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ハイブリッドテンソルネットワークにおける遷移振幅計算の
ための量子アルゴリズム

菅野 志優1,a) 遠藤 傑2,b) 鈴木 泰成2,3 徳永 裕己2

概要：The hybrid tensor network approach allows us to perform calculations on systems larger than the

scale of a quantum computer. However, when calculating transition amplitudes, there is a problem that

the number of terms to be measured increases exponentially with that of contracted operators. The prob-

lem is caused by the fact that the contracted operators are represented as non-Hermitian operators. In

this study, we propose a method for the hybrid tensor network calculation that contracts non-Hermitian

operators without the exponential increase of the number of terms. In the proposed method, calculations

of transition amplitudes are performed by combining the singular value decomposition of the contracted

non-Hermitian operators with the Hadamard test. The method significantly extends the applicability of

the hybrid tensor network approach.

Quantum algorithm for calculation of transition amplitudes in hybrid
tensor networks

1. Introduction

Quantum computers are expected to be capable of ex-

ecuting classically intractable calculations [1–7]. It has

been reported that quantum computers can outperform

classical computers in some tasks [8, 9]. However, quan-

tum resource limitations become obstacles for practical

applications to quantum computers. Current quantum

computers are so-called noisy intermediate-scale quantum

(NISQ) devices [10], and we can control only tens to hun-

dreds of noisy qubits on the devices [4,11–16]. The hard-

ware limitations make it difficult to apply quantum com-

puters to practical tasks that require large numbers of

qubits or deep quantum circuits [17–29].

The hybrid tensor network approach has been proposed
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recently to overcome the obstacles for the limitations [17].

The approach enables the treatment of quantum states

larger than actual quantum devices by representing quan-

tum states with a combination of conventional classical

tensors and quantum tensors. A quantum tensor has up-

per and lower indices as, for example, ψj1,j2...jL
i1,i2...iK

, which

represents K-qubit systems indexed by L-bit string. In

other words, the quantum state is defined for L classical

bits (j1, j2, . . . , jL) as

|ψj1,j2,...jL⟩ =
∑

i1,i2,...,iK

ψj1,j2,...,jL
i1,i2,...,iK

|i1i2 . . . iK⟩ , (1)

where ψj1,j2,...,jL
i1,i2,...,iK

∈ C,
∑

i1,i2,...,iK
|ψj1,j2,...,jL

i1,i2,...,iK
|2 = 1,

and |i1i2 . . . iK⟩ is a computational basis of the K-qubit

Hilbert space. One of the most vital forms of the hybrid

tensor network is a hybrid tree-tensor network, where a

network of quantum and classical tensors constructs a tree

graph. While the contraction of general hybrid tensor

networks can be costly, hybrid tree-tensor networks can

be contracted efficiently to obtain expectation values [17].

In this paper, we mainly discuss a two-layer hybrid tree-

tensor network only with quantum tensors, which is called
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図 1 A quantum-quantum tree-tensor network as in Eq. (2).

φim
j1,j2,...,jn

is defined as ⟨j1j2 . . . jn|φim⟩. In quantum-

classical tree-tensor network, ψi1,i2,...,ik is replaced with

a classical tensor, while in a classical-quantum tree-tensor

network, classical tensors are used in place of φim
j1,j2,...,jn

.

a quantum-quantum tree-tensor network, since it captures

the essential properties of hybrid tree-tensor networks and

the use of classical tensors restricts the range of represen-

tation to classically tractable quantum states such as ma-

trix product states [30]. A quantum-quantum tree-tensor

network that expresses k subsystems of n-qubit states is

represented as

|ψHT ⟩ =
∑

i1,i2,...,ik

ψi1,i2,...,ik |φi1⟩ ⊗ |φi2⟩ ⊗ · · · ⊗ |φik⟩ ,

(2)

where |ψHT ⟩ is unnormalized state, ψi1,i2,...,ik =

⟨i1i2 . . . ik|ψ⟩ is a probability amplitude of a k-qubit state

|ψ⟩, and |φim⟩ (m = 1, 2, . . . , k) is an n-qubit state of

the m-th subsystem indexed by a classical bit im. Fig-

ure 1 shows the network diagram of |ψHT ⟩. While

the state |ψHT ⟩ represents a kn-qubit state, we can ef-

ficiently calculate the expectation value of an observ-

able O =
⊗k

m=1Om, where Om operates on |φim⟩ via

proper tensor contractions, using a quantum computer

with O(max(k, n)) qubits. The contraction for evaluat-

ing the expectation value ⟨O⟩ = ⟨ψHT |O |ψHT ⟩ (with-

out a normalisation) can be implemented as follows.

First, we measure Om and construct operators M
i′mim
m =

⟨φi′m |Om |φim⟩. Note that each Mm is a 2× 2 Hermitian

matrix when Om is Hermitian. Then, since Mm is Hermi-

tian, we can measure an expectation value of
⊗k

m=1Mm

for the state |ψ⟩, which is equal to ⟨O⟩.
The approach allows for simulations beyond the scale

of quantum hardware. For example, the energy and the

spin-spin correlation functions of electrons can be calcu-

lated with this approach. However, the approach has a

serious problem for expanding the range of applications:

it can only be applied to the calculation of the expec-

tation value of observables. In other words, there is a

problem in the approach when the contracted operator

Mm is non-Hermitian. Hereinafter, we denote the Her-

mitian and non-Hermitian contracted operators as Mm

and Nm, respectively. The reason for the problem is

that the number of terms to be measured increases ex-

ponentially with k when
⊗k

m=1Nm is calculated naively.

Specifically, the non-Hermitian operators are decomposed

into the sums of Pauli operators, as in
⊗k

m=1Nm =⊗k
m=1(hImIm+hXmXm+hYmYm+hZmZm), where Im is

an identity operator, Xm, Ym and Zm are Pauli operators

which act on m-th qubit, and hα(α ∈ {Im, Xm, Ym, Zm})
are corresponding coefficients, with up to 4k terms appear-

ing. One example where the problem occurs is in the cal-

culation of the transition amplitude related to the Green’s

functions and the photon emissions/absorptions [31, 32].

The overlap of two quantum states, which is used as sub-

routines in many algorithms [33–36], is a special case of

the transition amplitude. Thus, the difficulty of com-

puting the expectation value of a non-Hermitian opera-

tor limits the applicability of the hybrid tensor network

approach.

In this study, we propose a method for calculating tran-

sition amplitudes by the hybrid tensor network approach.

The main point of the method is the treatment of tensor

products of non-Hermitian operators. In the naive calcu-

lation, the exponential number of terms in
⊗k

m=1Nm will

appear. We propose two ways to avoid the problem. One

is a Monte-Carlo contraction method and the other is a

singular value decomposition (SVD) contraction method,

and the second method is the main proposal in this pa-

per. Although the first method can avoid measuring all

the terms whose number increases exponentially with k,

the second method is exponentially more efficient than the

first one in terms of the sampling cost.

In the following, we firstly introduce the overview of a

quantum-quantum tree-tensor network [17] for obtaining

the expectation values of observables in Sec. 2. Then, the

method of calculating transition amplitudes and overlaps

is shown in Sec. 3, especially we discuss the contraction

of quantum tensors in subsystems in Sec. 3.1 and the con-

traction of non-Hermitian matrices in Sec. 3.2. We discuss

the future application of the method in Sec. 4.

2. Overview of hybrid tensor network

We present an overview of the hybrid tensor network
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simulation on the state described by the tensor network in

Eq. (2). Letting the observable O as O =
⊗k

m=1Om and

Om =
⊗n

r=1Omr (r = 1, 2, . . . , n), the expectation value

of the observable including a normalisation constant can

be described as

⟨O⟩ = 1

A2
⟨ψHT |O |ψHT ⟩

=
1

A2

∑
i⃗′ i⃗

ψ∗
i⃗′
ψ⃗i

k∏
m=1

M
i′mim
m

(3)

and
A =

√
⟨ψHT |ψHT ⟩

=

√√√√∑
i⃗′ i⃗

ψ∗
i⃗′
ψ⃗i

k∏
m=1

M
i′mim
Am ,

(4)

where A is a normalization constant, i⃗ = (i1, i2, . . . , ik)

with im taking either 0 or 1, M
i′mim
m = ⟨φi′m |Om |φim⟩,

and M
i′mim
Am = ⟨φi′m |φim⟩. M i′mim

m (M
i′mim
Am ) is the element

of the 2 × 2 matrix Mm (MAm). When Om is assumed

to be an observable, i.e., a Hermitian operator, Mm also

becomes a Hermitian operator. MAm is a Hermitian op-

erator since MAm is a special case of Om = Im in Mm,

where Im is the identity operator.

The procedure for constructing Mm and MAm depends

on how the indices im of the wave function |φim⟩ are

mapped. We assume two cases of the mapping; one case

is where the indices im are mapped to unitary gates, i.e.,

|φim⟩ = U im
Cm |0⟩⊗n

, and another case is where the in-

dices im are mapped to initial wave function as |φim⟩ =

UCm |im⟩ |0⟩⊗n−1
, where U im

Cm and UCm are unitary oper-

ators with polynomial depth in the m-th subsystem. The

second case can be regard as a special example in the first

case since |φim⟩ = UCm |im⟩ |0⟩⊗n−1
= UCm(X1)

im |0⟩⊗n

and we can think of UCm(X1)
im as U im

Cm, where X1 is a

Pauli X operator which acts on the first qubit. Note that

the first method needs a Hadamard test circuit while Mm

and MAm can be efficiently constructed via direct mea-

surements in the second case as will be described later.

We first consider the construction of Mm in the case

of |φim⟩ = U im
Cm |0⟩⊗n

. Since the procedure for measur-

ing the diagonal elements is relatively straightforward,

we focus on the measurement of non-diagonal elements.

Figure 2(a) shows a quantum circuit to obtain the ma-

trix element M
i′mim
m . The procedure to construct Mm

is as follows. First, we prepare initial states. We use

the Hadamard test to prepare |φi′m⟩ = U
i′m
Cm |0⟩⊗n

and

|φim⟩ = U im
Cm |0⟩⊗n

. The ancilla qubit is initialised to
|0⟩+eiα|1⟩√

2
, where α is the phase. We set α = 0 (α = π

2 ) to

obtain real (imaginary) part of M
i′mim
m . Since Mm is an

図 2 The quantum circuits for obtaining ⟨O⟩. In figures (a) and

(b), the topmost line represents an ancilla qubit and the

other lines represent system qubits, and in figures (c) and

(d), all lines represent system qubits. Real and imaginary

components are obtained by setting α = 0 and α = π
2
,

respectively. A white (black) circle in a controlled gate

means that a unitary operation is performed on the target

qubits when the control qubit is |0⟩ (|1⟩). (a) A quantum

circuit to constructMm in the case of |φim⟩ = U im
Cm |0⟩⊗n.

(b) A quantum circuit to construct MAm in the case of

|φim⟩ = U im
Cm |0⟩⊗n. (c) A quantum circuit to construct

Mm in the case of |φim⟩ = UCm |im⟩ |0⟩⊗n−1. |am⟩ takes

|0⟩, |1⟩, |+⟩ and |+y⟩. (d) A quantum circuit to measure

Mm and MAm.

Hermitian matrix, only measurements of Re(M01
m ), and

Im(M01
m ) are required. Then, we measure on a compu-

tational basis. We used the fact that Omr is a Hermi-

tian operator and can have a spectral decomposition as

Omr = U†
mrDmrUmr, where Umr is a unitary matrix and

Dmr is a diagonal matrix. Also, we assign elements of

Dmr as the measured value. More concretely, denoting

Dmr = diag[λ
(mr)
jr=0, λ

(mr)
jr=1], the measured value is com-

puted as
∏n

r=1 λ
(mr)
jr

corresponding to the measured out-

come j⃗ = (j1, j2, . . . , jn).

We explain how to construct MAm. Figure 2(b) shows

the circuit to construct MAm. In the case of |φim⟩ =
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U im
Cm |0⟩⊗n

, since |φim⟩ is non-orthogonal to each other,

we have A ̸= 1. Therefore, calculations of MAm are re-

quired. The circuit in Fig. 2(b) is a modified version of

that in Fig. 2(a) except that the system measurements

are not necessary; we can construct MAm using the same

construction procedure as Mm.

Next, we assume the case of |φim⟩ = UCm |im⟩ |0⟩⊗n−1
.

In this case, we can obtain all the elements of Mm only

from the results of direct measurements. Figure 2(c)

shows a quantum circuit to construct Mm. The initial

states are set to |am⟩ |0⟩⊗n−1
, where |am⟩ takes four states

as |0⟩, |1⟩, |+⟩ and |+y⟩. Then Mm can be obtained us-

ing the corresponding measurement results. Refer to Ap-

pendix A.1 for the detail of the procedure. Also, since

|φim⟩ is orthogonal, A = 1 and the calculation of MAm is

not required.

Finally, we show the procedure to obtain

⟨ψHT |O |ψHT ⟩, which can be implemented by

contracting Mm and MAm
. Now, denoting

|ψ⟩ =
∑

i⃗ ψ⃗i |⃗i⟩ =
∑

i1,i2,...,ik
ψi1,i2,...,ik |i1i2 . . . ik⟩,

we can rewrite Eq. (3) as

A2 ⟨O⟩ = ⟨ψ|
k⊗

m=1

Mm |ψ⟩

= ⟨ψ|
k⊗

m=1

U†
mDmUm |ψ⟩ ,

(5)

where we used the fact that Mm is a Hermitian oper-

ator and can have a spectral decomposition as Mm =

U†
mDmUm. Figure 2(d) shows a quantum circuit to mea-

sure Mm. Henceforth, we assume |ψ⟩ = UM |0⟩⊗n
, where

UM is a unitary operator with polynomial depth. We

can compute A2 ⟨O⟩ by applying Um, measuring in a

computational basis, and assigning elements of Dm as

the measured value. More concretely, denoting Dm =

diag[λ
(m)
im=0, λ

(m)
im=1], the measured value is computed as∏k

m=1 λ
(m)
im

corresponding to the measured outcome i⃗ =

(i1, i2, . . . , ik). In a similar procedure, we can measure A2

by contracting MAm ; hence we can obtain ⟨O⟩.

3. Calculation of transition amplitudes

and overlaps

We describe the measurement of transition amplitudes

with the hybrid tensor network approach. The difference

from Sec. 2 is that we need to contract a non-Hermitian

operator Nm.

3.1 Contraction of quantum tensors in subsys-

tems

Letting two different states represented by quantum-

quantum tensor network as |ψ(1)
HT ⟩ and |ψ(2)

HT ⟩, Nm appears

in calculations of ⟨ψ(1)
HT |O |ψ(2)

HT ⟩ in transition amplitudes

or ⟨ψ(1)
HT |ψ

(2)
HT ⟩ in overlaps.

To begin with, we consider the calculation of the tran-

sition amplitude because the overlap is a special case of

O = I in the transition amplitude, where I is the identity

operator. We comment on the overlap at the end of this

section. The transition amplitude T can be defined as

T =
1

A(1)A(2)
⟨ψ(1)

HT |O |ψ(2)
HT ⟩

=
1

A(1)A(2)

∑
i⃗′ i⃗

ψ
(1)∗
i⃗′

ψ
(2)

i⃗

k∏
m=1

N
i′mim
m

=
1

A(1)A(2)
⟨ψ(1)|

k⊗
m=1

Nm |ψ(2)⟩ ,

(6)

where A(l) (l = 1, 2) is a normalisation constant corre-

sponding to |ψ(l)
HT ⟩, i⃗ = (i1, i2, . . . , ik), Nm is a 2× 2 ma-

trix with elements of N
i′mim
m = ⟨φi′m(1)|Om |φim(2)⟩, and

|ψ(l)⟩ =
∑

i⃗ ψ
(l)

i⃗
|⃗i⟩ =

∑
i1,i2,...,ik

ψ
(l)
i1,i2,...,ik

|i1i2 . . . ik⟩.
The notations are the same as in Eqs. (3), (4) and (5), ex-

cept for the superscript (l), which corresponds to |ψ(l)
HT ⟩.

The reason that Nm is a non-Hermitian matrix comes

from the fact that (N
i′mim
m )∗ ̸= N

imi′m
m . Since the pro-

cedure for calculating A(l) is the same as the procedure

for A in the previous section, we will not discuss A(l) in

the following.

We first consider the case of |φim(l)⟩ = U
im(l)
Cm |0⟩⊗n

.

Figure 3(a) shows the quantum circuit for constructing

Nm. The flow of constructing Nm is similar to that of

Mm. However, since Nm is a 2× 2 non-Hermitian matrix

with elements of complex numbers, eight types of mea-

surements are required to construct Nm. Next, we con-

sider the case of |φim(l)⟩ = U
(l)
Cm |im⟩ |0⟩⊗n−1

. Figure 3(b)

shows a quantum circuit to obtain the matrix element

N
i′mim
m . Specifically, the wave function is initialized by us-

ing one of the four types of unitary gates Uinit in lower

panel of Fig. 3(b) to prepare the initial states |i′m⟩ |0⟩⊗n−1

and |im⟩ |0⟩⊗n−1
. The subsequent process is the same as

the case of |φim(l)⟩ = U
im(l)
Cm |0⟩⊗n

.

When calculating the overlap S, i.e., the case of O = I

in Eq. (6), only the circuits to construct Nm (Fig. 3(a) and

(b)) differ from the cases of the transition amplitude. We

show the circuits in the cases of |φim(l)⟩ = U
im(l)
Cm |0⟩⊗n

and |φim(l)⟩ = U
(l)
Cm |im⟩ |0⟩⊗n−1

in Fig. 3(c) and (d),

which are the same quantum circuits as Fig. 3(a) and
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図 3 The quantum circuits for obtaining transition amplitudes and overlaps. In all the

figures, the topmost line represents an ancilla qubit and the other lines represent

system qubits. Real and imaginary components are obtained by setting α = 0

and α = π
2
, respectively. A white (black) circle in a controlled gate means that a

unitary operation is performed on the target qubits when the control qubit is |0⟩
(|1⟩). (a) A quantum circuit to construct Nm for calculating transition amplitudes

in the case of |φim(l)⟩ = U
im(l)
Cm |0⟩⊗n. (b) A quantum circuit to construct Nm

for calculating transition amplitudes in the case of |φim(l)⟩ = U
(l)
Cm |im⟩ |0⟩⊗n−1.

(c) A quantum circuit to construct Nm for calculating overlaps in the case of

|φim(l)⟩ = U
im(l)
Cm |0⟩⊗n. (d) A quantum circuit to construct Nm for calculating

overlaps in the case of |φim(l)⟩ = U
(l)
Cm |im⟩ |0⟩⊗n−1. (e) A quantum circuit to

measure Nm for calculating transition amplitudes or overlaps.

(b) except that measurements of system qubits are not

involved.

3.2 Contraction of non-Hermitian matrices

The next step is to calculate ⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩ for
2×2 non-Hermitian matrices Nm. We describe two meth-

ods for contraction: a Monte-Carlo contraction method

and an SVD contraction method. In this section, we de-

scribe the SVD contraction method because it is more ef-

ficient than the Monte-Carlo contraction method in terms

of the sampling cost. Refer to Appendix A.2 for details of

the Monte-Carlo contraction method.

We describe how to perform the SVD contrac-

tion method. In the method, we perform SVD

Nm = B†
mD

′
mCm for each Nm, that is,

⊗k
m=1Nm =⊗k

m=1B
†
mD

′
mCm, where Bm and Cm are unitary matrices

and D′
m is a diagonal matrix with non-negative elements.

⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩ can be described as
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⟨ψ(1)|
k⊗

m=1

Nm |ψ(2)⟩

= 2(

k∏
m=1

∥Nm∥op) ·
1

2
×

[
Re(⟨ψ(1)|

k⊗
m=1

B†
md

′(m)Cm |ψ(2)⟩)

+ iIm(⟨ψ(1)|
k⊗

m=1

B†
md

′(m)Cm |ψ(2)⟩)
]
,

(7)

where ∥A∥op is the operator norm of an operator A,

d′(m) = D′
m/ ∥Nm∥op. We can assume d′(m) =

diag[λ̃
′(m)
im=0, λ̃

′(m)
im=1] = diag[1, λ̃

′(m)
im=1], where λ̃

′(m)
im=0 ≥

λ̃
′(m)
im=1, λ̃

′(m)
im=0 = 1, and λ̃

′(m)
im=1 takes a value in a range

[0, 1], without loss of generality.

Figure 3(e) shows the circuit for measuring

⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩ by the SVD contraction

method. We can compute ⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩ as

follows. We implement a Hadamard test circuit for⊗k
m=1B

†
md

′(m)Cm for obtaining the real or imagi-

nary part of ⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩ with probability

1/2 by changing the phase of the ancilla qubit. We

define µs = 2(
∏k

m=1 ∥Nm∥op)(
∏k

m=1 λ̃
′(m)
ims

)bs and

µs = 2i(
∏k

m=1 ∥Nm∥op)(
∏k

m=1 λ̃
′(m)
ims

)bs in the case of

measurements of real and imaginary part, respectively,

where ims ∈ {0, 1} and bs ∈ {−1, 1} are the measurement

outcomes of the system and ancilla qubits in the s-th

measurement, respectively. Then the sample average of

µs approximates ⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩.
Letting x̄ denote the sample average of a random vari-

able x, E[x] denote the expected value of x, and µ̄s ap-

proximate ⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩. Denoting the number

of measurements as NSV D and assuming ∀m ∥Nm∥op =

∥Nconst∥op, we have

E[|µ̄s − ⟨ψ(1)|
k⊗

m=1

Nm |ψ(2)⟩ |] = O

(
(∥Nconst∥op)k√

NSV D

)
.

(8)

Thus, we have

NSV D = O

(
(∥Nconst∥op)2k

ε2

)
(9)

for the required accuracy ε. We remark that this method

is exponentially more efficient than the Monte-Carlo con-

traction method in terms of the sampling cost. Refer to

Appendix A.3 for details.

We mention that NSV D is expected not to increase ex-

ponentially with k if n is large enough. Here, we consider

the case where the measured observable O is a product

of Pauli operators because in the conventional variational

quantum eigensolver (VQE) [11] scenario, we decompose

the Hermitian operator of interest into a linear combina-

tion of the polynomial number of products of Pauli oper-

ators with the system size. We numerically generate four

types of 2n × 2n random unitary matrices, U0(1), U1(1),

U0(2), and U1(2), and a product of random Pauli oper-

ators, Orand, create a 2 × 2 matrix Nconst consisting of

elements N i′i
const = ⟨0|⊗n

U i′(1)†OrandU
i(2) |0⟩⊗n

, where i′

and i take 0 or 1. Then, we evaluate average values of

∥Nconst∥op obtained using 10, 000 samples of Nconst. As

a result, we obtained ∥Nconst∥op < 1 including error bars

when n ≥ 3 (See Appendix A.3 for details). Therefore, if

n is large enough, NSV D ≤ O(1/ε2) will be valid.

Besides, we note that in the case of |φim(l)⟩ =

U
(l)
Cm |im⟩ |0⟩⊗n−1

, NSV D ≤ O(1/ε2) is strictly satisfied

regardless of n. In this case, since Nm can be regarded

as a submatrix of the unitary matrix U
(1)†
CmOmU

(2)
Cm as

N
i′mim
m = ⟨i′m| ⟨0|⊗n−1

U
(1)†
CmOmU

(2)
Cm |im⟩ |0⟩⊗n−1

, we have

∥Nm∥op ≤ ∥Om∥op. Thus, because we are assuming

∥Om∥op = 1 here, we have NSV D ≤ O(1/ε2) regardless

of n.

4. Conclusion

In this paper, we proposed a method to calculate tran-

sition amplitudes using the hybrid tensor network. When

the approach is applied to the calculations of transition

amplitudes naively, the contracted operators become non-

Hermitian, and the number of terms to be measured in-

creases exponentially. We proposed a method to obtain

the expectation value without increasing the number of

terms exponentially by using the singular value decom-

position and the Hadamard test. We remark that our

theory can be easily generalized to the cases with a mix-

ture of classical and quantum tensors called quantum-

classical and classical-quantum tree-tensor networks, and

those with deeper tree structures. We also note that we

can easily extend the scenario to the case where the mea-

sured operator O is a tensor product of non-Hermitian

operators by using the SVD contraction method. This

study significantly expands the applicability of the hybrid

tensor network.

Future work includes the application of our method to

algorithms related to hybrid tensor networks. For exam-

ple, Deep VQE [18, 19], which is a large-scale computa-

tional algorithm for NISQ devices based on the divide and

conquer method, can be treated in the framework of hy-

brid tensor networks in theory. By applying the proposed

method to such algorithms, we can extend the range of
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applications to various large-scale quantum algorithms.
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付 録
A.1 The construction of Mm in the case

where indices im are mapped to ini-

tial wave functions

We explain the procedure for the construction of Mm

in the case of |φim⟩ = UCm |im⟩ |0⟩⊗n−1
using the cir-

cuit in Fig. 2(c). The diagonal elements, M00
m and M11

m ,

can be easily obtained by measuring the expectation

values of Om for |φim=0⟩ and |φim=1⟩ because M00
m =

⟨φim=0|Om |φim=0⟩ and M11
m = ⟨φim=1|Om |φim=1⟩, re-

spectively. We can also obtain non-diagonal elements by

combining four types of measurement results. By set-

ting |+(m)⟩ = (|φim=0⟩ + |φim=1⟩)/
√
2 and |+y(m)⟩ =

(|φim=0⟩+ i |φim=1⟩)/
√
2, we have

⟨+(m)|Om |+(m)⟩ = 1

2
(M00

m +M01
m +M10

m +M11
m )

(A.1)

and

⟨+y(m)|Om |+y(m)⟩ = 1

2
(M00

m + iM01
m − iM10

m +M11
m ).

(A.2)

Then, we can obtain the non-diagonal elements by

M01
m =

i− 1

2
⟨φim=0|Om |φim=0⟩

+
i− 1

2
⟨φim=1|Om |φim=1⟩

+ ⟨+(m)|Om |+(m)⟩

− i ⟨+y(m)|Om |+y(m)⟩

(A.3)

and M10
m =M01∗

m .

A.2 Monte-Carlo contraction method

In this section, we introduce a Monte-Carlo contrac-

tion method and discuss the sampling cost. We decom-

pose
⊗k

m=1Nm =
⊗k

m=1(hImIm + hXmXm + hYmYm +

hZmZm), where Im is an identity operator and Xm, Ym

and Zm are Pauli operators which act on the m-th qubit,

and hα(α ∈ {Im, Xm, Ym, Zm}) are corresponding coef-

ficients. If we expand this term, it has exponentially in-

creasing number of terms with k. To circumvent this prob-

lem, we consider Monte-Carlo implementation to calculate

⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩. From now on, for notational sim-

plicity, we denote σ
(m)
0 = Im, σ

(m)
1 = Xm, σ

(m)
2 = Ym,

σ
(m)
3 = Zm, h

(m)
0 = hIm, h

(m)
1 = hXm, h

(m)
2 = hYm,

and h
(m)
3 = hZm. Introducing γ(m) =

∑3
k=0 |h

(m)
k |,

p
(m)
k = |h(m)

k |/γ(m), ϕ
(m)
im

∈ R, and eiϕ
(m)
im = h

(m)
im

/|h(m)
im

|,
we have

∑
im
p
(m)
im

= 1 and

⟨ψ(1)|
k⊗

m=1

Nm |ψ(2)⟩

= 2(

k∏
m=1

γ(m))
∑

i1,i2,...,ik

(

k∏
m=1

p
(m)
im

) · 1
2
× ei

∑k
m=1 ϕ

(m)
im

×
[
Re(⟨ψ(1)|

k⊗
m=1

σ
(m)
im

|ψ(2)⟩) + iIm(⟨ψ(1)|
k⊗

m=1

σ
(m)
im

|ψ(2)⟩)
]
.

(A.4)

Therefore, we can compute ⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩
as follows. We generate

⊗k
m=1 σ

(m)
im

with prob-

ability
∏k

m=1 p
(m)
im

and implement a Hadamard

test circuit for obtaining the real or imaginary

part of ⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩ with probability

8ⓒ 2021 Information Processing Society of Japan

Vol.2021-QS-3 No.3
2021/7/1



情報処理学会研究報告
IPSJ SIG Technical Report

1/2 by changing the phase of the ancilla qubit.

We define µ′
s = 2(

∏k
m=1 γ

(m))ei
∑k

m=1 ϕ
(m)
im b′s and

µ′
s = 2i(

∏k
m=1 γ

(m))ei
∑k

m=1 ϕ
(m)
im b′s in the case of mea-

surements of the real and imaginary part, respectively,

where b′s ∈ {−1, 1} is the measurement outcomes of

the ancilla qubit in the s-th measurement. Letting x̄

denote the sample average of a random variable x, E[x]

denote the expected value of x, and µ̄′
s approximate

⟨ψ(1)|
⊗k

m=1Nm |ψ(2)⟩. Denoting the number of mea-

surements as NMC and assuming ∀m γ(m) = γ, we

have

E[|µ̄′
s − ⟨ψ(1)|

k⊗
m=1

Nm |ψ(2)⟩ |] = O(γk/
√
NMC).

(A.5)

Thus, we need

NMC = O(γ2k/ε2) (A.6)

for the required accuracy ε.

A.3 Comparison of Monte-Carlo con-

traction method and SVD contrac-

tion method

Here, we compare NMC with NSV D. Since Nm =∑
im
himσ

(m)
im

, we have

∥Nm∥op ≤
∑
im

|him |
∥∥∥σ(m)

im

∥∥∥
op

= γ(m), (A.7)

where we used
∥∥∥σ(m)

im

∥∥∥
op

= 1.

Equations (9), (A.6) and (A.7) indicate γ/ ∥Nconst∥op ≥
1 and

NMC

NSV D
= O((γ/ ∥Nconst∥op)

2k). (A.8)

Thus, the SVD contraction method is exponentially more

efficient than the Monte-Carlo contraction method in

terms of the sampling cost.

We present numerical calculations for γ/ ∥Nconst∥op in

order to check the superiority of the SVD contraction

method over the Monte-Carlo contraction method. We

obtain 10, 000 samples of Nconst and ∥Nconst∥op by the

procedure in Sec. 3.2 and γ from the Pauli decomposition

of Nconst. We show the average of the ratio γ/ ∥Nconst∥op
in Fig. A·1(a) and we found that the average value is about

1.4 for any n. Therefore, from the Eq. (A.8) and of the

result in Fig. A·1(a), we can conclude that the SVD con-

traction method is expected to be O((1.4)2k) times faster

on average than the Monte-Carlo contraction method.

We also numerically evaluate the number of measure-

ments for the two methods. The average of γ and

図 A·1 The average values of γ / ∥Nconst∥op, γ, and ∥Nconst∥op
depending on the number of qubits n (10,000 samples).

Each point and error bar represents the average value

and standard deviation of the samples, respectively. (a)

The average value of γ / ∥Nconst∥op. (b) The aver-

age values of γ (circule, red) and ∥Nconst∥op (diamond,

blue).

∥Nconst∥op are shown in Fig. A·1(b). In n ≥ 4 and n ≥ 3,

γ and ∥Nconst∥op can be considered to be less than 1 in-

cluding the standard deviation, respectively. Thus, we

expect NMC ≤ O(1/ε2) and NSV D ≤ O(1/ε2), that is,

NMC and NSV D are expected not to increase exponen-

tially with k, if n is large enough.
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