
IPSJ SIG Technical Report

Behavior-based DNN Compression: Pruning and
Facilitation Methods

Koji Kamma1,a) ToshikazuWada1,b)

Abstract: In this paper, we present two pruning methods. Pruning is a technique to reduce the computational cost of
Deep Neural Networks (DNNs) by removing redundant neurons. The proposed pruning methods are Neuro-Unification
(NU) and Reconstruction Error Aware Pruning (REAP). These methods do not only prune but also conduct reconstruc-
tion to prevent accuracy degradation. In reconstruction step, we update the weights connected to the remaining neurons
so as to compensate the error caused by pruning. Therefore, the models pruned by the pruning methods suffer smaller
accuracy degradation. As REAP needs significant amount of computation for selecting the neurons to be pruned, we
developed a biorthogonal system-based algorithm that reduces the computational order of neuron selection from O(n4)
to O(n3), where n denotes the number of neurons. We also propose two methods for facilitating pruning, Pruning Ratio
Optimizer (PRO) and Serialized Residual Network (SRN). As REAP performs pruning in each layer separately, it is
important to tune the pruning ratio (the ratio of neurons to be pruned) in each layer properly in order to preserve the
model accuracy better. PRO is a method that can be combined with REAP to tune pruning ratios based on the error in
the final layer of the pruned DNN. SRN is to facilitate pruning for ResNet. Due to its identity shortcuts, some layers
cannot be pruned. Therefore, we once convert ResNet into an equivalent serial DNN model, which we call SRN, so
that pruning can be performed in any layer.

1. Introduction
Since Hinton et al. won ImageNet Large Scale Visual Recog-

nition Competition (ILSVRC) with AlexNet in 2012 [25], re-
searchers have been developing various Deep Neural Networks
(DNNs) for various Computer Vision tasks, such as recognition,
detection, segmentation, and so on. Today, DNNs are already
used in many industrial applications, and are expected to spread
to wider range of industries in near future.

One of the bottlenecks of DNNs is that their inference (as well
as training) is computationally expensive. In laboratories, large
GPUs solve this problem. For example, VGG16 [37] model runs
on NVIDIA Geforce GTX 1080 GPU at about 60 fps. This GPU
consumes up to 180 W, thus a sufficient power supply is required
to use it. Moreover, operational cost is also quite high due to
large power consumption. Thus, we need an environment with
rich computational resources for using DNN models.

On the other hand, we may want to use DNN models on edge
devices with insufficient computational resources, such as in-
vehicle cameras, security cameras, smartphones, drones, and so
on. Some applications require high performance in accuracy and
inference speed under severe constraints in power consumption,
memory size, installation space, operating temperature, price, and
so on. Therefore, if a large GPU is used to meet the performance
requirements in accuracy and inference speed, it will not be able

1 Wakayama University, Sakaedani 930, Wakayama-shi, Wakayama 640–
8510, Japan

a) kammakoji@gmail.com
b) twada@ieee.org

to meet the constraints. Conversely, if we select a device that
meets the constraints, it will not be able to satisfy accuracy and/or
inference speed requirements.

One of the solutions for this problem is pruning [13], [17], [26].
Pruning is to remove the redundant neurons (or weights) from the
pretrained DNN models in order to make them computationally
less expensive. Generally, pruning DNN models causes accu-
racy degradation, which is not preferable. Therefore, the pruning
methods should be designed so as to prevent accuracy degrada-
tion as well as possible.

In this paper, we propose two pruning methods, Neuro-
Unification (NU) [22] and Reconstruction Error Aware Pruning
(REAP) [23].

The feature of NU is that it does not just prunes but unifies the
neurons having similar behaviors. Having similar behaviors is,
in other words, those neurons’ outputs have strong correlation.
When we prune a neuron, we reconstruct its behavior by tuning
the weights connected to the other neuron, which results in less
accuracy degradation.

REAP is the extended version of NU. In REAP, the behavior
of the pruned one is reconstructed by updating the weights con-
nected to all remaining neurons in the same layer by using least
squares method. The difficulty is that it requires huge amount of
computation for selecting the neurons to be pruned. In order to
select one, we once need to prune each neuron, conduct recon-
struction based on least squares method, and see which neuron
has the smallest error after reconstruction. For efficient neuron
selection, we developed a biorthogonal system-based algorithm.
To our best knowledge, REAP is the best method in terms of pre-

1ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

venting the layer-wise error.
We also propose two methods for facilitating pruning, Pruning

Ratio Optimizer (PRO) and Serialized Residual Network (SRN).
It is important to tune pruning ratio (the ratio of neurons to be

pruned) in each layer, because the proper pruning ratio depends
on how redundant the layer is. PRO is the method that can be
combined with REAP (and some other pruning methods) for op-
timizing pruning ratios. In PRO, we tune pruning ratio in each
layer based on the error in the final layer of the model, while
pruning itself is performed based on the layer-wise error. PRO
can perform pruning ratio optimization more efficiently and ef-
fectively than the existing reinforcement learning-based method
[16].

SRN is to facilitate pruning on ResNet. Generally, ResNet [14]
is difficult to be pruned due to its architectural feature. ResNet ar-
chitecture is composed of stacked blocks, and each block is com-
posed of several layers and has branched paths. In each block,
the inputs are propagated forward as they are in one path, and
linear transformations (convolutions) are performed in the other
path, and both are eventually added. At this addition, two in-
puts must have the same dimensions, which means the layer
that have branched paths cannot be pruned. Therefore, we pro-
pose a method to convert ResNet into an equivalent serial model
that we call Serialized Residual Network (SRN). SRN can em-
ulate ResNet by setting some weights to perform identity map-
ping. Even though SRN has more computational complexity than
ResNet, it is easier to be compressed by pruning, because SRN
has a serial architecture and any layer can be pruned.

It is worth noting that there is an opinion that it does not mat-
ter how well we preserve accuracy of the pruned models, because
the pruned models are retrained anyway in order to recover their
accuracy. However, as we will show in this paper, the better we
preserve the accuracy of the pruned models, the more accurate
those models eventually become after retraining. More impor-
tantly, as we will show in Sec. 4, the compression methods that
can preserve the model accuracy well enable us to tune the prun-
ing ratio in each layer efficiently. Therefore, it is important to
choose a good pruning method that can prevent accuracy degra-
dation as well as possible.

The rest of the paper are structured as follows. Sec. 2 shows
outlines of works related to DNN compression techniques. We
explain our proposed methods and the experiments in Sec. 3-5.
We conclude the discussion of this paper in Sec. 6.

2. Overview for DNN compression methods
A lot of works have been done to explore efficient DNNs.

There are two major approaches. One is to reduce the redundancy
of pretrained large DNN models, which includes pruning, sparsi-
fication, factorization, quantization, and distillation. The other is
Neural Architecture Search (NAS) to search the architectures that
can achieve high accuracy within a given computational budget in
the context of training from scratch.

2.1 Pruning
Pruning is to remove the neurons or the weights that are unim-

portant or redundant. The pruning methods can be divided into

Fig. 1 The conceptual drawings of the compression methods for DNN mod-
els. (a) The original model. (b) The model compressed by struc-
tured pruning methods. (c) The model compressed by weight prun-
ing methods or sparsification methods. (d) The model compressed
by factorization methods. The advantage of structured pruning is
that the weight matrix gets smaller by pruning, which means that
the pruned model can be deployed with a general hardware device
and a general library. On the other hand, the models compressed
by the weight pruning methods and the sparsification methods re-
quire the environments that can conduct operations at only non-zero
weights. The factorization methods may reduce the computational
cost of the model, however, additional layers are added to the model
which bring extra computational overheads.

two groups: the weight pruning methods [5], [8], [11], [26] and
the structured pruning methods [17], [29], [30], [36], [39], [47].

The weight pruning methods prune the weights that are redun-
dant or do not contribute to the performance of the model signif-
icantly. In practice, the pruned weights are not actually removed
but are set to zero.

The first work of weight pruning is Optimal Brain Damage
(OBD) [26]. OBD evaluates the importance of the weights based
on the Hessian of the cost function. As it is computationally in-
tensive to calculate the whole Hessian, OBD only computes its
diagonal entries, and assumes that the non-diagonals are zero.
However, this is not a reasonable assumption, because the weights
in the same model are obviously dependent on each other. Op-
timal Brain Surgeon (OBS) not only prunes but also conducts
surgery (Note that, in our proposed methods, we call it recon-
struction instead of surgery.) to compensate the damage of prun-
ing by tuning the remaining weights based on the whole Hessian
[13]. However, as already mentioned, it is not feasible to com-
pute the whole Hessian for large DNN models that have millions
of weights. Therefore, OBS can be applied to only small models.
There are also the magnitude-based pruning methods that prune
the weights based on their absolute values [12], [46]. However,
pruning the weights having small absolute values may have sig-

2ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

nificantly impact on accuracy, and vise versa.
The common drawback of the weight pruning methods is that

the pruned model has sparse weight matrices/tensors and their
shapes are still the same with before pruning, as shown in Fig. 1
(c). Therefore, in order to take advantage of weight pruning, the
pruned model should be deployed on an environment supporting
sparse computation that skips multiplications with zero weights.

On the other hand, the structured pruning methods conduct
neuron-level pruning. This group also includes the methods based
on the derivative information of the cost function, such as [32],
and the magnitude based methods, such as [15] and [33]. NU
and REAP (the proposed methods in this paper) and some rele-
vant methods, such as ThiNet [30] and Channel Pruning (CP) [17]
also belong to this group. The advantage of the structured prun-
ing methods is that when a neuron is pruned, the whole weights
connected to it are also removed, and thus, the weight tensor will
have a smaller shape after pruning, as shown in Fig. 1 (b). There-
fore, the pruned model can be deployed in general devices with
general libraries.

We can also categorize the pruning methods from another per-
spective: the holistic pruning methods [11], [15], [26], [32], [39]
and the layer-wise pruning methods [8], [17], [22], [23], [30],
[43], [47].

The holistic methods are designed for comparing the impor-
tance of the neurons/weights in the whole model simultaneously
and removing the least salient one. For example, the method pro-
posed in [32] aims for pruning convolutional layers and evaluates
the importance of the channels based on the first derivative infor-
mation of the cost function. However, as the cost function and
the weights normally have non-linear relationship, it is not rea-
sonable to use only the first derivative information. Another ex-
ample is Structured Probabilistic Pruning (SPP) [39], a pruning
method using dropout. The idea of SPP is to drop some weights
out once and conduct training, and if it ends up in high accuracy, it
means the dropped weights are not important and can be eventu-
ally pruned. Although, as training has to be repeated many times
to evaluate the importance of neurons, SPP is a computationally
intensive way of pruning.

On the other hand, some recent works [8], [17], [22], [23], [30],
[43] have offered the layer-wise pruning methods. The layer-wise
methods conduct pruning in each layer separately based on the
layer-wise error. As their optimization problems are simpler than
those of the holistic methods, it is possible to use more theoret-
ically sound criteria for selecting the neurons to be pruned. For
example, Layer-Wise Optimal Brain Surgeon (LOBS) [8] prunes
the weights and updates the remaining ones based on the Hessian
of the MSE of layer-wise outputs over only the weights in that
layer. While the original holistic OBS computes the Hessian of
the cost function over all the weights of the model, LOBS com-
putes the Hessian layer by layer, which significantly reduces the
computational cost. Therefore, LOBS can be used for compress-
ing larger DNN models. Channel Pruning (CP) [17] and ThiNet
[30] prune the neurons based on the layer-wise error and conduct
reconstruction with least squares method so as to compensate the
error caused by pruning. Our REAP [23] are closely relevant to
CP and ThiNet, however, we take a more sophisticated approach,

as we will discuss in Sec. 3.

2.2 Sparsification
The sparsification methods make the weight matrices/tensors

sparse by conducting extra training on the pretrained models with
L1 regularization [4], [40]. The recent works include Sparse Con-
volutional Neural Network that combines L1 regularization for
convolutional layers and tensor decomposition [4]. Zhao et al.
proposed a group Lasso-based method for feature selection of
multi-modal DNN models [45].

The theoretical weakness of sparsification is that L1 regulariza-
tion shifts the global minimum of the cost function. Thus, weight
selection results may not be optimal in terms of preserving the
accuracy of the model. In addition, similarly with the weight
pruning methods, the weight matrices/tensors retain the same di-
mensions after sparsification, as shown in Fig. 1 (c). Thus, we
need the environments dedicated for the sparsified models that
skip the computations with the zeroed weights to take advantage
of sparsification.

2.3 Factorization
The idea of factorization is to decompose a large weight ma-

trix/tensor into several smaller matrices/tensors, as shown in Fig.
1 (d). The most fundamental method in this group is presented in
[41]. They apply SVD to a large weight matrix, and approximate
it by the product of small matrices by discarding the components
with small singular values. This results in reducing the weights
with small sacrifice of accuracy. For example, assume that a m×n
matrix is approximated by the product of a m×o matrix and a o×n
matrix. If o ≪ m, n, the number of weights reduces from mn to
(m + n)o. Jaderbery et al. expanded this idea for convolutional
layers [21]. They use row rank expansion technique for factor-
izing convolutional kernels. Some other methods [42], [44] also
belong to this group.

The drawback of factorization is that they may indeed reduce
weights and FLOPs, however, they add extra layers that have
computational overheads. Therefore, the effectiveness of factor-
ization may not be as significant as it seems, depending on the
computational environments, model architecture, and so on.

2.4 Quantization
The methods in this group reduce the redundancy of each bit-

wise operation, e.g. changing floating point precision from 32-bit
to 8-bit. For lower-bit operations, special hardwares and libraries
are required.

A further development of this idea is binarization. BinaryCon-
nect [6] is a method to produce the DNN models with only 2
weight values (e.g. -1 and 1) so that the operations can be done
by only additions and subtractions. As additions and subtractions
are less expensive than multiplications, the inference can be faster
by binarization. The binarized models can be deployed on general
hardwares and libraries. However, as they do not need multipli-
ers, it is more ideal to use the dedicated environments optimized
for additions and subtractions.

3ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Fig. 2 The conceptual drawing of neuron behavior encoding. When we feed
several images into a DNN model, each neuron obtains a behavioral
vector composed of their own outputs.

2.5 Distillation
Hinton et al. proposed Knowledge Distillation [18], a method

to transfer the knowledge learned by a pretrained large model
(teacher) into a small model (student). When training the student,
its weights are updated so as to minimize the output difference
from the convex combination of the ground truth and the teacher’s
outputs. The student trained in this way shows good performance
for its size. Mirzadeh et al. proposed multi-step distillation [31].
They found out that Knowledge Distillation tends to fail when the
student has much smaller architecture than the teacher, and multi-
step distillation using the intermediate-sized models can ease this
problem.

The most significant drawback of Knowledge Distillation is
that it is difficult to search the proper architecture for the student.
Typically, the student has fewer layers and fewer neurons in each
layer than the teacher, although we do not know how fewer they
can be. Therefore, we need to conduct training to judge if the
current architecture is proper or not, which is time-consuming.

2.6 Neural Architecture Search (NAS)
Apart from the compression methods mentioned above, Neu-

ral Architecture Search (NAS) methods have also been devel-
oped. The NAS methods can be divided into two groups: the
evolutionary algorithm-based methods [10], [24], [28], and the
reinforcement learning-based ones [19], [35], [48]. The idea of
these approaches is to prepare a graph that the DNN model will
be built on, put a layer (or a block composed of several layers)
on each node, and train the model built on the graph. Reinforce-
ment learning or evolutionary algorithm are used to optimize the
architecture in each node. These approaches are computationally
intensive.

3. Neuro-Unification and Reconstruction Er-
ror Aware Pruning

In this section, we explain our proposed pruning methods,
Neuro-Unification (NU) and Reconstruction Error Aware Prun-
ing (REAP). As REAP is an extended one of NU, we explain
only the basic idea of NU, and then explain REAP in detail.

3.1 Neuro-Unification
The idea of NU is that we do not just prune a neuron but unify

the neurons having similar behaviors. Therefore, we conduct the
following procedures in each layer.

1) Encode the behavior of each neuron.

2) Compute the behavioral similarity of every possible neuron
pair.

3) Unify the most similar pair.

4) Terminate iteration if we have pruned as many neurons as
we want. Otherwise, go to 1).

Fig. 2 is the conceptual drawing of neuron behavior encoding.
For a single image, the i-th neuron outputs a scalar value. For d
input images, the output becomes a vector xi ∈ Rd. We call it the
behavioral vector of the i-th neuron.

If there are a pair of neurons with the same behaviors, we can
unify them without error. Here, having the same behaviors means
that their behavioral vectors are linearly dependent on each other,
such as xi = αx j. We show an example below.

Let n and n′ denote the numbers of neurons in a layer and the
next layer (intermediate layer and right one in Fig. 3 (a), respec-
tively), I = {1, · · · , n} denote the set of neuron indices, wi ∈ Rn′

denote the weights going from the i-th neuron to the ones in the
next layer. The forward propagation is described by

Y = xiw
⊤
i + x jw

⊤
j +

∑
k∈I\{i, j}

xkw
⊤
k , (1)

where Y ∈ Rd×n′ denotes the inner activation levels in the next
layer.

If xi = ai jx j holds for some ai j, we can unify the i-th and the
j-th neurons without error. As shown in Fig. 3 (b), we prune the
i-th neuron and update the j-th one’s weights going to the next
layer as

w j ← ai jwi + w j. (2)

Then, the forward propagation formula becomes

Y = x j

(
ai jw

⊤
i + w

⊤
j

)
+

∑
k∈I\{i, j}

xkw
⊤
k . (3)

Eq. (1) and Eq. (3) are equivalent because xi = ai jx j holds, which
means the original Y is preserved. This is how we reconstruct the
behaviors of the pruned neurons.

As above, in the case of the neurons having linearly dependent
behavioral vectors, they can be unified without error. Although,
it rarely happens that those behavioral vectors are linearly depen-
dent. In the case of unifying the neurons having linearly inde-
pendent but similar behavioral vectors, we accept some error and
make it as small as possible. In this case, we first approximate xi

by a vector which is linearly dependent on x j:

xi ≃ ai jx j. (4)

We regard that ai jx j is the behavioral vector of the i-th neuron so
that we can conduct unification in the same manner with Eq. (2).

Here is a question. How to determine ai j in Eq. (4)? In order
to minimize the error in the next layer, we have to minimize the
error of Y . This can be formalized as

4ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Fig. 3 The illustration of neuron unification. (a) The original model. (b) The model pruned with NU.
Only one neuron is used for reconstructing the pruned one’s behavior. (c) The model pruned with
REAP. All the remaining neurons are used for reconstruction.

a∗i j = argmin
ai j

∣∣∣∣∣∣∣∣(xi − ai jx j

)
w⊤i

∣∣∣∣∣∣∣∣2
F

= argmin
ai j

d∑
k=1

n′∑
l=1

((
xi(k) − ai jx j(k)

)
wi(l)

)2

= argmin
ai j

n′∑
l=1

w2
i(l)

d∑
k=1

(
xi(k) − ai jx j(k)

)2

= argmin
ai j

||wi||2
∣∣∣∣∣∣xi − ai jx j

∣∣∣∣∣∣2 ,

(5)

where xi(k) denotes the k-th entry of xi and wi(l) denotes the l-th
entry of wi. We can omit ||wi||2 in Eq. (5) as it is a constant. Then,
Eq. (5) can be rewritten as

a∗i j = argmin
ai j

∣∣∣∣∣∣xi − ai jx j

∣∣∣∣∣∣2 . (6)

After all, we have to compute the orthogonal projection of xi onto
x j. Thus, we have

a∗i j =

〈
xi, x j

〉
∣∣∣∣∣∣x j

∣∣∣∣∣∣2 . (7)

If xi and a∗i jx j are similar enough, it means the j-th neuron can
emulate the behavior of the i-th one well, and the error caused by
this unification will be small.

3.2 Reconstruction Error Aware Pruning
In NU, the output of the pruned neuron is reconstructed from

another neuron. In REAP, we use all the remaining neurons for
reconstruction, as shown in Fig. 3. This can be formulated by

{a∗i j| j ∈ I\{i}} = argmin
ai j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣xi −

∑
j∈I\{i}

ai jx j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

. (8)

Similarly with Eq. (2), the weights of the remaining neurons are
updated as follows for each j ∈ I \ {i}.

w′j = a∗i jwi + w j. (9)

3.2.1 How to select the neuron to be pruned

We should select the neuron to be pruned so as to minimize the
reconstruction error of Y . This problem can be formulated as

Fig. 4 Illustration of the projection of xi onto a subspace U(I\{i}) spanned
by {x j | j ∈ I\{i}}. Computing the orthogonal projection of xi onto
U(I\{i}) is equivalent to solving the problem of reconstructing xi from
{x j | j ∈ I\{i}} by least squares method. The residual ri is linearly de-
pendent on x̄i, the dual basis for xi.

i∗ = argmin
i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Y −

∑
j∈I\{i}

x jw
′
j
⊤

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

= argmin
i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Y −

∑
j∈I\{i}

x j

(
a∗i jwi + w j

)⊤∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

.

(10)

In order to solve Eq. (10), we first solve Eq. (8) for each i ∈ I
to compute the a∗-s. With straightforward solution using least
squares method, the amount of computation would be tremen-
dous if we have a lot of neurons (and we usually have a lot of
neurons).
3.2.2 Neuron selection algorithm based on biorthogonal sys-

tem
We solve Eq. (8) for each i in one-shot by using biorthogonal

system. Let ri denote the residual of xi reconstructed from the
other x-s:

ri = xi −
∑

j∈I\{i}
a∗i jx j. (11)

As ri is the residual of xi, ri is orthogonal to all other x-s. In
other words, ri is orthogonal to the subspace U(I\{i}) spanned by
{x j| j ∈ I \ {i}}, as shown in Fig. 4.

We compute the r-s by using biorthogonal system. Let {x̄ j| j ∈
I} denote the dual bases of {x j| j ∈ I}. The biorthogonal system
is defined by

⟨xi, x̄ j⟩ =

1 (i = j)

0 (otherwise)
. (12)

The biorthogonal expansion for ri is given by

5ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

ri =
∑
j∈I
⟨ri, x j⟩x̄ j. (13)

Obviously, ⟨ri, x j⟩ = 0 holds for each j ∈ I \ {i}, because ri is
orthogonal toU(I\{i}). Therefore, Eq. (13) can be rewritten as

ri = ⟨ri, xi⟩x̄i +
∑

j∈I\{i}
⟨ri, x j⟩x̄ j = ⟨ri, xi⟩x̄i. (14)

Eq. (14) means that ri is linearly dependent on x̄i. Therefore, we
can obtain ri by computing the orthogonal projection of xi onto
x̄i, as shown in Fig. 4. Thus, the following holds:

ri =
⟨xi, x̄i⟩
||x̄i||2

x̄i =
x̄i

||x̄i||2
. (15)

By using Eq. (15), we can compute ri for each i ∈ I in one-
shot. Let X = [x1 · · · xn] and X̄ = [x̄1 · · · x̄n]. By definition of
dual bases, X̄ can be computed as

X̄ = (Xg)⊤ , (16)

where Xg denotes the generalized inverse of X. Then, we can
compute the r-s by using Eq. (15) for each column of X̄.

We also need to compute the a-s, the coefficients for recon-
struction. Let R = [r1 · · · rn] and A∗ ∈ Rn×n denote a matrix
whose (i, j) entry is a∗i j. Because we have Eq. (11), the following
must hold:

R = X − XA∗. (17)

Then, we have
A∗ = E − XgR, (18)

where E denotes an identity matrix.
3.2.3 Even faster computation for selecting the second neu-

ron to be pruned
Assume that we have pruned the i-th neuron. When we prune

another neuron, we may simply repeat the same procedures men-
tioned in Sec. 3.2.2 with the remaining neurons. We have to solve
the following problem for each j.

{b∗jk |k ∈ I\{i, j}} = argmin
b jk

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣x j −

∑
k∈I\{i, j}

b jk xk

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

, (19)

Then, we solve the following problem for selecting the next neu-
ron to be pruned:

k∗ = argmin
k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Y −

∑
k∈I\{i, j}

xk

(
b∗jkw

′
j + w

′
k

)⊤∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

. (20)

Note that we already have the w′-s in Eq. (9).
Although we may use the proposed biorthogonal system-based

algorithm again for solving Eq. (19) and Eq. (20), we can solve
them even faster by using the solution of Eq. (8). We already
have

xi = ri + a∗i jx j +
∑

k∈I\{i, j}
a∗ik xk, (21)

x j = r j + a∗jixi +
∑

k∈I\{i, j}
a∗jk xk. (22)

After pruning both the i-th and the j-th neurons, we can no more

Algorithm 1
Input: A set of neuron indices I = {1, · · · , n}, a set of neuron behavioral
vectors {xi |i ∈ I} and the set of weight vectors of each neuron {wi |i ∈ I},
an output matrix Y , desired number of remaining neurons q.
Output: A set J ⊆ I composed of remaining neurons’ indices and a
matrix A ∈ Rn×n whose (i, j) entry is ai j.
J ← I.
compute R and A by using Eq. (16), (15), (17), and (18).
while |J| > q do

Select the neuron index i to be pruned by solving Eq. (10).
J ← J \ {i}.
w j ← ai jwi + w j for each j ∈ J .
a jk ← (a∗jk + a∗jia

∗
ik)/(1 − a∗jia

∗
i j) for each j, k ∈ J , j , k.

end while

Table 1 VGG16 on ImageNet. The changes of top-5 accuracy from the
baseline (89.5%) are reported (The greater, the better.). In this ta-
ble, “rt” stands for “retraining”. ∗our implementation.

FLOPs Method Acc. before rt Acc. after rt epochs#

×0.5

REAP -2.0% +0.2% 10
NU [22] -5.0% - -
CP [17] -2.7% 0.0% 10

∗ThiNet [30] -65.0% -1.0% 10
SPP [39] - 0.0% -

×0.2

REAP -9.4% -1.3% 10
CP [17] -22.0% -1.7% 10

∗ThiNet [30] -88.8% -3.4% 10
SPP [39] - -2.0% -

use x j for reconstructing xi. Thus, we substitute Eq. (21) to Eq.
(22) and get

x j =
r j + a∗jiri

1 − a∗jia
∗
i j
+

∑
k∈I\{i, j}

a∗jk + a∗jia
∗
ik

1 − a∗jia
∗
i j

xk. (23)

We have ⟨xk, ri⟩ = 0 and ⟨xk, r j⟩ = 0 for each k ∈ I\{i, j}.
Therefore, the first term on the RHS of Eq. (23) denotes the
residual of x j reconstructed from {xk |k ∈ I\{i, j}} and the sec-
ond term denotes the projection of x j onto the subspace spanned
by {xk |k ∈ I\{i, j}}. Thus, the coefficients of the x-s in the second
term is equivalent to the solution of Eq. (19):

b∗jk =
a∗jk + a∗jia

∗
ik

1 − a∗jia
∗
i j
. (24)

After computing the b∗-s, we can solve Eq. (20) easily.
3.2.4 Algorithm

To sum up, our neuron selection algorithm can be described as
Algorithm 1.
3.2.5 Related works

Channel Pruning (CP) [17] is also a layer-wise pruning method
that conducts reconstruction with least squares method. Al-
though, its strategy for neuron selection is different from ours.
They select the neurons to be pruned by solving the following
Lasso regression problem:

β∗ = argmin
β

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣Y −∑

i∈I
βixiw

⊤
i

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

F

+ λ ||β||1

subject to ||β||0 ≤ q,

(25)

where q denotes the desired number of neurons and β =
(β1, · · · , βn)⊤ denotes a vector used for neuron selection. If

6ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Table 2 Time (sec.) spent for channel selection per layer (channels# in the parentheses), at the pruning
ratios of 0.25, 0.5, 0.75.

Method Conv1-1 (64) Conv1-2 (64) Conv2-1 (128) Conv2-2 (128)
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

REAP 2.2 2.6 3.0 2.3 2.7 3.1 8.4 11.2 14.0 8.6 11.5 14.3
CP 1.8 1.7 1.6 1.1 1.4 1.3 2.1 2.6 2.4 3.2 3.3 3.3

Method Conv3-1 (256) Conv3-2 (256) Conv4-1 (512) Conv4-2 (512)
0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

REAP 41.0 60.1 79.9 41.0 60.3 79.9 363.6 612.8 868.7 361.1 603.4 848.9
CP 6.6 7.6 6.7 5.4 6.0 5.8 12.8 15.1 12.0 13.4 14.1 12.0

βi = 0, the i-th neuron can be pruned.
Then, reconstruction is performed with least squares method.

{
w∗j | j ∈ J

}
= argmin
w j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Y −

∑
j∈J
β∗j x jw

⊤
j

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

, (26)

where J = {i|β∗i , 0} denotes the set composed of remaining
neurons’ indices.

The weakness of CP is that it selects the neurons to be pruned
based on the error before reconstruction, which does not guar-
antee the minimal error after reconstruction. On the other hand,
REAP selects the neurons to be pruned based on their reconstruc-
tion errors. Because of this difference, REAP performs better
than CP, as we will show in the experiments.

3.3 Experiments
We conducted the experiments with VGG16 [37] on ImageNet

[7]. We also evaluated with other models/datasets that could not
included in this paper due to page limitation. They can be found
in [22], [23].
3.3.1 Datasets

ImageNet is a large scale dataset for 1,000 classes image clas-
sification [7]. It has approximately 1.2M images for training, 50K
images for validation, and 100K images for testing. Following the
former works, we used the validation images as the test dataset,
and did not use the official test images in our experiments. As
each image has different resolution, we resized them so that the
shorter side would become 256 pixels. Then, 224 × 224 random
crop was applied to the training images, and 224×224 center crop
was applied to the test images. The random horizontal flip was
applied to the training images. We randomly selected 5K training
images, and used them for encoding neuron behavior.
3.3.2 Models

VGG16 is a model that has 16 weight layers, including 13 con-
volutional layers and 3 fully connected layers. We used the orig-
inal VGG16 model that was trained with ImageNet dataset. The
convolutional layers are composed of 5 blocks that have 2 or 3
layers. For convenience, we call the X-th layer of the Y-th block
ConvY-X. For fully connected layers, we call such as FC1 and
FC2. Architecture details are mentioned in Appendix ??.
3.3.3 Results

We conducted the experiments with VGG16 on ImageNet. We
pruned the convolutional layers until the FLOPs became ×0.5 and
×0.2. The pruned models were retrained for 10 epochs at 10−5

learning rate. The momentum was set to 0.9, the minibatch size
was set to 128, and the dropout rate for fully connected layers

was set to 0.5. For the pruning ratio setting in each layer, we fol-
lowed the information provided in [17]’s authors in their Github
repository [1]. The rest of the setups were set to the same values
with [17].

The results are shown in Table 1. REAP performs consistently
better than the existing methods. After retraining, we marginally
outperform the other methods at ×0.5 FLOPs. At ×0.2 FLOPs,
the existing methods suffer even larger accuracy drop than we do.

An important observation is that we only suffer 9.4% accuracy
drop at ×0.2 FLOPs before retraining. On the other hand, CP suf-
fers 22.0% drop and ThiNet spoiled the model performance. This
is because we use the consistent strategy for channel selection
and reconstruction to preserve the performances of the pruned
models. As we show better performances before retraining, we
can achieve higher accuracy after retraining as well. To put this
observation differently, REAP enables us to achieve a certain ac-
curacy with fewer epochs of retraining, which means that we can
save time and labors for retraining.

It is also worth noting that the model pruned by REAP, at ×0.5
FLOPs, after retraining, is better than the original VGG16 model.
This is most likely because we removed the redundant weights,
the remaining weights had smaller chance of being trapped in the
local minima during training.

Table 2 shows the results of computational time measurements.
Even though CP is much faster than REAP, we can say that REAP
is fast enough. It can finish computation within minutes even in
Conv4-1 and Conv4-2 that are the largest layers of VGG16. We
believe that up to 848 seconds for Conv4-1 and Conv4-2 is accept-
able enough in practice, considering that REAP saves us time for
retraining the pruned model and that the training typically takes
much more time (e.g. 1 epoch takes over 8 hours on NVIDIA
Geforce GTX 1080 Ti).

4. Pruning Ratio Optimizer
REAP is a powerful method for preserving layer-wise error.

However, what we are more interested in is the accuracy of the
pruned model than the layer-wise errors. And the relationship be-
tween the layer-wise errors and the accuracy degradation is not
obvious. Therefore, in terms of preserving the accuracy of the
pruned model well, we need to set proper pruning ratio (the ratio
of neurons to be pruned) in each layer.

In this section, we present Pruning Ratio Optimizer (PRO), a
method for optimizing the pruning ratio in each layer based on the
error in the final layer of the model. In PRO, we repeat the fol-
lowing steps until the pruned model becomes fast (and/or small)
enough:

7ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

1) Select the the most redundant layer.

2) Prune a small number of neurons in the selected layer.

For evaluating the redundancy, we try to perform pruning in each
layer with several pruning ratios, and observe the error in the final
layer of the pruned model, as shown in Fig. 5. The layer where
pruning will have the smallest impact on the outputs in the final
layer is selected, and some neurons are pruned in that layer. After
some iterations, the pruning ratio in each layer will be properly
tuned.

It is worth noting that PRO has to be combined with REAP,
even though other layer-wise pruning methods that conduct re-
construction, such as CP [17] and ThiNet [30], can also be used.
This is because REAP is the best method for preventing the
(layer-wise) error. As far as the pruned model retains close to
its original accuracy, we can say that more neurons can still be
pruned. On the other hand, with other pruning methods, the
model being pruned easily suffers significant degradation. Af-
ter significant degradation, we cannot judge if more neurons can
be pruned. Therefore, we can optimize the pruning ratios more
properly if we use REAP.

4.1 Related works
For pruning ratio optimization with a layer-wise method, He

et al. proposed AutoML Model Compression (AMC), a method
to optimize pruning ratio based on reinforcement learning [16].
They show that the accuracy of the pruned model can be pre-
served better if they optimize pruning ratios with AMC than if
they do by human hands. Although, AMC has some weaknesses:
• Reinforcement learning itself is computationally expensive,

because it requires us to perform pruning quite a lot of times
with various pruning ratio settings.

• One still needs to tune lots of hyper-parameters related to
reinforcement learning by human hands.

Therefore, it is desired to develop a novel method which is easier
to use and less time-consuming.

The holistic pruning methods can be used for optimizing the
pruning ratios as well. However, because most existing holis-
tic methods do not perform reconstruction, the pruned models
suffer significant accuracy degradation. Exceptionally, Optimal
Brain Surgeon (OBS) [13] is a holistic method that performs re-
construction. However, as we already mentioned in Sec. 2, it
is not realistic to apply OBS to large DNN models due to heavy
computational cost. Structured Probabilistic Pruning (SPP) [39]
conducts pruning by using dropout. As already mentioned in Sec.
2, SPP requires a lot of computation for pruning.

4.2 Pruning Ratio Optimizer
In this section, we explain Pruning Ratio Optimizer (PRO). We

first re-formulate REAP in order to make it easier to explain PRO.
Then, we show the details of PRO.
4.2.1 Formulation of REAP

Let n(k) denote the number of neurons in the layer where prun-
ing is performed, I(k) = {1, · · · , n(k)} denote the set of neuron
indices, x(k)

i denote the i-th neuron’s behavioral vector, w(k)
i de-

note the weights going from the i-the neuron to the ones in the

next layer, Y (k) =
∑

i∈I x(k)
i w

(k)
i
⊤

denote the layer-wise outputs.
REAP’s neuron selection can be formulated as below.

J (k)∗ = argmin
J (k)

min
w(k)

i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣Y (k) −

∑
i∈J (k)

x(k)
i w

(k)
i
⊤

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
2

F

,

subject to
∣∣∣J (k)

∣∣∣ ≤ (1 − p(k))
∣∣∣I(k)

∣∣∣ ,
(27)

where J (k) denotes the set of the remaining neurons’ indices and
p(k) denotes the pruning ratio. Note that we obtain the solution
of Eq. (27) by solving Eq. (10) sequentially. REAP’s neuron
selection algorithm presented in Sec. 3 can find a better solution
of this problem than other layer-wise pruning methods, such as
[17].

Although REAP is good at preserving the original layer-wise
outputs, it is not obvious how much this layer-wise error will have
an impact on the model accuracy. Some amount of error in a layer
may not affect model performance, although the same amount of
error in another layer may lead to significant degradation. More-
over, pruning in a layer will change the outputs of the subsequent
layers, which makes it difficult to optimize the pruning ratios in
several layers simultaneously.
4.2.2 Pruning Ratio Optimizer (PRO)

We propose Pruning Ratio Optimizer (PRO) that can be com-
bined with REAP (or other layer-wise pruning methods) for opti-
mizing the pruning ratios. In PRO, we optimize the pruning ratio
in each layer so as to minimize the error in the final layer of the
model. Because it is difficult to solve this optimization problem
analytically, we solve it in a greedy fashion. The idea of PRO is
to select the most redundant layer and prune some neurons in the
selected layer, repeatedly.

The procedures of PRO can be described as follows.
Step 1) Draw a curve of FLOPs reduction and the error in the fi-

nal layer that is caused by performing pruning in each layer,
as shown in Fig. 5 (a). In order to do this, we try to set the
pruning ratio to various values, apply REAP, and observe the
errors in the final layer. Note that pruning is conducted sepa-
rately in each layer, and the pruned neurons and the updated
weights have to be restored in this step.

Step 2) Set the threshold terr to the error in the final layer. By
using the curves drawn in Step 1), select the layer where the
most FLOPs can be reduced at the cost of error of terr. How
to determine terr properly will be explained later.

Step 3) Perform pruning in the selected layer until the error in
the final layer reaches terr.

Step 4) If enough amount of FLOPs have been reduced, termi-
nate computation. Otherwise, go to Step 1). At the end, the
pruning ratio in each layer will be properly tuned.

In order to avoid ambiguity, we provide more detailed descrip-
tions for Step 1). LetM denote the model that have k+ layers and
D denote the dataset used for pruning. The original outputs in the
final layer are given by

Y (k+) =M(D). (28)

Then, we prune l = p(k)
∣∣∣I(k)

∣∣∣ neurons in the k-th layer with REAP.
Let Mk,l denote the model after pruning l neurons in the k-th

8ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Fig. 5 (a) Illustration of the idea of PRO. In each layer, we try pruning with several pruning ratios and
observe the error in the final layer. Then, we set the error threshold terr , select the layer where the
most FLOPs can be reduced at the cost of error of terr (In this case, layer1 will be selected.), and
perform pruning in the selected layer. We repeat these procedures several times until the inference
with the pruned model becomes fast enough. (b) The strategy for efficient layer selection. Drawing
precise curves is computationally intensive, as it requires us to conduct pruning and error observa-
tion repeatedly. Therefore, we set p(k), the pruning ratio in the k-th layer, to a few values (In this
example, p(k) = 0, 0.25, 0.5, 0.75.), conduct pruning, and observe the error in the final layer. We
perform linear interpolation between the observed points.

layer. Then, the error in the final layer becomes

∆Y (k+)
k,l = Y (k+) −Mk,l(D). (29)

We also need to compute FLOPs reduction achieved by prun-
ing. By pruning l neuron in the k-th layer, the amount of reduced
FLOPs is given by

∆o(k) = l
(
n(k−1) + n(k+1)

)
. (30)

We draw a curve of
∣∣∣∣∣∣∣∣∆Y (k+)

k,l

∣∣∣∣∣∣∣∣2
F

and ∆o(k). This has to be repeated
for each k ∈ {1, · · · , k+ − 1}.

The remaining question is how to determine the threshold terr

in Step 2). With extremely small terr, FLOPs reduction in each
layer corresponding to the error of terr will be close to zero, and
we will not be able to prune any neuron in any layer. With too
large terr, all the neurons in the selected layer will be pruned. In
order to avoid these situations, we induce a threshold t f lops for
FLOPs to be reduced at each iteration. We first set a very small
value to terr, and select a layer that has the largest ∆o(k) at the cost
of error of terr in the final layer. If ∆o(k) in the selected layer is no
smaller than t f lops, we go to Step 3). Otherwise, we increase terr

a little and repeat Step 2).
It is worth noting that because of REAP’s high ability of pre-

serving the original layer-wise outputs, pruning a small number
of neurons in a layer barely changes the layer-wise outputs signif-
icantly, and thus, the final layer’s outputs are not affected signif-
icantly as well. Therefore, in Step 2), we normally select several
layers where we conduct pruning in Step 3). Then, we can re-
duce FLOPs more efficiently at each iteration, which saves the
computational cost for pruning ratio optimization with PRO.
4.2.3 Strategy for more efficient optimization

We still have a problem with PRO, which is the large compu-
tational cost for Step 1). In order to draw precise curves of error

and FLOPs reduction such as Fig. 5 (a), we need to compute Eq.
(29) each time we prune a neuron, which is computationally in-
tensive. Thus, we draw rough curves such as Fig. 5 (b) in the
following scheme.

a) Set the pruning ratio in the k-th layer p(k) (Then, l = p(k)
∣∣∣I(k)

∣∣∣
neurons will be pruned.) to some value, compute corre-

sponding
∣∣∣∣∣∣∣∣∆Y (k+)

k,l

∣∣∣∣∣∣∣∣2
F

and ∆o(k) by using Eq. (29) and Eq. (30).
This step has to be repeated a few times, with several values
of p(k) (e.g. p(k) = 0, 0.25, 0.5).

b) Plot ∆o(k) and
∣∣∣∣∣∣∣∣∆Y (k+)

k,l

∣∣∣∣∣∣∣∣2
F
, as shown in Fig. 5. As we have

only a few dots on the plot, we perform linear interpolation

between the dots so that the error (
∣∣∣∣∣∣∣∣∆Y (k+)

k,l

∣∣∣∣∣∣∣∣2
F
) corresponding

to an arbitrary value of ∆o(k) can be estimated.

4.2.4 Algorithm
The procedures of PRO are summed up in Algorithm 2. Here,

we assume that REAP is employed for pruning.

4.3 Experiments
Although we evaluated PRO with several benchmark datasets

and several models, we show one of them in this paper due to
page limitation. We implemented PRO with Python 3.6.9 and
Pytorch 1.0.0. All the experiments were done on Intel Core-i9
9900K CPU and a single board of NVIDIA Titan RTX GPU.
4.3.1 Setups

We performed pruning until the FLOPs would become approx-
imately ×0.2 of the original VGG16 model.

The baseline method is AMC [16]. AMC is a reinforcement
learning-based method for pruning ratio optimization. Basically,
PRO is combined with REAP, and AMC is combined with a layer-
wise pruning method named CP [17]. For fair comparison of PRO
and AMC, we also evaluated the combination of PRO and CP. In

9ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Table 3 VGG16 on ImageNet. The top-5 accuracy are reported (The greater, the better.). In this table,
“rt” stands for “retraining”, ”uniform” means that the pruning ratio was set to the same value for
all the layers. The baseline accuracy of the original VGG16 model is 89.5%.

Method FLOPs Acc. before rt Acc. after rt Time for optim.
PRO & REAP ×0.200 80.5% 88.2% 78,026 sec

PRO & CP ×0.203 73.6% 87.8% 71,840 sec
AMC & CP ×0.219 49.7% 85.8% 35,181 sec

uniform & REAP ×0.212 56.2% 87.1% -

Algorithm 2
Input: ModelM, the number of selected layers for pruning in each itera-
tion m, threshold for FLOPs reduction t f lops, threshold of error in the final
layer terr , a set P whose elements denote pruning ratios, a dataset used for
pruningD.
while The number of the FLOPs is not small enough do

for k = 1, · · · , k+ − 1 do
FeedD intoM to compute {x(k)

i |i ∈ I(k)} for each k = {1, · · · , k+}.
for p(k) ∈ P do
M′ ←M.
Set pruning ratio to p(k) and perform pruning with REAP on the
k-th layer ofM′.
Compute corresponding

∣∣∣∣∣∣∣∣∆Y (k+)
k,l

∣∣∣∣∣∣∣∣2
F

and ∆o(k) by using Eq. (29)

and Eq. (30), where l = p(k)
∣∣∣I(k)

∣∣∣.
end for
Make a plot of

∣∣∣∣∣∣∣∣∆Y (k+)
k,l

∣∣∣∣∣∣∣∣2
F

and ∆o(k), as shown in Fig. 5. Perform
linear interpolation between the plots.

end for
t′err ← terr .
while ∆o(k) in the selected layer(s) is smaller than t f lops do

Select m layer(s) with the largest ∆o(k) at
∣∣∣∣∣∣∣∣∆Y (k+)

k,l′

∣∣∣∣∣∣∣∣2
F
= t′err , where

l′ = p′(k)
∣∣∣I(k)

∣∣∣.
Compute corresponding pruning ratio p′(k) in the selected layer(s).
t′err ← zt′err , where z is arbitrary value greater than 1.

end while
Perform pruning on the selected layers of M, with p′(k) pruning ratio
for the k-th layer.

end while

addition, we applied REAP with uniform pruning ratio settings in
all the layers.

As shown in Algorithm 2, the hyper-parameters in PRO are as
follows. m is the number of layers to be selected in each itera-
tion, terr is the threshold of the error in the final layer, t f lops is the
amount of FLOPs that should be reduced at each iteration, and
P is the set whose elements are the pruning ratios and are substi-
tuted to p(k). We set m = 3, terr = 10−10, t f lops = 2 × 108 (For
reference, the original VGG16 model has 1.547 × 1010 FLOPs.),
and P = {0, 0.125, 0.25, 0.375, 0.5}.

Regarding to AMC, we could not find some important experi-
mental information in [16]. In order to be fair, we evaluated AMC
by ourselves using the source code provided by [16]’s authors*1.

The pruned models were fine-tuned for 10 epochs with 10−5

learning rate. The momentum was set to 0.9, the mini-batch size
was set to 128, and the dropout rate in the fully connected layers
was set to 0.5. For the rest of training setups, we followed [37].
4.3.2 Results

We performed pruning with the pruning ratio optimization.
The results are summarized in Table 3, and the discussions are

*1 https://github.com/mit-han-lab/amc

as follows.
4.3.2.1 Comparison to the case of uniform pruning ratio

Compared to the the case of uniform pruning ratios in all the
layers, we could make the accuracy degradation much smaller.
Especially, the accuracy degradation was smaller by over 23% by
using PRO, at approximately ×0.2 FLOPs ratio, before retraining.

The accuracy of the pruned model after retraining was better
when using PRO. This is because 1) By using PRO, we can pre-
serve the accuracy of the pruned model well, which means that
we can start retraining with the models that have been less dam-
aged; 2) The pruning ratio for each layer has been optimized even
without retraining.
4.3.2.2 Comparison to AMC

We then discuss the comparison of PRO & CP and AMC & CP.
As shown in Table 3, PRO could outperform AMC significantly.
PRO suffers 15.9% accuracy degradation at ×0.203 FLOPs ra-
tio without retraining, while AMC suffers 39.8% degradation at
×0.219 FLOPs rate. After retraining, PRO still suffers smaller
degradation than AMC by 2.0%.

One thing that should be noted is the implementation differ-
ence of PRO and AMC. In PRO, each time we perform prun-
ing in a layer, we encode the neuron behaviors in all the layers
again. After pruning in a layer, it affects the neuron behaviors in
other layer, and we cannot perform pruning properly without re-
encoding them. Even though the optimization schemes of PRO
and AMC are totally different, re-encoding of neuron behaviors
is important in AMC as well for reconstruction. However, in their
implementation, they encode the neuron behaviors in all the lay-
ers only in the beginning, and keep using those initial neuron
behaviors to the end in order to shorten time for pruning ratio
optimization.

Then, what if we conduct re-encoding for neuron behaviors
in AMC? We tried to apply AMC while re-encoding the neuron
behaviors. It took 1.7M sec (approximately 20 days) for prun-
ing ratio optimization. However, the accuracy before retraining
improved only 0.6% (49.7% to 50.3%), and the accuracy after
retraining dropped by 0.2% (86.8% to 86.6%). After all, re-
encoding the neuron behaviors did not work for improving the
performance of AMC.
4.3.2.3 Analyses on optimized pruning ratio in each layer

Then, why the performance of AMC was worse than PRO? Fig.
6 shows the pruning ratio in each layer of the VGG16 model. The
rough trend of both PRO and AMC is that they set higher prun-
ing ratios to the layers closer to the input side and lower pruning
ratios to the layers closer to the output side.

A remarkable observation is that PRO does not prune a lot in
Conv5-1 and Conv5-2 layers, while AMC does. Actually, it is
known that these layers are not redundant and pruning them leads

10ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Fig. 6 Results of pruning ratio optimization for VGG16. Both PRO and AMC tend to set higher pruning
ratio to the layers on the input side and lower pruning ratio to the layers on the output side. The
difference is that PRO does not prune Conv5-1 and Conv5-2 layers a lot, while AMC does. As
reported in several literatures, such as [17], [30], pruning these layers leads to significant degrada-
tion. And our PRO successfully avoids pruning these layers.

Fig. 7 (a) Relationship of the error in the final layer and pruning ratio in each layer. (b) Relationship of
the error in the final layer and FLOPs reduction in each layer, which we actually use for selecting
the layer to be pruned.

to significant degradation [17], [30]. PRO could successfully find
out that these layers should not be pruned and eventually set zero
or very low pruning ratios to them. On the other hand, AMC
pruned a lot in these layers, which ended up in significant degra-
dation.

We also investigated how the error in the final layer responses
to the pruning ratio in each layer. We used REAP to prune Conv1-
1, Conv2-1, Conv3-1, Conv4-1, and Conv5-1 layers, with various
pruning ratios, and observed the error in the final layer. The result
is shown in Fig. 7.

Fig. 7 (a) shows the relationship of the error in the final layer
and the pruning ratio in each layer, and Fig. 7 (b) shows a similar
graph with FLOPs reduction in the horizontal axis. We can see
clearly different trends between the layers. In the Conv5-1 layer,
the error increases more rapidly than the other layers. Thus, by
observing the relationship of pruning ratio (FLOPs reduction) and
the error directly, we can get the insight that we should not per-

form pruning a lot in Conv5-1.
Why did AMC set higher pruning ratios to the Conv5-1 and

Conv5-2 layers? It is implied that AMC’s reinforcement learning-
based algorithm was simply not capable of evaluating the redun-
dancy of the layers individually. As it performs pruning in all the
layers simultaneously, it cannot evaluate the impact of the prun-
ing ratio in each layer on the accuracy directly.

5. Serialized Residual Network
With REAP and PRO that we presented in Sec. 3 and 4, we can

conduct pruning on pretrained large DNN models, so as to make
them more efficient and preserve their performances simultane-
ously. On the other hand, there is an important point that we have
not discussed so far, which is the limitation of structured pruning
for ResNet. In this section, we discuss this limitation and present
its solution.

In the recent developments of Computer Vision, the contribu-

11ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

tion of Residual Network (ResNet) [14] has been remarkable. In
the competition of large scale image recognition [7], ResNet sig-
nificantly outperformed the models that had been developed be-
fore ResNet, such as VGG [37]. It is widely believed that the
key of ResNet is the architecture with identity shortcuts. ResNet
architecture is composed of the stacked blocks that are called
ResNet blocks With identity shortcuts, the convolutional layers
are trained so that the optimal residual of the feature maps is
learned. This architecture makes it possible to train a very deep
model effectively and stably. This is why ResNet could show a
record-breaking performance at that time [14].

However, this architectural feature of ResNet is inconvenient
from the perspective of structured pruning. The architecture of
ResNet consists of the blocks with identity shortcuts, as shown
in Fig. 8 (a). The feature maps go through convolutional layers
and are added to the ones coming through the identity shortcut.
At this addition, the dimensions of two inputs must match, which
means that we cannot prune the layers connected to the identity
shortcuts. This limitation is crucial, because ResNet architecture
is employed in various models for various tasks, such as object
detection, segmentation, and so on.

Therefore, we propose a technique to transform ResNet into a
serial network which we refer to by Serialized Residual Network
(SRN). In Fig. 8 (a) and (b), we show a ResNet block and an
equivalent SRN block. By building the kernels in the SRN block
by concatenating the kernels taken from ResNet and the ones that
conduct identity mapping, identity shortcut can be emulated by
the SRN block. In this way, the ResNet model is equivalent to the
SRN model whose weights are partially fixed to conduct identity
mapping.

Although SRN model has more FLOPs than the ResNet model,
it is much easier to be accelerated by pruning. Since the SRN
model has a serial architecture, we can prune any layers and re-
duce the computational cost drastically at the cost of relatively
small degradation.

The problem is that retraining the SRN model in the naı̈ve way
often ends up in no improvement or even degradation. The SRN
model suffers some optimization problems caused by having both
the optimized weights and the unoptimized weights. In order to
avoid this problem, we also propose the training scheme dedi-
cated for SRN.

It is also worth noting that our contribution is not limited to
ResNet. Other types of the DNNs that have branched architec-
tures, such as GoogLeNet [38] and so on, can be emulated by the
serial networks, and thus, the discussions in this paper are appli-
cable to those networks.

5.1 Serialized Residual Network (SRN)
In this section, we show how to build the SRN block that em-

ulates the ResNet block, and explain our training strategy for the
SRN models.
5.1.1 How to build SRN that emulates ResNet

Fig. 8 illustrates the ResNet block and the equivalent SRN
block, where we omit the batch normalization layers for simplic-
ity.

Let ⊗ denote convolutional operation, z denote ReLU function

and X ∈ Rd×n×hw×hh denote the feature map, where d denotes the
batch size, n, hw and hh denote the number of channels, the width
and the height of X, respectively. The operations in the ResNet
block can be written as follows:

YA = WA ⊗ X, (31)

XA = z(YA), (32)

YB = WB ⊗ XA + X, (33)

XB = z(YB), (34)

where WA,WB ∈ Rn×n×gw×gh denote the kernel weights, gw and
gh are the width and the height of the kernel. The feature maps
XA, XB,YA, and YB are d × n × hw × hh tensors.

We reproduce these operations with the SRN block. In the SRN
block, the operations are as follows.

Y ′A = W ′A ⊗ X, (35)

X′A = z(Y ′A), (36)

YB = W ′B ⊗ X′A, (37)

XB = z(YB). (38)

In Eq. (35), W ′A ∈ Rn×2n×gw×gh consists of 2 sub-tensors, WA

and I ∈ Rn×n×gw×gh , where I is the kernel that conducts identity
mapping (I ⊗ X = X). Then, the output Y ′A is composed of 2
sub-tensors that are identical to YA and X, as shown in Fig. 8.

In Eq. (36), Y ′A is fed into z, and the output X′A is obtained.
Assuming that X is already the output of ReLU in the previous
block and that every entry of X is no less than 0 (This assumption
basically holds true because ResNet usually has ReLU at the end
of each block.), X′A still contains the sub-tensor that is identical to
X.

The kernel W ′B ∈ R2n×n×gw×gh in Eq. (37) is built by concate-
nating WB and I so that the convolution and the addition in Eq.
(33) are reproduced with a single convolution. Then, the output
will be identical to YB, and the final output of this block will be
identical to XB.

In this way, we can build the SRN block that precisely repro-
duces the operations of the ResNet block.

It should be noted that the nonlinear function z must be ReLU
for the ResNet block to be emulated by the SRN block. Thus,
the discussions in this paper may not be valid for some modified
ResNet models with other types of activation, for example, Sig-
moid, Tangent Hyperbolic, and so on. However, this limitation
is not very important, because ReLU is used as standard for the
modern DNNs.
5.1.2 Training strategy

The scheme for producing the SRN model is as follows.

1) Transform the pretrained ResNet model into an equivalent
SRN model that has the fixed weights to reproduce the iden-
tity shortcuts.

2) Unfix the fixed weights and conduct training.

In Step 2), what we want to do is to train the whole weights of
the SRN model, including the previously fixed ones. Although,
we observe that the naı̈ve training often ends up in no accuracy

12ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Fig. 8 This figure illustrates the concept of SRN. (a) The conventional ResNet block. (b) The SRN block
that emulates ResNet. (c) The detailed illustration of operations in first convolution and ReLU
activation of the SRN block.

improvement or even degradation. Regarding to this observa-
tion, we hypothesize two problems and suggest the correspond-
ing countermeasures. One problem is the degradation caused by
training the SRN model having the well-optimized weights taken
over from the ResNet model and the unoptimized weights that are
initially fixed for identity mapping. Another problem is the side
effect of L2 regularization.
5.1.2.1 Problem caused by having both pretrained weights

and untrained weights
Assume that w1 is the pretrained weight taken over from

ResNet, and w2 is the untrained weight that was previously fixed
for identity mapping. Fig. 9 illustrates the cost function f in the
weight space spanned by w1 and w2, and the sketches of f over w1

and w2 around the point P(α, β) that represents the current weight
values. We assume that P is already near from the optimal point,
since it is the result of the pre-training of the ResNet model. If we
train these weights, w2 may have a steep gradient and be updated
significantly, because w2 has not been optimized yet, while w1 is
an optimized weight and is likely to have a gentle gradient. Then,
we may move from the current point P to a far point P′, and w1

and w2 may start to converge toward the sub-optimal point that is
near from P′, which means the training fails.

The naı̈ve solution for this problem would be reducing the
learning rate, although it would require quite a lot of iterations
to converge and is computationally inefficient.

We propose AUWT standing for Alternately Unfixing Weights

and Training. Assuming that this problem is more likely to hap-
pen when we have too many untrained weights that may have
steep gradients, we repeatedly unfix the weights partially and
conduct training, in order to limit the number of the untrained
weights to be trained at the same time.

For instance, we conduct AUWT in the following steps.

1) Unfix the fixed weights in the first SRN block and train the
model for 1 epochs.

2) Go to the second block and do the same. It will be repeated
till the final SRN block.

5.1.2.2 Side effect of L2 regularization
In many cases, we use L2 regularization to stabilize the train-

ing on the neural networks. However, L2 regularization can cause
a side effect when we train the SRN model.

We explain the side effect of L2 regularization with a fully con-
nected layer, as the same discussion is valid for convolutional lay-
ers. In the fully connected layer, the weights for identity mapping
is represented by an identity matrix E. Let ei j denote the (i, j) en-
try of E, f denote the loss function, a denote the learning rate,
and b denote the weight decay (the coefficient on regularization
term). By feeding some training samples into the model, ei j is
updated by ei j + δei j, where δei j is given by

13ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Fig. 9 This figure illustrates the problem caused by training SRN model having a pretrained weight and
an untrained weight. Left: The contour map of the loss f with respect to the pretrained weight w1
and the untrained weight w2. Center: The graph of f |w2=β with respect to w1. Right: The graph
of f |w1=α with respect to w2. The untrained weight w2 may have a steep gradient and be updated
drastically by training, while the pretrained weight w1 is likely to have a gentle gradient. Then, we
may move from the current point P, which we assume is close to the optimal point, to a far point
P′. Then, w1 and w2 may converge toward the sub-optimal point.

δei j = −a
∂

∂ei j

 f +
b
2

∑
k,l

e2
kl

= −a

(
∂ f
∂ei j
+ bei j

)
.

(39)

Therefore, the diagonals of E tend to be strongly affected by the
L2 regularization term due to their large initial values (eii = 1),
while the rest of the weights are initially equal to 0 (ei j = 0|i , j)
and are not significantly affected by L2 regularization at least in
the beginning of training.

When we train the SRN model, we need to optimize the
weights initialized to either 0 or 1 at the same time. In such a
case, the weights initialized to 1 will be updated drastically due
to the L2 regularization. Then, similarly with the problem illus-
trated in Fig. 9, we may move away from the optimal point in
the weight space, and the weights may converge toward the sub-
optimal point.

Inspired by [20], we suggest Elastic Weight Regularization
(EWR) to prevent the side effect of L2 regularization. Instead of
penalizing the L2 norm of the weights, we penalize the L2 norm
of the difference from the initial weight values. This is formalized
as follows.

δei j = −a
∂

∂ei j

 f +
b
2

∑
k,l

(
ekl − e′kl

)2

= −a
(
∂ f
∂ei j
+ b

(
ei j − e′i j

))
,

(40)

where e′i j denotes the initial value of ei j. EWR prevents the
weights from being too different from the initial values. With
EWR, the weights initialized to 1 are not affected by the regular-
ization term too strongly, and thus the side effect of L2 regular-
ization can be avoided.

The possible drawback of EWR is the initial value dependency.
As the regularized weights cannot be so different from their orig-
inal values, the training result strongly depends on the initial
weight values. Although, we suppose that this is not a problem
when training the SRN model converted from ResNet counter-
part. If the ResNet model was trained successfully, then it is

Fig. 10 The illustration of the ResNet block and the SRN block. Due to
serialization, layer2 of SRN has an increased number of channels.

intuitively reasonable to assume that its trained weights are not
bad initial values. EWR improves SRN training compared to the
normal L2 regularization.

5.2 Experiments
We conducted experiments to verify SRN. We implemented the

proposed method with Python 3.6 and Pytorch 1.0 [34].
We evaluated SRN’s ability of facilitating pruning, with the

CenterNet [9] model that has ResNet-18 backbone. We trans-
formed this backbone to SRN-18, perform pruning with REAP,
and evaluated the performance of the pruned models.

We also measured the inference time per image of each model
deployed on NVIDIA Jetson Nano [2], using camera demo mode
of the TensorRT implementation provided in [3]. Jetson Nano is
a device designed for neural network inference, and it is widely
recognized/used in the industry and research.
5.2.1 Dataset

MS-COCO is a popular large dataset for object detection [27].
It contains approximately 82K training images and 40K test im-
ages and 80 object classes. All the images were Following aug-
mentation settings in [9], training and evaluation were performed
on 512 × 512 resolution. We applied random scaling (scaling
factor was 0.6 to 1.3), and random horizontal flip to the training
images. We used randomly selected 5K images for pruning.
5.2.2 Models

We converted ResNet-18 backbone to SRN-18 that has the
fixed weights, and then unfix them from the shallower side. As we

14ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

Table 4 The results on CenterNet.
Backbone mAP FLOPs Inf. time (msec)
ResNet-18 (baseline) 0.274 ×1 131
ResNet-18-pruned (A) 0.261 ×0.75 94
SRN-18-pruned (A) 0.272 ×0.75 91
ResNet-18-pruned (B) 0.248 ×0.5 82
SRN-18-pruned (B) 0.262 ×0.5 81
ResNet-18-pruned (C) 0.183 ×0.25 67
SRN-18-pruned (C) 0.239 ×0.25 57

unfixed the weight in a block, we trained the model for 10 epochs
at 1.25 × 10−5 learning rate, and performed pruning. We set the
ratio of the pruned channels so that the FLOPs would become (A)
75%, (B) 50%, and (C) 25% of the original backbone. In SRN
architecture, we can prune both Layer1 and Layer2 shown in Fig.
10. The ratio of Layer1 and Layer2 was tuned so that the number
of remaining channels would become the same after pruning. Af-
ter serializing and pruning all the blocks, we further trained the
model for 20 more epochs at 1.25× 10−5 learning rate which was
divided by 10 at 10 epochs. The rest of the training setups were
the same with [9].

For ResNet, we pruned only the layers without branched paths
(Layer2 in Fig. 10), since we cannot prune the layers connected
to identity shortcuts. The training setups are the same with the
SRN models.

Just for fair comparison with the original model (with ResNet-
18 backbone), we further trained the pretrained original model,
which results in no apparent improvement nor degradation.
5.2.3 Results

The results are reported in Table 4. As shown in Table 4, the
pruned the SRN models could outperform the pruned ResNet
models at the same FLOPs. For instance, At ×0.75 FLOPs
rate, the SRN model shows a very small degradation, while the
pruned ResNet model suffered more than 1% degradation in mAP.
At larger FLOPs reduction, the performance gap of the ResNet
model and the SRN model became even more significant. For re-
ducing lots of FLOPs of the ResNet model, only the layers with-
out identity shortcuts needed to be pruned, and the pruned layers
with few remaining channels could not preserve the original per-
formance. On the other hand, as any layer of the SRN model
could be pruned, the model accuracy could be preserved better.

Even though the model with our SRN-18-pruned (A) backbone
was competitive to the original model in mAP, we could achieve
×1.43 speed up. In this way, even though the SRN model has
more FLOPs than the ResNet model, we can effectively make the
SRN model faster by performing pruning.

6. Conclusion
In this thesis, we presented the methods for pruning the pre-

trained DNN models effectively. The proposed methods include
two pruning methods, Neuro-Unification (NU) and Reconstruc-
tion Error Aware Pruning (REAP), and two facilitation meth-
ods for pruning, Pruning Ratio Optimizer (PRO), and Serialized
Residual Network (SRN). These methods offer a practical solu-
tion for those who want to use large DNN models in resource-
limited environments, such as smartphones, drones, and so on.

The biggest highlight of this thesis is REAP. REAP is theo-
retically well designed for preserving the accuracy of the model

while reducing the model’s redundancy. Among the methods that
perform pruning based on layer-wise error, no other method is
as good as REAP in terms of minimizing the error, to our best
knowledge. Moreover, since REAP requires significant amount
of computation for selecting the neurons to be pruned, we pre-
sented an efficient algorithm based on biorthogonal system. This
algorithm is a novel usage of biorthogonal system.

PRO is a method to optimize the pruning ratio in each layer
efficiently. The idea of PRO is to repeat selecting the layer where
pruning will have the least impact on the outputs in the final layer
of the model, and pruning some neurons in the selected layer.
With REAP and PRO, we can conduct compression and optimize
the architecture of the pruned model simultaneously.

SRN is a method to facilitate pruning on ResNet. The lim-
itation of structured pruning on ResNet is that the layers with
branched paths cannot be pruned. We noticed that the ResNet ar-
chitecture is equivalent to a specific case of a serial architecture.
Therefore, ResNet can be converted to an serial form which we
call SRN. Once converted, we can reduce its redundancy dras-
tically by pruning, as SRN has a serial architecture and its any
layer can be pruned. SRN improves the practicality of pruning.

In the future, we plan to put the proposed method to practical
use. By inputting the target model, some data, and overall com-
pression ratio, the system identifies the layers to be pruned by
performing structural analysis, serializes the ResNet architecture
(if exists), optimizes the pruning rate with PRO, and conducts
pruning with REAP.

References
[1] : Channel Pruning for Accelerating Very Deep Neural Networks,

https://github.com/yihui-he/channel-pruning. (accessed
on 08/01/2021).

[2] : NVIDIA JetPack SDK, https://developer.nvidia.com/
embedded-computing. (accessed on 08/01/2021).

[3] : TensorRT-CenterNet, https://github.com/CaoWGG/
TensorRT-CenterNet. (accessed on 08/01/2021).

[4] . Liu, . Wang, Foroosh, H., Tappen, M. and Penksy, M.: Sparse Con-
volutional Neural Networks, Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 806–814 (2015).

[5] Aghasi, A., Abdi, A., Nguyen, N. and Romberg, J.: Net-
Trim: Convex Pruning of Deep Neural Networks with Perfor-
mance Guarantee, Proceedings of Conference on Neural Informa-
tion Processing Systems (NIPS), pp. 3177–3186 (online), avail-
able from ⟨http://papers.nips.cc/paper/6910-net-trim-convex-pruning-
of-deep-neural-networks-with-performance-guarantee.pdf⟩ (2017).

[6] Courbariaux, M., Bengio, Y. and David, J.: BinaryConnect:
Training Deep Neural Networks with binary weights during
propagations, Proceedings of Conference on Neural Information
Processing Systems (NIPS), pp. 3123–3131 (online), available
from ⟨http://papers.nips.cc/paper/5647-binaryconnect-training-deep-
neural-networks-with-binary-weights-during-propagations.pdf⟩
(2015).

[7] Deng, J., Dong, W., Socher, R., Li, L., Li, K. and Fei-Fei, L.: Im-
ageNet: A Large-Scale Hierarchical Image Database, Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 248–255 (2009).

[8] Dong, X., Chen, S. and Pan, S.: Learning to Prune Deep Neural Net-
works via Layer-wise Optimal Brain Surgeon, Proceedings of Con-
ference on Neural Information Processing Systems (NIPS), pp. 4857–
4867 (2017).

[9] Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q. and Tian, Q.: CenterNet:
Keypoint Triplets for Object Detection, Proceedings of IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 6569–6578 (2019).

[10] Elsken, T., Metzen, J. H. and Hutter, F.: Efficient Multi-Objective
Neural Architecture Search via Lamarckian Evolution, Proceedings of
International Conference on Learning Representations (ICLR) (2019).

[11] Han, S., Mao, H. and Dally, W. J.: Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huff-

15ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

IPSJ SIG Technical Report

man Coding, CoRR (2015).
[12] Han, S., Pool, J., Tran, J. and Dally, W.: Learning both Weights and

Connections for Efficient Neural Network, Proceedings of Conference
on Neural Information Processing Systems (NIPS), pp. 1135–1143
(online), available from ⟨http://papers.nips.cc/paper/5784-learning-
both-weights-and-connections-for-efficient-neural-network.pdf⟩
(2015).

[13] Hassibi, B., Stork, D. G. and Wolff, G. J.: Optimal Brain Surgeon and
general network pruning, IEEE International Conference on Neural
Networks, pp. 293–299 (1993).

[14] He, K., Zhang, X., Ren, S. and Sun, J.: Deep Residual Learning for
Image Recognition, Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 770–778 (2016).

[15] He, T., Fan, Y., Qian, Y., Tan, T. and Yu, K.: Reshaping deep neu-
ral network for fast decoding by node-pruning, Proceedings of IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 245–249 (2014).

[16] He, Y., Lin, J., Liu, Z., Wang, H., Li, L. and Han, S.: AMC: AutoML
for Model Compression and Acceleration on Mobile Devices, Pro-
ceedings of European Conference on Computer Vision (ECCV), pp.
784–800 (2018).

[17] He, Y., Zhang, X. and Sun, J.: Channel Pruning for Accelerating Very
Deep Neural Networks, Proceedings of IEEE International Confer-
ence on Computer Vision (ICCV), pp. 1389–1397 (2017).

[18] Hinton, G., Vinyals, O. and Dean, J.: Distilling the Knowledge in a
Neural Network, CoRR (2015).

[19] Hsu, C., Chang, S., Juan, D., Pan, J., Chen, Y., Wei, W. and Chang,
S.: MONAS: Multi-Objective Neural Architecture Search using Rein-
forcement Learning, CoRR (2018).

[20] Hu, W., Lin, Z., Liu, B., Tao, C., Tao, Z., Ma, J.,
Zhao, D. and Yan, R.: Overcoming Catastrophic Forgetting
via Model Adaptation, Proceedings of International Conference
on Learning Representations (ICLR), (online), available from
⟨https://openreview.net/forum?id=ryGvcoA5YX⟩ (2019).

[21] Jaderberg, M., Vedaldi, A. and Zisserman, A.: Speeding up Convolu-
tional Neural Networks with Low Rank Expansions, Proceedings of
British Machine Vision Conference (BMVC) (2014).

[22] Kamma, K., Isoda, Y., Inoue, S. and Wada, T.: Behavior-Based Com-
pression for Convolutional Neural Networks, Proceedings of Interna-
tional Conference on Image Analysis and Recognition (ICIAR), pp.
427–439 (online), DOI: 10.1007/978-3-030-27202-9 39 (2019).

[23] Kamma, K. and Wada, T.: Reconstruction Error Aware Pruning for
Accelerating Neural Networks, Proceedings of International Sympo-
sium on Visual Computing (ISVC), pp. 59–72 (2019).

[24] Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B. and Xing,
E.: Neural Architecture Search with Bayesian Optimisation and Opti-
mal Transport, CoRR (2018).

[25] Krizhevsky, A., Sutskever, I. and Hinton, G.: ImageNet
Classification with Deep Convolutional Neural Networks,
Proceedings of Conference on Neural Information Process-
ing Systems (NIPS), pp. 1097–1105 (online), available from
⟨http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf⟩ (2012).

[26] LeCun, Y., Denker, J. S. and Solla, S. A.: Optimal Brain
Damage, Proceedings of Conference on Neural Information Pro-
cessing Systems (NIPS), pp. 598–605 (online), available from
⟨http://papers.nips.cc/paper/250-optimal-brain-damage.pdf⟩ (1990).

[27] Lin, T., Maire, M., Belongie, S. J., Bourdev, L. D., Girshick, R. B.,
Hays, J., Perona, P., Ramanan, D., Dollár, P. and Zitnick, C. L.: Mi-
crosoft COCO: Common Objects in Context, Proceedings of Euro-
pean Conference on Computer Vision (ECCV), pp. 740–755 (2014).

[28] Liu, H., Simonyan, K., Vinyals, O., Fernando, C. and
Kavukcuoglu, K.: Hierarchical Representations for Efficient
Architecture Search, Proceedings of International Conference
on Learning Representations (ICLR), (online), available from
⟨https://openreview.net/forum?id=BJQRKzbA-⟩ (2018).

[29] Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S. and Zhang, C.: Learn-
ing Efficient Convolutional Networks Through Network Slimming,
Proceedings of IEEE International Conference on Computer Vision
(ICCV), pp. 2736–2744 (2017).

[30] Luo, J., Wu, J. and Lin, W.: ThiNet: A Filter Level Pruning Method
for Deep Neural Network Compression, Proceedings of IEEE Interna-
tional Conference on Computer Vision (ICCV), pp. 5058–5066 (2017).

[31] Mirzadeh, S., Farajtabar, M., Li, A., Levine, N., Matsukawa, A.
and Ghasemzadeh, H.: Improved Knowledge Distillation via Teacher
Assistant, Proceedings of AAAI Conference on Artificial Intelligence
(AAAI), pp. 5191–5198 (2020).

[32] Molchanov, P., Tyree, S., Karras, T., Aila, T. and Kautz, J.: Prun-
ing Convolutional Neural Networks for Resource Efficient Transfer
Learning, Proceedings of International Conference on Learning Rep-
resentations (ICLR) (2015).

[33] Park, S., Lee, J., Mo, S. and Shin, J.: Lookahead: A Far-sighted Al-
ternative of Magnitude-based Pruning, Proceedings of International
Conference on Learning Representations (ICLR), (online), available
from ⟨https://openreview.net/forum?id=ryl3ygHYDB⟩ (2020).

[34] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z.,
Lin, Z., Desmaison, A., Antiga, L. and Lerer, A.: Automatic differen-
tiation in PyTorch, NIPS-W (2017).

[35] Pham, H., Guan, M. Y., Zoph, B., Le, Q. V. and Dean, J.: Efficient
Neural Architecture Search via Parameters Sharing, Proceedings of
International Conference on Machine Learning (ICML), pp. 4095–
4104 (2018).

[36] S. Srinivas, V. B.: Data-free parameter pruning for Deep Neural Net-
works, Proceedings of British Machine Vision Conference (BMVC)
(2018).

[37] Simonyan, K. and Zisserman, A.: Very Deep Convolutional Net-
works for Large-Scale Image Recognition, Proceedings of Interna-
tional Conference on Learning Representations (ICLR) (2015).

[38] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D.,
Erhan, D., Vanhoucke, V. and Rabinovich, A.: Going Deeper With
Convolutions, Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1–9 (2015).

[39] Wang, H., Zhang, Q., Wang, Y. and Hu, H.: Structured Probabilistic
Pruning for Convolutional Neural Network Acceleration, Proceedings
of British Machine Vision Conference (BMVC) (2018).

[40] Xie, G., Wang, J., Zhang, T., Lai, J., Hong, R. and Qi, G.: Inter-
leaved Structured Sparse Convolutional Neural Networks, Proceed-
ings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8847–8856 (2018).

[41] Xue, J., Li, J. and Gong, Y.: Restructuring of deep neural network
acoustic models with singular value decomposition, Proceedings of
the Annual Conference of the International Speech Communication
Association, INTERSPEECH, pp. 2365–2369 (2013).

[42] Ye, J., Wang, L., Li, G., Chen, D., Zhe, S., Chu, X. and Xu, Z.: Learn-
ing Compact Recurrent Neural Networks With Block-Term Tensor
Decomposition, Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 9378–9387 (2018).

[43] Yu, R., Li, A., Chen, C., Lai, J., Morariu, V. I., Han, X., Gao, M., Lin,
C. and Davis, L. S.: NISP: Pruning Networks Using Neuron Impor-
tance Score Propagation, Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 9194–9203 (2018).

[44] Yu, X., Liu, T., Wang, X. and Tao, D.: On Compressing Deep Mod-
els by Low Rank and Sparse Decomposition, Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.
7370–7379 (2017).

[45] Zhao, L., Hu, Q. and Wang, W.: Heterogeneous Feature Selection
With Multi-Modal Deep Neural Networks and Sparse Group LASSO,
IEEE Transactions on Multimedia, Vol. 17, No. 11, pp. 1936–1948
(2015).

[46] Zhu, M. and Gupta, S.: To prune, or not to prune: exploring the effi-
cacy of pruning for model compression, CoRR (2017).

[47] Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J.
and Zhu, J.: Discrimination-aware Channel Pruning for Deep Neural
Networks, Proceedings of Conference on Neural Information Process-
ing Systems (NIPS), pp. 881–892 (2018).

[48] Zoph, B. and Le, Q. V.: Neural Architecture Search with Reinforce-
ment Learning, CoRR (2016).

16ⓒ 2021 Information Processing Society of Japan

Vol.2021-NL-248 No.10
Vol.2021-CVIM-226 No.10

2021/5/20

