PP})$ ．In Theorem 2，we consider a different no－ tion of approximation and show that if the probability distributions obtained from the ground states can be ap－ proximately generated in quantum polynomial time with postselection，then PP $=$ PSPACE．Theorem 2 studies the hardness of approximately generating the ground states from a different perspective，because it is closely related to the hardness of approximately generating the proba－ bility distributions．Our results are different from the ex－ isting ones on the impossibility of efficient ground－state generation in a sense that we reduce the impossibility to unlikely relations between classical complexity classes as in the quantum－computational－supremacy approach．

2．Preliminaries

Before we explain our results，we will briefly review pre－ liminaries required to understand our argument．We use several complexity classes that are sets of decision prob－ lems．Here，decision problems are mathematical problems that can be answered by YES or NO．We mainly use com－ plexity classes CH ，postBQP，and postQMA，where the latter two are postselected versions of BQP and QMA，re－ spectively．We assume that readers know the major com－ plexity classes，such as P，PP，PSPACE，and PH（for their
definitions，see Ref．［35］）．
The class CH is the union of classes $\mathrm{C}_{k} \mathrm{P}$ over all non－ negative integers k ，i．e．， $\mathrm{CH}=\cup_{k \geq 0} \mathrm{C}_{k} \mathrm{P}$ ，where $\mathrm{C}_{0} \mathrm{P}=\mathrm{P}$ and $\mathrm{C}_{k+1} \mathrm{P}=\mathrm{PP}^{\mathrm{C}_{k} \mathrm{P}}$ for all $k \geq 0$ ．We say that CH col－ lapses to its k－th level when $\mathrm{CH}=\mathrm{C}_{k} \mathrm{P}$ ．The first－level collapse of CH is thought to be especially unlikely．This is because，from Toda＇s theorem［36］， $\mathrm{PH} \subseteq \mathrm{P}^{\mathrm{PP}} \subseteq \mathrm{CH}$ ． Therefore，if $\mathrm{CH}=\mathrm{PP}$ ，then $\mathrm{PH} \subseteq \mathrm{PP}$ ．Although it is unknown whether this inclusion does not hold，it is used as an unlikely consequence in several papers such as Ref．［37］．At least，we can say that it is difficult to show that $\mathrm{PH} \subseteq \mathrm{PP}$ holds．This is because there exists an oracle relative to which PH （more precisely， P^{NP} ）is not contained in PP［38］．
The complexity class postQMA is defined as follows［39］， ［40］：a language L is in postQMA if and only if there ex－ ist a constant $0<\delta<1 / 2$ ，polynomials n ，m ，and k ， and a uniform family $\left\{U_{x}\right\}_{x}$ of polynomial－size quantum circuits，where x is an instance，and U_{x} takes an n－qubit state ρ and ancillary qubits $\left|0^{m}\right\rangle$ as inputs，such that（i） $\operatorname{Pr}[p=1 \mid \rho] \geq 2^{-k}$ ，where p is a single－qubit postselec－ tion register，for any ρ ，（ii）if $x \in L$ ，then there exists a witness ρ_{x} such that $\operatorname{Pr}\left[o=1 \mid p=1, \rho_{x}\right] \geq 1 / 2+\delta$ with a single－qubit output register o ，and（iii）if $x \notin L$ ，then for any $\rho, \operatorname{Pr}[o=1 \mid p=1, \rho] \leq 1 / 2-\delta$ ．In this definition， ＂polynomials＂mean the ones in the length $|x|$ of the in－ stance x ．Note that postQMA is denoted by QMA $_{\text {postBQP }}$ in Ref．［39］．
The following is an important lemma：
Lemma1 Any decision problem in postQMA can be efficiently solved using postselected polynomial－size quan－ tum circuits if a polynomial number of copies of a ground state（i．e．，a minimum－eigenvalue state）$|g\rangle$ of an appropri－ ate 3 －local Hamiltonian is given（see Fig． 1 （a））．Note that a 3－local Hamiltonian $H=\sum_{i=1}^{t} H^{(i)}$ with a polynomial t is the sum of polynomially many Hermitian operators $\left\{H^{(i)}\right\}_{i=1}^{t}$ ，each of which acts on at most three（possi－ bly geometrically nonlocal）qubits．The operator norm $\left\|H^{(i)}\right\|$ is upper－bounded by one for any $1 \leq i \leq t$ ．
This lemma can be obtained by combining results in Refs．［39］，［41］．The proof is given in our paper［42］．

By removing ρ_{x} and ρ from the definition of postQMA， the complexity class postBQP is defined．Since $\mathrm{PP}=$ postBQP［43］，readers can replace PP with postBQP if they are not familiar with the definition of PP．
（a）

（b）

Fig． 1 （a）A quantum circuit U_{x} with an input state $\left|0^{m}\right\rangle|g\rangle^{\otimes m^{\prime}}$ to decide whether $x \in L$ or $x \notin L$ ，where L is in postQMA．Let o and p be output and postselec－ tion registers，respectively．If $o=p=1$ ，we conclude that $x \in L$ ．On the other hand，if $p=1$ and $o=0$ ， then $x \notin L$ ．The output probability distribution of $n m^{\prime}+m$ qubits is denoted by $\left\{p_{z}\right\}_{z \in\{0,1\}^{n m^{\prime}+m}}$ ．Each meter symbol represents a Z－basis measurement．（b） The same quantum circuit as in Fig． 1 （a）except that $|g\rangle$ is replaced with an approximate state $\rho_{\text {approx }}$ ．The output and postselection registers are denoted by o^{\prime} and p^{\prime} ，respectively．

3．Main results

3．1 Result 1

We show that efficiently generating approximate ground states of a given 3－local Hamiltonian is hard for postse－ lected quantum computation in the worst case．Formally， our first main result is as follows：
Theorem1 Suppose that it is possible to，for any n－qubit 3 －local Hamiltonian H and polynomial s ，con－ struct a polynomial－size quantum circuit W in classical polynomial time，such that W generates an n－qubit state $\rho_{\text {approx }}$ given the success of the postselection，satisfying $\langle g| \rho_{\text {approx }}|g\rangle \geq 1-2^{-s}$ for a ground state $|g\rangle$ of H ，and the postselection succeeds with probability at least the inverse of an exponential．Then，PP＝PSPACE．

Proof．Our goal is to show that if the quantum circuit W exists，then postQMA \subseteq postBQP．From $\mathrm{PP} \subseteq$ PSPACE， postQMA $=\mathrm{PSPACE}$［39］，and postBQP $=\mathrm{PP}$［43］，this immediately means $\mathrm{PP}=\mathrm{PSPACE}$ ．

First，we consider the language L that is in postQMA． From Lemma 1 ，for any instance x ，there exist polynomi－ als m and m^{\prime} such that a polynomial－size quantum cir－ cuit U_{x} with input $\left|0^{m}\right\rangle|g\rangle^{\otimes m^{\prime}}$ efficiently decides whether $x \in L$ or $x \notin L$ under postselection of $p=1$（see Fig． 1 （a））．Here，$|g\rangle$ is a ground state of an n－qubit 3 －local

Fig． 2 A polynomial－size quantum circuit V that prepares tensor products $\rho_{\text {approx }}{ }^{\otimes m^{\prime}}$ of an n－qubit approximate ground state from $\left|0^{h}\right\rangle$ with polynomials m^{\prime} and $h(\geq$ $\left.n m^{\prime}+1\right)$ when the postselection register $p^{\prime \prime}=1$ ．Note that the probability of obtaining $p^{\prime \prime}=1$ is at least the inverse of an exponential．

Hamiltonian H_{x} that depends on the instance x, n is a polynomial in $|x|$ ，and p is the postselection register of U_{x} ．From the definition of postQMA，the postselection succeds with probability $\operatorname{Pr}[p=1] \geq 2^{-k}$ for a polyno－ mial k ．

Next，we show that the quantum circuit in Fig． 1 （a）can be simulated using the quantum circuit W ．A classical de－ scription of H_{x} can be obtained in polynomial time from the instance x ．From the assumption with the Hamil－ tonian H_{x} and the polynomials n, m^{\prime} ，and k described above，we can construct the quantum circuit W such that it prepares the approximate ground state $\rho_{\text {approx }}$ whose fidelity F with $|g\rangle$ is $\left(1-\Theta\left(2^{-4 k}\right)\right)^{1 / m^{\prime}}$ given the suc－ cess of the postselection．By repeated execution of W ，we can efficiently prepare $\rho_{\text {approx }}{ }^{\otimes m^{\prime}}$ given the success of the postselection．In other words，from the quantum circuit W ，we can construct a polynomial－size quantum circuit V that generates tensor products $\rho_{\text {approx }}{ }^{\otimes m^{\prime}}$ of the approx－ imate ground state in the case of $p^{\prime \prime}=1$ ，where $p^{\prime \prime}$ is the postselection register of V（see Fig．2）．The fidelity be－ tween $|g\rangle^{\otimes m^{\prime}}$ and $\rho_{\text {approx }}{ }^{\otimes m^{\prime}}$ is $F^{m^{\prime}}=1-\Theta\left(2^{-4 k}\right)$ ．When we denote by r the success probability of postselection of W ，that of V is $\operatorname{Pr}\left[p^{\prime \prime}=1\right]=r^{m^{\prime}}$ ，which is at least the inverse of an exponential．
By combining the quantum circuit V in Fig． 2 and U_{x} in Fig． 1 （a），we can construct a new quantum circuit U_{x}^{\prime} ， as shown in Fig．3．Note that since U_{x} is in a uniform family of polynomial－size quantum circuits as per the def－ inition of postQMA，it can be efficiently constructed from the instance x ．The postselection register \tilde{p}^{\prime} of U_{x}^{\prime} is equal to 1 if and only if the postselection registers of V and U_{x} are both 1 ．In other words，when $\tilde{p}^{\prime}=1$ ，the quantum circuit V outputs the correct state $\rho_{\text {approx }}{ }^{\otimes m^{\prime}}$ ，and the quantum circuit U_{x} is successfully postselected．There－ fore， $\operatorname{Pr}\left[o^{\prime}=1 \mid p^{\prime}=1\right]=\operatorname{Pr}\left[\tilde{o}^{\prime}=1 \mid \tilde{p}^{\prime}=1\right]$ ，where \tilde{o}^{\prime} is the output register of U_{x}^{\prime} ，and o^{\prime} and p^{\prime} are out－ put and postselection registers in Fig． 1 （b），respectively．

Fig． 3 By using the quantum circuit V in Fig．2，we construct U_{x}^{\prime} ．By using this quantum circuit，we can solve any postQMA problem in quantum polynomial time with postselection，i．e．，postQMA \subseteq postBQP．The output and postselection registers are denoted by \tilde{o}^{\prime} and \tilde{p}^{\prime} ， respectively．

The only difference between Fig． 1 （a）and（b）is that the input ground states are exact or approximate ones． Hereafter，we will consider $\operatorname{Pr}\left[o^{\prime}=1 \mid p^{\prime}=1\right]$ instead of $\operatorname{Pr}\left[\tilde{o}^{\prime}=1 \mid \tilde{p}^{\prime}=1\right]$ ．
From a property of fidelity（see Theorem 9.1 and Eq．（9．101）in Ref．［44］），both $\mid \operatorname{Pr}[o=p=1]-\operatorname{Pr}\left[o^{\prime}=\right.$ $\left.p^{\prime}=1\right] \mid$ and $\left|\operatorname{Pr}[p=1]-\operatorname{Pr}\left[p^{\prime}=1\right]\right|$ are upper－bounded by $2 \sqrt{1-F^{m^{\prime}}}$ ．Therefore，

$$
\begin{aligned}
\operatorname{Pr}\left[o^{\prime}=1 \mid p^{\prime}=1\right] & =\frac{\operatorname{Pr}\left[o^{\prime}=p^{\prime}=1\right]}{\operatorname{Pr}\left[p^{\prime}=1\right]} \\
& \geq \frac{\operatorname{Pr}[o=p=1]-2 \sqrt{1-F^{m^{\prime}}}}{\operatorname{Pr}[p=1]+2 \sqrt{1-F^{m^{\prime}}}}
\end{aligned}
$$

When $x \in L$ ，the inequality $\operatorname{Pr}[o=1 \mid p=1] \geq 1 / 2+\delta$ holds．Therefore，

$$
\begin{aligned}
\operatorname{Pr}\left[o^{\prime}=1 \mid p^{\prime}=1\right] & \geq \frac{(1 / 2+\delta) \operatorname{Pr}[p=1]-2 \sqrt{1-F^{m^{\prime}}}}{\operatorname{Pr}[p=1]+2 \sqrt{1-F^{m^{\prime}}}} \\
& =\frac{1}{2}+\delta-\frac{(3+2 \delta) \sqrt{1-F^{m^{\prime}}}}{\operatorname{Pr}[p=1]+2 \sqrt{1-F^{m^{\prime}}}} \\
& \geq \frac{1}{2}+\delta-\frac{(3+2 \delta) \sqrt{1-F^{m^{\prime}}}}{2^{-k}+2 \sqrt{1-F^{m^{\prime}}}},
\end{aligned}
$$

where we have used $\operatorname{Pr}[p=1] \geq 2^{-k}$ to derive the last inequality．

On the other hand，when $x \notin L$ ，from $\operatorname{Pr}[o=1 \mid p=$ $1] \leq 1 / 2-\delta$ ，

$$
\begin{aligned}
\operatorname{Pr}\left[o^{\prime}=1 \mid p^{\prime}=1\right] & =\frac{\operatorname{Pr}\left[o^{\prime}=p^{\prime}=1\right]}{\operatorname{Pr}\left[p^{\prime}=1\right]} \\
& \leq \frac{\operatorname{Pr}[o=p=1]+2 \sqrt{1-F^{m^{\prime}}}}{\operatorname{Pr}[p=1]-2 \sqrt{1-F^{m^{\prime}}}} \\
& \leq \frac{(1 / 2-\delta) \operatorname{Pr}[p=1]+2 \sqrt{1-F^{m^{\prime}}}}{\operatorname{Pr}[p=1]-2 \sqrt{1-F^{m^{\prime}}}} \\
& =\frac{1}{2}-\delta+\frac{(3-2 \delta) \sqrt{1-F^{m^{\prime}}}}{\operatorname{Pr}[p=1]-2 \sqrt{1-F^{m^{\prime}}}}
\end{aligned}
$$

$$
\leq \frac{1}{2}-\delta+\frac{(3-2 \delta) \sqrt{1-F^{m^{\prime}}}}{2^{-k}-2 \sqrt{1-F^{m^{\prime}}}}
$$

Since $1-F^{m^{\prime}}=\Theta\left(2^{-4 k}\right),(3+2 \delta) \sqrt{1-F^{m^{\prime}}} /\left(2^{-k}+\right.$ $\left.2 \sqrt{1-F^{m^{\prime}}}\right)=O\left(2^{-k}\right)$ and $(3-2 \delta) \sqrt{1-F^{m^{\prime}}} /\left(2^{-k}-\right.$ $\left.2 \sqrt{1-F^{m^{\prime}}}\right)=O\left(2^{-k}\right)$ ．

The remaining task is to show that the success probabil－ ity $\operatorname{Pr}\left[\tilde{p}^{\prime}=1\right]$ of postselection of U_{x}^{\prime} is at least the inverse of an exponential，which is required in the definition of postBQP．Since $\operatorname{Pr}\left[p^{\prime}=1\right] \geq \operatorname{Pr}[p=1]-2 \sqrt{1-F^{m^{\prime}}}$ holds， $\operatorname{Pr}\left[\tilde{p}^{\prime}=1\right]=\operatorname{Pr}\left[p^{\prime \prime}=1\right] \operatorname{Pr}\left[p^{\prime}=1\right] \geq r^{m^{\prime}}(\operatorname{Pr}[p=$ $\left.1]-2 \sqrt{1-F^{m^{\prime}}}\right)=\Omega\left(2^{-k} r^{m^{\prime}}\right)$ ．As a result，we can conclude that if the quantum circuit W exists，then postQMA \subseteq postBQP．
$P P=$ PSPACE leads to the first－level collapse of the counting hierarchy，i．e．， $\mathrm{CH}=\mathrm{PP}$ ．This is because from $\mathrm{CH} \subseteq$ PSPACE，
$\mathrm{PP} \subseteq \mathrm{CH} \subseteq \mathrm{PSPACE}=\mathrm{PP}$.
Since CH＝PP is unlikely as discussed in Sec．2，Theo－ rem 1 is evidence supporting the conclusion that genera－ tion of ground states is impossible even for postselected universal quantum computers．

Theorem 1 is interesting，because it means that al－ though QMA \subseteq postBQP［45］，generating ground states of a given 3－local Hamiltonian seems to be beyond the ca－ pability of postBQP machines in the worst case．In other words，generating ground states of any 3－local Hamiltoni－ ans is just a sufficient condition to solve QMA problems， but it should not be a necessary condition．

3．2 Result 2

Here，we will focus on the output probability distribu－ tion $\left\{p_{z}\right\}_{z}$ in Fig． 1 （a）．The proof of Theorem 1 im－ plies that given the values of m and m^{\prime} ，and the classi－ cal descriptions of H_{x} and U_{x} ，it is hard to approximate $\left\{p_{z}\right\}_{z}$ with an exponentially－small additive error c^{\prime} by us－ ing postselected quantum computation．Therefore，the hardness with multiplicative error $1+c^{\prime}$ also holds．Here， we say that a probability distribution $\left\{p_{z}\right\}_{z}$ is generated with multiplicative error c if and only if there exists a probability distribution $\left\{q_{z}\right\}_{z}$ such that $p_{z} / c \leq q_{z} \leq c p_{z}$ for any z ．When $p_{z} /\left(1+c^{\prime}\right) \leq q_{z} \leq\left(1+c^{\prime}\right) p_{z}$ holds for all z ，the inequality $\sum_{z}\left|p_{z}-q_{z}\right| \leq c^{\prime}$ also holds．Therefore， if we can show the hardness with additive error c^{\prime} ，then the hardness with multiplicative error $1+c^{\prime}$ is also shown automatically．In short，by using the argument used in the proof of Theorem 1，we can show the hardness with multiplicative error $1+c^{\prime}$ ，which is exponentially close to

Fig． 4 A quantum circuit Q generates the output probability distribution $\left\{p_{z}\right\}_{z \in\{0,1\}^{n m^{\prime}+m}}$ with multiplicative error c when the second postselection register $\tilde{p}^{(2)}=1$ ，which occurs with probability of at least the inverse of an ex－ ponential．In other words，$p_{z} / c \leq q_{z} \leq c p_{z}$ for any z ． The symbols \tilde{o} and $\tilde{p}^{(1)}$ are the output and first posts－ election registers of Q ，respectively．

1，for postselected quantum computation．Hereafter，we will use a different argument to show the hardness with multiplicative error $1 \leq c<\sqrt{2}$ ，i．e．，show that in the worst case，it is hard for postselected quantum computa－ tion to prepare approximate ground states from which we can generate $\left\{p_{z}\right\}_{z}$ in Fig． 1 （a）with multiplicative error $1 \leq c<\sqrt{2}$ given the success of the postselection．

The following theorem is our second main result：
Theorem2 Suppose that it is possible to，for any n－qubit 3－local Hamiltonian H ，polynomials m and m^{\prime} ， and $\left(n m^{\prime}+m\right)$－qubit polynomial－size quantum circuit U ， construct an $(l+1)$－qubit polynomial－size quantum cir－ cuit Q for some polynomial $l\left(\geq n m^{\prime}+m\right)$ in classical polynomial time，such that Q takes $\left|0^{l+1}\right\rangle$ and generates the distribution $\left\{p_{z}\right\}_{z \in\{0,1\}^{n m^{\prime}+m}}$ with multiplicative er－ ror $1 \leq c<\sqrt{2}$ when the postselection succeeds（i．e．， $\tilde{p}^{(2)}=1$ in Fig．4），where $p_{z} \equiv \mid\left.\langle z| U\left(\left|0^{m}\right\rangle|g\rangle^{\otimes m^{\prime}}\right)\right|^{2}$ for any $z \in\{0,1\}^{n m^{\prime}+m},|g\rangle$ is a ground state of H ， and $\operatorname{Pr}\left[\tilde{p}^{(2)}=1\right] \geq 2^{-k^{\prime}}$ for a polynomial k^{\prime} ．Then， $P P=P S P A C E$.

The proof of Theorem 2 is given in our paper［42］．In the proof，we consider the case where all $n m^{\prime}+m$ qubits in Fig． 1 （a）are measured．However，the same argument holds even when the number of measured qubits is less than $n m^{\prime}+m$ as long as o and p are measured．

Acknowledgements We thank Tomoyuki Morimae for fruitful discussions．This work is supported by JST ［Moonshot R\＆D－MILLENNIA Program］Grant Number JPMJMS2061．Y．Takeuchi is supported by MEXT Quan－ tum Leap Flagship Program（MEXT Q－LEAP）Grant Number JPMXS0118067394 and JPMXS0120319794．ST is supported by the Grant－in－Aid for Transformative Re－ search Areas No．JP20H05966 of JSPS．

References

［1］D．R．Simon，On the Power of Quantum Computation， SIAM J．Comput．26， 1474 （1997）．
［2］R．Raz，Exponential separation of quantum and classical communication complexity，in Proc．of the 31st Sympo－ sium on Theory of Computing（ACM，New York，1999）， p． 358.
［3］P．W．Shor，Polynomial－Time Algorithms for Prime Fac－ torization and Discrete Logarithms on a Quantum Com－ puter，SIAM J．Comput．26， 1484 （1997）．
［4］A．W．Harrow and A．Montanaro，Quantum computa－ tional supremacy，Nature（London）549， 203 （2017）．
［5］S．Aaronson and A．Arkhipov，The computational com－ plexity of linear optics，in Proc．of the 43rd Symposium on Theory of Computing（ACM，San Jose，2011），p． 333.
［6］A．P．Lund，A．Laing，S．Rahimi－Keshari，T．Rudolph， J．L．O＇Brien，and T．C．Ralph，Boson Sampling from a Gaussian State，Phys．Rev．Lett．113， 100502 （2014）．
［7］C．S．Hamilton，R．Kruse，L．Sansoni，S．Barkhofen，C． Silberhorn，and I．Jex，Gaussian Boson Sampling，Phys． Rev．Lett．119， 170501 （2017）．
［8］M．J．Bremner，R．Jozsa，and D．J．Shepherd，Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy，Proc．R．Soc．A 467， 459 （2011）．
［9］M．J．Bremner，A．Montanaro，and D．J．Shepherd， Average－Case Complexity Versus Approximate Simula－ tion of Commuting Quantum Computations，Phys．Rev． Lett．117， 080501 （2016）．
［10］Y．Takahashi，S．Tani，T．Yamazaki，and K．Tanaka， Commuting quantum circuits with few outputs are un－ likely to be classically simulatable，Quantum Inf．Com－ put．16， 251 （2016）．
［11］Y．Takeuchi and Y．Takahashi，Ancilla－driven instan－ taneous quantum polynomial time circuit for quantum supremacy，Phys．Rev．A 94， 062336 （2016）．
［12］X．Gao，S．－T．Wang，and L．－M．Duan，Quantum Supremacy for Simulating a Translation－Invariant Ising Spin Model，Phys．Rev．Lett．118， 040502 （2017）．
［13］J．Miller，S．Sanders，and A．Miyake，Quantum supremacy in constant－time measurement－based compu－ tation：A unified architecture for sampling and verifica－ tion，Phys．Rev．A 96， 062320 （2017）．
［14］T．Morimae，K．Fujii，and J．F．Fitzsimons，Hardness of Classically Simulating the One－Clean－Qubit Model， Phys．Rev．Lett．112， 130502 （2014）．
［15］K．Fujii，H．Kobayashi，T．Morimae，H．Nishimura，S． Tamate，and S．Tani，Impossibility of Classically Sim－ ulating One－Clean－Qubit Model with Multiplicative Er－ ror，Phys．Rev．Lett．120， 200502 （2018）．
［16］T．Morimae，Y．Takeuchi，and H．Nishimura，Merlin－ Arthur with efficient quantum Merlin and quantum supremacy for the second level of the Fourier hierarchy， Quantum 2， 106 （2018）．
［17］S．Boixo，S．V．Isakov，V．N．Smelyanskiy，R．Babbush， N．Ding，Z．Jiang，M．J．Bremner，J．M．Martinis，and H． Neven，Characterizing quantum supremacy in near－term devices，Nat．Phys．14， 595 （2018）．
［18］D．Hangleiter，J．Bermejo－Vega，M．Schwarz，and J．Eis－ ert，Anticoncentration theorems for schemes showing a quantum speedup，Quantum 2， 65 （2018）．
［19］A．Bouland，B．Fefferman，C．Nirkhe，and U．Vazirani， On the complexity and verification of quantum random circuit sampling，Nat．Phys．15， 159 （2019）．
［20］T．Morimae，Y．Takeuchi，and S．Tani，Sam－
pling of globally depolarized random quantum circuit， arXiv：1911．02220．
［21］F．Arute，K．Arya，R．Babbush，D．Bacon，J．C．Bardin， R．Barends，R．Biswas，S．Boixo，F．G．S．L．Brandao，D． A．Buell，B．Burkett，Y．Chen，Z．Chen，B．Chiaro，R． Collins，W．Courtney，A．Dunsworth，E．Farhi，B．Foxen， A．Fowler，C．Gidney，M．Giustina，R．Graff，K．Guerin， S．Habegger，M．P．Harrigan，M．J．Hartmann，A．Ho， M．Hoffmann，T．Huang，T．S．Humble，S．V．Isakov，E． Jeffrey，Z．Jiang，D．Kafri，K．Kechedzhi，J．Kelly，P．V． Klimov，S．Knysh，A．Korotkov，F．Kostritsa，D．Land－ huis，M．Lindmark，E．Lucero，D．Lyakh，S．Mandrà， J．R．McClean，M．McEwen，A．Megrant，X．Mi，K． Michielsen，M．Mohseni，J．Mutus，O．Naaman，M．Nee－ ley，C．Neill，M．Y．Niu，E．Ostby，A．Petukhov，J．C． Platt，C．Quintana，E．G．Rieffel，P．Roushan，N．C． Rubin，D．Sank，K．J．Satzinger，V．Smelyanskiy，K．J． Sung，M．D．Trevithick，A．Vainsencher，B．Villalonga， T．White，Z．J．Yao，P．Yeh，A．Zalcman，H．Neven， and J．M．Martinis，Quantum supremacy using a pro－ grammable superconducting processor，Nature（London） 574， 505 （2019）．
［22］B．P．Lanyon，M．Barbieri，M．P．Almeida，and A．G． White，Experimental Quantum Computing without En－ tanglement，Phys．Rev．Lett．101， 200501 （2008）．
［23］J．B．Spring，B．J．Metcalf，P．C．Humphreys，W． S．Kolthammer，X．－M．Jin，M．Barbieri，A．Datta，N． Thomas－Peter，N．K．Langford，D．Kundys，J．C．Gates， B．J．Smith，P．G．R．Smith，and I．A．Walmsley，Boson Sampling on a Photonic Chip，Science 339， 6121 （2013）．
［24］M．Tillmann，B．Dakić，R．Heilmann，S．Nolte，A．Sza－ meit，and P．Walther，Experimental boson sampling， Nat．Photon．7， 540 （2013）．
［25］A．Crespi，R．Osellame，R．Ramponi，D．J．Brod，E．F． Galvão，N．Spagnolo，C．Vitelli，E．Maiorino，P．Mat－ aloni，and F．Sciarrino，Integrated multimode interfer－ ometers with arbitrary designs for photonic boson sam－ pling，Nat．Photon．7， 545 （2013）．
［26］M．Bentivegna，N．Spagnolo，C．Vitelli，F．Flamini，N． Viggianiello，L．Latmiral，P．Mataloni，D．J．Brod，E． F．Galvão，A．Crespi，R．Ramponi，R．Osellame，and F． Sciarrino，Experimental scattershot boson sampling，Sci． Adv．1，e1400255（2015）．
［27］H．Wang，J．Qin，X．Ding，M．－C．Chen，S．Chen，X．You， Y．－M．He，X．Jiang，L．You，Z．Wang，C．Schneider，J． J．Renema，S．Höfling，C．－Y．Lu，and J．－W．Pan，Boson Sampling with 20 Input Photons and a 60－Mode Interfer－ ometer in a 10^{14}－Dimensional Hilbert Space，Phys．Rev． Lett．123， 250503 （2019）．
［28］D．J．Bernstein，Introduction to post－quantum cryptog－ raphy，in Post－quantum Cryptography（Springer，Berlin， 2009），p． 1.
［29］T．Morimae，Finding resource states of measurement－ based quantum computing is harder than quantum com－ puting，Phys．Rev．A 96， 052308 （2017）．
［30］A．Gheorghiu and M．J．Hoban，Estimating the entropy of shallow circuit outputs is hard，arXiv：2002．12814．
［31］T．Kadowaki and H．Nishimori，Quantum annealing in the transverse Ising model，Phys．Rev．E 58， 5355 （1998）．
［32］A．Peruzzo，J．McClean，P．Shadbolt，M．－H．Yung，X．－Q． Zhou，P．J．Love，A．Aspuru－Guzik，and J．L．O’Brien， A variational eigenvalue solver on a photonic quantum processor，Nat．Commun．5， 4213 （2014）．
［33］E．Farhi，J．Goldstone，and S．Gutmann，A Quantum Approximate Optimization Algorithm，arXiv：1411．4028．
［34］J．Kempe，A．Kitaev，and O．Regev，The complexity of the local Hamiltonians problem，SIAM Journal on Com－ puting 35， 1070 （2006）．
［35］S．Arora and B．Barak，Computational Complexity：A Modern Approach（Cambridge University Press，Cam－ bridge，2009）．
［36］S．Toda，PP is as Hard as the Polynomial－Time Hierar－ chy，SIAM J．Comput．20， 865 （1991）．
［37］M．Vyalyi，QMA＝PP implies that $\mathbf{P P}$ contains $\mathbf{P H}$ ， Electronic Colloquium on Computational Complexity， Report TR03－021（2003）．
［38］R．Beigel，Perceptrons，PP，and the polynomial hierar－ chy，computational complexity 4， 339 （1994）．
［39］T．Morimae and H．Nishimura，Merlinization of complex－ ity classes above BQP，Quantum Inf．Comput．17， 959 （2017）．
［40］N．Usher，M．J．Hoban，and D．E．Browne，Nonuni－ tary quantum computation in the ground space of local Hamiltonians，Phys．Rev．A 96， 032321 （2017）．
［41］B．Fefferman and C．Y．－Y．Lin，A Complete Character－ ization of Unitary Quantum Space，in Proc．of the 9th Innovations in Theoretical Computer Science Confer－ ence（ITCS，Cambridge，2018），p．4：1．
［42］Y．Takeuchi，Y．Takahashi，and S．Tani，Hardness of effi－ ciently generating ground states in postselected quantum computation，Phys．Rev．Research 3， 013213 （2021）．
［43］S．Aaronson，Quantum computing，post－selection and probabilistic polynomial－time，Proc．R．Soc．A 461， 3473 （2005）．
［44］M．A．Nielsen and I．L．Chuang，Quantum Computa－ tion and Quantum Information 10th Anniversary Edi－ tion（Cambridge University Press，Cambridge，2010）．
［45］C．Marriott and J．Watrous，Quantum Arthur－Merlin Games，Computational Complexity 14， 122 （2005）．

[^0]: 1 NTT コミュニケーション科学基礎研究所
 NTT Communication Science Laboratories，Atsugi，Kana－ gawa 243－0198，Japan
 a）yuki．takeuchi．yt＠hco．ntt．co．jp

