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Hardness of efficiently generating ground states in

postselected quantum computation
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Abstract：Generating ground states of any local Hamiltonians seems to be impossible in quantum

polynomial time. In this talk, we give evidence for the impossibility by applying an argument used in

the quantum-computational-supremacy approach. More precisely, we show that if ground states of any

3-local Hamiltonians can be approximately generated in quantum polynomial time with postselection,

then PP = PSPACE. Our result is superior to the existing findings in the sense that we reduce the

impossibility to an unlikely relation between classical complexity classes.

1. Introduction

Quantum computing is expected to outperform clas-

sical computing. Indeed, quantum advantages have al-

ready been shown in terms of query complexity [1] and

communication complexity [2]. Regarding time complex-

ity, it is also believed that universal quantum computing

has advantages over classical counterparts. For example,

although an efficient quantum algorithm, i.e., Shor’s al-

gorithm, exists for integer factorization [3], there is no

known classical algorithm that can do so efficiently. How-

ever, an unconditional proof that there is no such classi-

cal algorithm seems to be hard because an unconditional

separation between BQP and BPP implies P ̸= PSPACE.

Whether P ̸= PSPACE is a long-standing problem in the

field of computer science.

To give evidence of quantum advantage in terms of com-

putational time, a sampling approach has been actively

studied. This approach is to show that if the output

probability distributions from a family of (non-universal)

quantum circuits can be efficiently simulated in classical

polynomial time, then the polynomial hierarchy (PH) col-

lapses to its second or third level. Since it is widely be-

lieved that PH does not collapse, this approach shows one

kind of quantum advantage (under a plausible complexity-
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theoretic assumption). This type of quantum advantage

is called quantum computational supremacy [4]. The

quantum-computational-supremacy approach is remark-

able because it reduces the impossibility of an efficient

classical simulation of quantum computing to unlikely re-

lations between classical complexity classes (under con-

jectures such as the average-case hardness conjecture).

Since classical complexity classes have been studied for

a longer time than quantum complexity classes, unlikely

relations between classical complexity classes would be

more dramatic than those involving quantum complex-

ity classes. As sub-universal quantum computing models

showing quantum computational supremacy, several mod-

els have been proposed, such as boson sampling [5], [6], [7],

instantaneous quantum polynomial time (IQP) [8], [9] and

its variants [10], [11], [12], [13], deterministic quantum

computation with one quantum bit (DQC1) [14], [15],

Hadamard-classical circuit with one qubit (HC1Q) [16],

and quantum random circuit sampling [17], [18], [19], [20].

A proof-of-principle demonstration of quantum computa-

tional supremacy has recently been achieved using quan-

tum random circuit sampling with 53 qubits [21]. Regard-

ing other models, small-scale experiments have been per-

formed toward the goal of demonstrating quantum com-

putational supremacy [22], [23], [24], [25], [26], [27].

On the other hand, the limitations of universal quantum

computing are also actively studied (e.g., see Refs. [28],

[29], [30]). Understanding these limitations is impor-

tant to clarify how to make good use of universal quan-
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tum computers. For example, it is believed to be im-

possible in the worst case to generate ground states of

a given local Hamiltonian in quantum polynomial time,

while their heuristic generation has been studied using

quantum annealing [31], variational quantum eigensolvers

(VQE) [32], and quantum approximate optimization algo-

rithms (QAOA) [33]. Since deciding whether the ground-

state energy of a given 2-local Hamiltonian is low or

high with polynomial precision is a QMA-complete prob-

lem [34], if efficient generation of the ground states is pos-

sible, then BQP = QMA that seems to be unlikely. As

well as the gap between quantum and classical computing

in terms of time complexity, it is hard to unconditionally

show the impossibility of efficiently generating the ground

states.

In this talk, we utilize a technique from the quantum-

computational-supremacy approach to give new evidence

for this impossibility. More precisely, in Theorem 1, we

show that if the ground states of any given 3-local Hamil-

tonians can be approximately generated in quantum poly-

nomial time with postselection, then PP = PSPACE. Sim-

ilar to the quantum-computational-supremacy approach,

this consequence leads to the collapse of a hierarchy, i.e.,

the counting hierarchy (CH) collapses to its first level

(CH = PP). In Theorem 2, we consider a different no-

tion of approximation and show that if the probability

distributions obtained from the ground states can be ap-

proximately generated in quantum polynomial time with

postselection, then PP = PSPACE. Theorem 2 studies the

hardness of approximately generating the ground states

from a different perspective, because it is closely related

to the hardness of approximately generating the proba-

bility distributions. Our results are different from the ex-

isting ones on the impossibility of efficient ground-state

generation in a sense that we reduce the impossibility to

unlikely relations between classical complexity classes as

in the quantum-computational-supremacy approach.

2. Preliminaries

Before we explain our results, we will briefly review pre-

liminaries required to understand our argument. We use

several complexity classes that are sets of decision prob-

lems. Here, decision problems are mathematical problems

that can be answered by YES or NO. We mainly use com-

plexity classes CH, postBQP, and postQMA, where the

latter two are postselected versions of BQP and QMA, re-

spectively. We assume that readers know the major com-

plexity classes, such as P, PP, PSPACE, and PH (for their

definitions, see Ref. [35]).

The class CH is the union of classes CkP over all non-

negative integers k, i.e., CH = ∪k≥0CkP, where C0P = P

and Ck+1P = PPCkP for all k ≥ 0. We say that CH col-

lapses to its k-th level when CH = CkP. The first-level

collapse of CH is thought to be especially unlikely. This

is because, from Toda’s theorem [36], PH ⊆ PPP ⊆ CH.

Therefore, if CH = PP, then PH ⊆ PP. Although it

is unknown whether this inclusion does not hold, it is

used as an unlikely consequence in several papers such

as Ref. [37]. At least, we can say that it is difficult to

show that PH ⊆ PP holds. This is because there exists an

oracle relative to which PH (more precisely, PNP) is not

contained in PP [38].

The complexity class postQMA is defined as follows [39],

[40]: a language L is in postQMA if and only if there ex-

ist a constant 0 < δ < 1/2, polynomials n, m, and k,

and a uniform family {Ux}x of polynomial-size quantum

circuits, where x is an instance, and Ux takes an n-qubit

state ρ and ancillary qubits |0m⟩ as inputs, such that (i)

Pr[p = 1 | ρ] ≥ 2−k, where p is a single-qubit postselec-

tion register, for any ρ, (ii) if x ∈ L, then there exists a

witness ρx such that Pr[o = 1 | p = 1, ρx] ≥ 1/2+δ with a

single-qubit output register o, and (iii) if x /∈ L, then for

any ρ, Pr[o = 1 | p = 1, ρ] ≤ 1/2 − δ. In this definition,

“polynomials” mean the ones in the length |x| of the in-

stance x. Note that postQMA is denoted by QMApostBQP

in Ref. [39].

The following is an important lemma:

Lemma1 Any decision problem in postQMA can be

efficiently solved using postselected polynomial-size quan-

tum circuits if a polynomial number of copies of a ground

state (i.e., a minimum-eigenvalue state) |g⟩ of an appropri-

ate 3-local Hamiltonian is given (see Fig. 1 (a)). Note that

a 3-local Hamiltonian H =
∑t

i=1 H
(i) with a polynomial

t is the sum of polynomially many Hermitian operators

{H(i)}ti=1, each of which acts on at most three (possi-

bly geometrically nonlocal) qubits. The operator norm

||H(i)|| is upper-bounded by one for any 1 ≤ i ≤ t.

This lemma can be obtained by combining results in

Refs. [39], [41]. The proof is given in our paper [42].

By removing ρx and ρ from the definition of postQMA,

the complexity class postBQP is defined. Since PP =

postBQP [43], readers can replace PP with postBQP if

they are not familiar with the definition of PP.
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Fig. 1 (a) A quantum circuit Ux with an input state

|0m⟩|g⟩⊗m′
to decide whether x ∈ L or x /∈ L, where L

is in postQMA. Let o and p be output and postselec-

tion registers, respectively. If o = p = 1, we conclude

that x ∈ L. On the other hand, if p = 1 and o = 0,

then x /∈ L. The output probability distribution of

nm′ + m qubits is denoted by {pz}z∈{0,1}nm′+m . Each

meter symbol represents a Z-basis measurement. (b)

The same quantum circuit as in Fig. 1 (a) except that

|g⟩ is replaced with an approximate state ρapprox. The

output and postselection registers are denoted by o′ and

p′, respectively.

3. Main results

3.1 Result 1

We show that efficiently generating approximate ground

states of a given 3-local Hamiltonian is hard for postse-

lected quantum computation in the worst case. Formally,

our first main result is as follows:

Theorem1 Suppose that it is possible to, for any

n-qubit 3-local Hamiltonian H and polynomial s, con-

struct a polynomial-size quantum circuit W in classical

polynomial time, such that W generates an n-qubit state

ρapprox given the success of the postselection, satisfying

⟨g|ρapprox|g⟩ ≥ 1 − 2−s for a ground state |g⟩ of H, and

the postselection succeeds with probability at least the

inverse of an exponential. Then, PP = PSPACE.

Proof. Our goal is to show that if the quantum circuit W

exists, then postQMA ⊆ postBQP. From PP ⊆ PSPACE,

postQMA = PSPACE [39], and postBQP = PP [43], this

immediately means PP = PSPACE.

First, we consider the language L that is in postQMA.

From Lemma 1, for any instance x, there exist polynomi-

als m and m′ such that a polynomial-size quantum cir-

cuit Ux with input |0m⟩|g⟩⊗m′
efficiently decides whether

x ∈ L or x /∈ L under postselection of p = 1 (see Fig. 1

(a)). Here, |g⟩ is a ground state of an n-qubit 3-local

h− nm
′
− 1

nm
′

p
′′
= 1V|0h〉

ρapprox
⊗m

′

Fig. 2 A polynomial-size quantum circuit V that prepares

tensor products ρapprox⊗m′
of an n-qubit approximate

ground state from |0h⟩ with polynomials m′ and h(≥
nm′ + 1) when the postselection register p′′ = 1. Note

that the probability of obtaining p′′ = 1 is at least the

inverse of an exponential.

Hamiltonian Hx that depends on the instance x, n is a

polynomial in |x|, and p is the postselection register of

Ux. From the definition of postQMA, the postselection

succeds with probability Pr[p = 1] ≥ 2−k for a polyno-

mial k.

Next, we show that the quantum circuit in Fig. 1 (a) can

be simulated using the quantum circuit W . A classical de-

scription of Hx can be obtained in polynomial time from

the instance x. From the assumption with the Hamil-

tonian Hx and the polynomials n, m′, and k described

above, we can construct the quantum circuit W such that

it prepares the approximate ground state ρapprox whose

fidelity F with |g⟩ is (1 − Θ(2−4k))1/m
′
given the suc-

cess of the postselection. By repeated execution of W , we

can efficiently prepare ρapprox
⊗m′

given the success of the

postselection. In other words, from the quantum circuit

W , we can construct a polynomial-size quantum circuit V

that generates tensor products ρapprox
⊗m′

of the approx-

imate ground state in the case of p′′ = 1, where p′′ is the

postselection register of V (see Fig. 2). The fidelity be-

tween |g⟩⊗m′
and ρapprox

⊗m′
is Fm′

= 1−Θ(2−4k). When

we denote by r the success probability of postselection of

W , that of V is Pr[p′′ = 1] = rm
′
, which is at least the

inverse of an exponential.

By combining the quantum circuit V in Fig. 2 and Ux

in Fig. 1 (a), we can construct a new quantum circuit U ′
x,

as shown in Fig. 3. Note that since Ux is in a uniform

family of polynomial-size quantum circuits as per the def-

inition of postQMA, it can be efficiently constructed from

the instance x. The postselection register p̃′ of U ′
x is equal

to 1 if and only if the postselection registers of V and Ux

are both 1. In other words, when p̃′ = 1, the quantum

circuit V outputs the correct state ρapprox
⊗m′

, and the

quantum circuit Ux is successfully postselected. There-

fore, Pr[o′ = 1 | p′ = 1] = Pr[õ′ = 1 | p̃′ = 1], where

õ′ is the output register of U ′
x, and o′ and p′ are out-

put and postselection registers in Fig. 1 (b), respectively.
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Fig. 3 By using the quantum circuit V in Fig. 2, we construct

U ′
x. By using this quantum circuit, we can solve any

postQMA problem in quantum polynomial time with

postselection, i.e., postQMA ⊆ postBQP. The output

and postselection registers are denoted by õ′ and p̃′,

respectively.

The only difference between Fig. 1 (a) and (b) is that

the input ground states are exact or approximate ones.

Hereafter, we will consider Pr[o′ = 1 | p′ = 1] instead of

Pr[õ′ = 1 | p̃′ = 1].

From a property of fidelity (see Theorem 9.1 and

Eq. (9.101) in Ref. [44]), both |Pr[o = p = 1] − Pr[o′ =

p′ = 1]| and |Pr[p = 1] − Pr[p′ = 1]| are upper-bounded

by 2
√
1− Fm′ . Therefore,

Pr[o′ = 1 | p′ = 1] =
Pr[o′ = p′ = 1]

Pr[p′ = 1]

≥ Pr[o = p = 1]− 2
√
1− Fm′

Pr[p = 1] + 2
√
1− Fm′ .

When x ∈ L, the inequality Pr[o = 1 | p = 1] ≥ 1/2 + δ

holds. Therefore,

Pr[o′ = 1 | p′ = 1] ≥ (1/2 + δ)Pr[p = 1]− 2
√
1− Fm′

Pr[p = 1] + 2
√
1− Fm′

=
1

2
+ δ − (3 + 2δ)

√
1− Fm′

Pr[p = 1] + 2
√
1− Fm′

≥ 1

2
+ δ − (3 + 2δ)

√
1− Fm′

2−k + 2
√
1− Fm′ ,

where we have used Pr[p = 1] ≥ 2−k to derive the last

inequality.

On the other hand, when x /∈ L, from Pr[o = 1 | p =

1] ≤ 1/2− δ,

Pr[o′ = 1 | p′ = 1] =
Pr[o′ = p′ = 1]

Pr[p′ = 1]

≤ Pr[o = p = 1] + 2
√
1− Fm′

Pr[p = 1]− 2
√
1− Fm′

≤ (1/2− δ)Pr[p = 1] + 2
√
1− Fm′

Pr[p = 1]− 2
√
1− Fm′

=
1

2
− δ +

(3− 2δ)
√
1− Fm′

Pr[p = 1]− 2
√
1− Fm′

≤ 1

2
− δ +

(3− 2δ)
√
1− Fm′

2−k − 2
√
1− Fm′ .

Since 1 − Fm′
= Θ(2−4k), (3 + 2δ)

√
1− Fm′/(2−k +

2
√
1− Fm′) = O(2−k) and (3 − 2δ)

√
1− Fm′/(2−k −

2
√
1− Fm′) = O(2−k).

The remaining task is to show that the success probabil-

ity Pr[p̃′ = 1] of postselection of U ′
x is at least the inverse

of an exponential, which is required in the definition of

postBQP. Since Pr[p′ = 1] ≥ Pr[p = 1] − 2
√
1− Fm′

holds, Pr[p̃′ = 1] = Pr[p′′ = 1]Pr[p′ = 1] ≥ rm
′
(Pr[p =

1] − 2
√
1− Fm′) = Ω(2−krm

′
). As a result, we can

conclude that if the quantum circuit W exists, then

postQMA ⊆ postBQP. 2

PP = PSPACE leads to the first-level collapse of the

counting hierarchy, i.e., CH = PP. This is because from

CH ⊆ PSPACE,

PP ⊆ CH ⊆ PSPACE = PP.

Since CH = PP is unlikely as discussed in Sec. 2, Theo-

rem 1 is evidence supporting the conclusion that genera-

tion of ground states is impossible even for postselected

universal quantum computers.

Theorem 1 is interesting, because it means that al-

though QMA ⊆ postBQP [45], generating ground states

of a given 3-local Hamiltonian seems to be beyond the ca-

pability of postBQP machines in the worst case. In other

words, generating ground states of any 3-local Hamiltoni-

ans is just a sufficient condition to solve QMA problems,

but it should not be a necessary condition.

3.2 Result 2

Here, we will focus on the output probability distribu-

tion {pz}z in Fig. 1 (a). The proof of Theorem 1 im-

plies that given the values of m and m′, and the classi-

cal descriptions of Hx and Ux, it is hard to approximate

{pz}z with an exponentially-small additive error c′ by us-

ing postselected quantum computation. Therefore, the

hardness with multiplicative error 1+ c′ also holds. Here,

we say that a probability distribution {pz}z is generated

with multiplicative error c if and only if there exists a

probability distribution {qz}z such that pz/c ≤ qz ≤ cpz

for any z. When pz/(1+ c′) ≤ qz ≤ (1+ c′)pz holds for all

z, the inequality
∑

z |pz − qz| ≤ c′ also holds. Therefore,

if we can show the hardness with additive error c′, then

the hardness with multiplicative error 1+ c′ is also shown

automatically. In short, by using the argument used in

the proof of Theorem 1, we can show the hardness with

multiplicative error 1 + c′, which is exponentially close to
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p̃
(1)

|0nm
′
+m〉 {qz}z∈{0,1}nm

′+m

õ

.
.
.

.
.
.

|0l−(nm′+m)〉
l − (nm′ +m)

|0〉 p̃
(2)

= 1

Q

Fig. 4 A quantum circuit Q generates the output probability

distribution {pz}z∈{0,1}nm′+m with multiplicative error

c when the second postselection register p̃(2) = 1, which

occurs with probability of at least the inverse of an ex-

ponential. In other words, pz/c ≤ qz ≤ cpz for any z.

The symbols õ and p̃(1) are the output and first posts-

election registers of Q, respectively.

1, for postselected quantum computation. Hereafter, we

will use a different argument to show the hardness with

multiplicative error 1 ≤ c <
√
2, i.e., show that in the

worst case, it is hard for postselected quantum computa-

tion to prepare approximate ground states from which we

can generate {pz}z in Fig. 1 (a) with multiplicative error

1 ≤ c <
√
2 given the success of the postselection.

The following theorem is our second main result:

Theorem2 Suppose that it is possible to, for any

n-qubit 3-local Hamiltonian H, polynomials m and m′,

and (nm′ +m)-qubit polynomial-size quantum circuit U ,

construct an (l + 1)-qubit polynomial-size quantum cir-

cuit Q for some polynomial l(≥ nm′ + m) in classical

polynomial time, such that Q takes |0l+1⟩ and generates

the distribution {pz}z∈{0,1}nm′+m with multiplicative er-

ror 1 ≤ c <
√
2 when the postselection succeeds (i.e.,

p̃(2) = 1 in Fig. 4), where pz ≡ |⟨z|U(|0m⟩|g⟩⊗m′
)|2

for any z ∈ {0, 1}nm′+m, |g⟩ is a ground state of H,

and Pr[p̃(2) = 1] ≥ 2−k′
for a polynomial k′. Then,

PP = PSPACE.

The proof of Theorem 2 is given in our paper [42]. In

the proof, we consider the case where all nm′ +m qubits

in Fig. 1 (a) are measured. However, the same argument

holds even when the number of measured qubits is less

than nm′ +m as long as o and p are measured.
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J. R. McClean, M. McEwen, A. Megrant, X. Mi, K.
Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Nee-
ley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C.
Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C.
Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J.
Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga,
T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven,
and J. M. Martinis, Quantum supremacy using a pro-
grammable superconducting processor, Nature (London)
574, 505 (2019).

[22] B. P. Lanyon, M. Barbieri, M. P. Almeida, and A. G.
White, Experimental Quantum Computing without En-
tanglement, Phys. Rev. Lett. 101, 200501 (2008).

[23] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W.
S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N.
Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates,
B. J. Smith, P. G. R. Smith, and I. A. Walmsley, Boson
Sampling on a Photonic Chip, Science 339, 6121 (2013).

[24] M. Tillmann, B. Dakić, R. Heilmann, S. Nolte, A. Sza-
meit, and P. Walther, Experimental boson sampling,
Nat. Photon. 7, 540 (2013).

[25] A. Crespi, R. Osellame, R. Ramponi, D. J. Brod, E. F.
Galvão, N. Spagnolo, C. Vitelli, E. Maiorino, P. Mat-
aloni, and F. Sciarrino, Integrated multimode interfer-
ometers with arbitrary designs for photonic boson sam-
pling, Nat. Photon. 7, 545 (2013).

[26] M. Bentivegna, N. Spagnolo, C. Vitelli, F. Flamini, N.
Viggianiello, L. Latmiral, P. Mataloni, D. J. Brod, E.
F. Galvão, A. Crespi, R. Ramponi, R. Osellame, and F.
Sciarrino, Experimental scattershot boson sampling, Sci.
Adv. 1, e1400255 (2015).

[27] H. Wang, J. Qin, X. Ding, M.-C. Chen, S. Chen, X. You,
Y.-M. He, X. Jiang, L. You, Z. Wang, C. Schneider, J.
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